

JAMIT Annual Meeting 2019 第38回日本医用画像工学会大会

会期:2019年7月24日(水)~7月26日(金)
 会場:奈良春日野国際フォーラム 売~I・RA・KA~

大会長:佐藤 嘉伸(奈良先端科学技術大学院大学)

主 催 日本医用画像工学会

(The Japanese Society of Medical Imaging Technology) 一般社団法人 日本画像医療システム工業会 後援 (JIRA: Japan Medical Imaging and Radiological Systems Industries Association) 一般社団法人保健医療福祉情報システム工業会 (JAHIS: Japanese Association of Healthcare Information Systems Industry) 一般社団法人 電子情報技術産業協会 (JEITA: Japan Electronics and Information Technology Industries Association) 協 賛 IEEE関西支部 医用画像情報学会 医用画像認知研究会 応用物理学会 可視化情報学会 画像電子学会 看護理工学会 三次元画像コンファレンス実行委員会 電子情報通信学会 情報処理学会 日本医学物理学会 日本医学放射線学会 日本医療情報学会 日本核医学会 日本核医学技術学会 日本画像医学会 日本磁気共鳴医学会 日本コンピュータ外科学会 日本写真学会 日本生体医工学会 日本脳神経CI学会 日本超音波医学会 日本放射線技術学会

学会長ご挨拶

第38回日本医用画像工学会大会は奈良先端科学技術大学院大学教授 佐藤嘉伸大会長の運営のもとで,2019年7月24日(水)から26日(金)の3日間,奈良春日野国際フォーラムにて開催されることになりました.一年以上前から準備をされてきた大会関係者や事務局の皆様,そして企業の業務委員会の皆様のご尽力に厚く御礼申し上げます.

医用画像工学の領域においても人工知能(Artificial Intelligence: AI)は有力な技術となるため、診断支援、画像処理、 画像再構成をはじめとして多くの応用研究が盛んに行われております。今回の大会でも「AI時代の医用画像工学」とい うテーマで様々なアプローチでの研究が報告されることとなりますので大変楽しみです。また、特別講演では、今の AI 時代の礎を築かれた福島邦彦先生のネオコグニトロンのご講演を拝聴できるのでとても期待しております。このような AI技術と密接な関係があるのはビッグデータですが、国立情報学研究所(National Institute of Informatics: NII)では 医療ビッグデータ研究センターを立ち上げ、国家レベルで匿名化された医療画像情報を収集して医療画像ビッグデータ クラウド基盤の構築を始めています。このような最新の動向もシンポジウムの中で聞くことができるようになっていま すので、医用画像データと AI の今後も俯瞰できるのではないかと期待しております。また、もう一つの特別講演では 奈良県立医科大学学長の細井裕司先生から、医学とまちづくりをテーマとするお話もうかがえることになっており、新 しい切り口の医学のあり方のご提案とも推察され、とても興味があります。

今回の大会では佐藤嘉伸大会長のご提案で、すべての一般演題において2分程度の口頭発表(ティーザー)とポスター 発表の両方を行う事になっています.今までのJAMITとは違った形式での発表となりますが、すべての研究論文の要 点を聞くことができると共に、興味ある内容はポスターでじっくり議論できるという、いいとこ取りの斬新な試みも取 り入れられています.

今大会の中では、上記のような企画の他、恒例となりましたハンズオンによる AI 講習会をはじめとして、盛りだく さんの企画が用意されていますので、会員の皆様には実りの大きい大会となると思っております.この大会における皆 様の活発な意見交換により、医用画像工学の研究が大きく進展することを期待しています.

日本医用画像工学会

会長 尾川 浩一(法政大学)

大会長ご挨拶

第38回日本医用画像工学会(JAMIT)大会を2019年7月24~26日に奈良にて開催させていただくことになりました. 大会のテーマは「AI時代の医用画像工学」としました.

AI(人工知能)は、もはや単なるブームでなく、AI以前の方法では達成できない、人間を上回りうる高性能を得 るための必要不可欠な技術として定着し、さらに発展を続けています。JAMIT 大会では、2016年の千葉大会の頃から、 AIが大会のメイントピックとなってきました。医用画像を専門としない一般の方々からみても、今や医用画像診断は、 自動運転などと並んで、AIの社会実装が最も期待される分野となっています。イメージングにおいてもAIを利用し た画像再構成、超解像、モダリティ変換など、その影響力は多大です。

本大会では、AIに関する特別企画として、AIの中心技術である深層学習、その中でも、中心的方法である畳み込 みニューラルネット(CNN)の基礎を与えた「ネオコグニトロン」を開発された福島邦彦先生に、特別講演をしてい ただきます.さらに、シンポジウムでは、国立情報学研究所と医学系各学会の連携による国家規模の医用画像ビッグ データAI解析に関するAMEDプロジェクトを取り上げます.これら歴史的研究や最新の大型プロジェクトに加えて、 2017年の岐阜大会から始まり、例年、好評を博しております深層学習ハンズオンもさらに強化され、参加者一人一人が AIの基礎を勉強する場を設けています.今年は、一般演題についても、AIに関係する演題が半数に達しており、ま さしく医用画像工学はAI時代に突入しています.

本学会は、医工連携、医療IT、産学連携などとも密接に関係しております。ここ奈良の地で、それらに加えて、「ま ちづくり」という視点を加えた「医学を基礎とするまちづくり、Medicine-Based Town (MBT)」のプロジェクトが進行 しています。このプロジェクトを推進している奈良県立医大・学長の細井裕司先生に特別講演をしていただきます。「ま ち」に、医科大学や医師等が持つ医学の知識・叡智を注ぎ込んで、付加価値の高いまち MBT をつくります。また、こ の過程が新産業創生、地方創生の原動力となります。このプロジェクトは、実際に、種々の連携体制の下、奈良県橿原 市において実践されており、今後の展開が大いに期待されます。

その他の話題については、2つめのシンポジウムにおいて、医用画像を中心として、時空間多重スケール、病理、機能の多元データを統合することにより人体の総合理解を目指す、科研費・新学術領域「多元計算解剖学」の成果報告を行います。ミニシンポジウムにおいては、生きた状態を4次元でイメージングする最新のバイオ顕微鏡画像を、AIを含む情報技術によって解析し新しい生命科学の創成を目指すプロジェクトを紹介します。もう一つのミニシンポジウムでは、本学会のメイントピックの一つであるCTやMRのイメージングと深層学習を統合した新しい研究の流れに焦点を当てます。2017年岐阜大会、2018年筑波大会に引き続き、企業協賛のランチョンセミナーも企画されています。ランチョンセミナーでは研究病院の臨床現場のAI導入に関する興味深い話が聞けるものと思います。

開催場所である奈良春日野国際フォーラム甍~I・RA・KA ~は,奈良公園内にあり,また,世界遺産である東大寺 と春日大社の中間地点に位置しており,奈良観光にも大変便利な場所にあります.奈良において,医用画像工学の将来 と共に,奈良時代の歴史にも思いを馳せていただければと思います.

> 第38回日本医用画像工学会大会 大会長 佐藤 嘉伸 (奈良先端科学技術大学院大学)

徒步

近鉄奈良駅2番出口より徒歩20分

- バス
 - (1) 近鉄奈良駅5番出口より奈良交通バス1番のりば
 - (2) JR 奈良駅より奈良交通バス東口2番のりば
 - (1), (2)とも 「春日大社本殿」行き「奈良春日野国際フォーラム甍前」下車すぐ又は、 「市内循環(外回り)」バス「東大寺大仏殿・春日大社前」下車, 大仏殿交差点東 へ徒歩3分

会場案内図

奈良春日野国際フォーラム甍~I・RA・KA~ 奈良市春日野町 101

本館 1F

本館 2F

参加者へのご案内

- 1. 会 期:2019年7月24日(水)~7月26日(金)
- 2. 会場:奈良春日野国際フォーラム 甍~I・RA・KA~
 〒 630-8212 奈良市春日野町 101 TEL:0742-27-2630(問い合わせ先) http://www.i-ra-ka.jp/iraka/access/

講演会場:メイン会場:本館2階レセプションホール1 ポスター会場:本館2階会議室3・4 展示会場:本館2階ロビー ハンズオンセミナー:本館1階会議室2 ご参加いただくには参加証の提示が必要です.

3. 参加登録

登録:当日 7月24日(水) 12:40~18:00 7月25日(木) 8:30~17:00 7月26日(金) 8:30~15:00 本館1階エントランスホール 7月26日(金) 8:30~15:00

2)参加費
 正会員(賛助会員含む):10,000円
 学生会員:4,000円
 非会員:20,000円
 (会場での受付のみ/事前登録はありません)

4. 総 会

日時:7月25日(木) 13:00~14:00 会場:メイン会場(レセプションホール1)

5. 予稿集について

印刷物としての「予稿集」は作成しません.ダウンロード(PDF)形式で当日,参加者に配布します. 会場で予稿集をご覧になるにはノート PC などを各自ご持参下さい.

6. 発表者へのご案内

- 1) 一般演題の発表は,発表時間前半にメイン会場(レセプションホール1)にて各演題口演2分,後半にポスター 会場(会議室3・4)にてインタラクティブセッションです.
- 2) ポスターはW1200mm×H1800mmのパネルに収まるサイズにて作成してください.
 ポスターの貼付と撤去は下記の時間内に行ってください.
 一般演題セッション1・2: 貼付:7月24日(水)12:30~16:10
 撤去:7月25日(木)10:30~12:00
 一般演題セッション3・4・5:貼付:7月25日(木)12:30~16:10
 撤去:7月26日(金)15:20~17:15
- 3) 口演用のスライド(3枚以内程度、口演は2分で打ち切ります)を定められた期日までにご提出ください、 スライドの作成,提出の仕方,提出期日,その他注意点につきましては,大会ホームページ「参加者へのご案内」 をご確認ください。

7. 座長へのご案内

担当セッションが始まる 10 分前までに、座長席近くにお越しになり待機してください.

8. 発表者資格

一般演題の筆頭発表者は、日本医用画像工学会の会員に限ります。非会員の方は必ず6月末日までに入会申込 みをし、7月20日までに会費を納入してください。

9. 入会手続き及びお問い合わせ

日本医用画像工学会事務局(http://www.jamit.jp/) 〒104-0033 東京都中央区新川 1-5-19 6 階 (株) メイプロジェクト内 TEL: 03-6264-9071 FAX: 03-6264-8344 E-mail: jamit @ may-pro.net

10. 利益相反(COI) について

筆頭発表者が,日本医用画像工学会における「利益相反の取扱いに関する規程」において開示の対象となる場合, この規定に基づいて,発表者の申告した利益相反の状態が予稿集に開示されます.また,発表の際には発表者本 人が開示します.

11. 各種役員会

1)	広報委員会	7月24日(水)	$12:30 \sim 13:00$	会場:サブ会場	(1 階 会議室 2)
2)	幹事会	7月25日(木)	$11:45 \sim 12:45$	会場:サブ会場	(1階会議室2)
3)	編集委員会	7月26日(金)	$11:45 \sim 12:45$	会場:サブ会場	(1 階 会議室 2)

12. 特別講演

特別講演1:7月25日(木) 14:00~14:50
 会場:メイン会場
 軟骨伝導の発見から MBT(医学を基礎とするまちづくり)へ
 細井 裕司(奈良県立医科大学 理事長・学長)
 座 長:佐藤 嘉伸(奈良先端科学技術大学院大学/JAMIT2019大会長)

特別講演2:7月26日(金) 13:00~13:50 会場:メイン会場 ネオコグニトロンと畳み込みニューラルネットワーク 福島 邦彦(ファジィシステム研究所 特別研究員) 座 長:尾川 浩一(法政大学/日本医用画像工学会 会長)

13. 第9回 JAMIT チュートリアル講演会(教育委員会企画)

(コニカミノルタ科学技術振興財団 JAMIT ハンズオンセミナー 連携企画) 「Beyond Deep Learning」 第38回日本医用画像工学会大会のプログラムの一環として「第9回日本医用画像工学会(JAMIT) チュートリアル講演会~Beyond Deep Learning~」を第1日目の午後に開催いたします.チュートリアルでは, 医用画像工学に携わる若手研究者や最新の動向を得たい第一線の研究者を対象として,現在の研究に役立つテー マを専門の研究者が講演します.

日 時:7月24日(水) 13:20~16:10
会 場:メイン会場
座 長:中田 典生(東京慈恵会医科大学)/小田 昌宏(名古屋大学)
講演1:世間の流行に左右されない深層学習所感 鈴木 賢治(東京工業大学/イリノイ工科大学)
講演2:様々な大規模計算環境の得手・不得手 ~何ができて何ができない?~ 平野 靖(山口大学)
講演3:医師が取り組んだ深層学習:臨床からスパコンまで 花岡 昇平(東京大学)

14. コニカミノルタ科学技術振興財団 JAMIT ハンズオンセミナー

深層学習の実行環境は、比較的簡単に構築できます.本ハンズオンでは、参加者は、事前に提供されるセットアッ プ資料に基づいて、自分自身のコンピュータに TensorFlow / Keras / Python による実行環境を構築し、その 上で画像分類/領域分割/回帰について、医用画像を利用した基本的な課題を実行します.また、DICOM ファ イルの読み込みなどの前処理の方法や、構築したモデルの保存/読み込みといった実践的な方法についても触れ ます.そして、課題に応じた評価方法についても考え方と処理方法を実践的に習得します.なお、本ハンズオンは、 コニカミノルタ科学技術振興財団助成事業として、学生/若手研究者の支援を目的として実施します.(注意:参 加には、事前のセットアップとコンピュータの持ち込みが必要です)

7月24日水曜日のチュートリアル講演の受講後は,90分のハンズオンセミナーに参加していただきます. セミ ナーは、学会期間中5回開催します(すべて同一内容です). いずれかの中でご都合のよい時間に1回受講してく ださい. ここでは、深層学習の習得を目的として、課題に取り組んでいただきます.

課題1 : 画像分類/胸部単純 X 線画像の方向を認識する

課題2:領域分割/胸部単純X線画像のセグメンテーション

課題3:回帰/胸部単純X線画像から年齢を推定する

課題4:Python で DICOM ファイルを読んでみよう!

(実験対象の画像や課題は、変更の可能性があります)

GPU なしでも操作できる程度の画像と学習枚数を使い、スクリプトの書き方、評価方法などを学んでいただき ます. 詳細は、「コニカミノルタ科学技術振興財団 JAMIT ハンズオンセミナー」の専用ウェブページをご覧く ださい. 開催スケジュール: 5月 1日 募集ページオープン/予約開始 7月 1日 セットアップ資料公開 7月10日 募集締め切り 7月23日 当日資料の事前公開 7月24日~26日 大会 受講スケジュール: 7月24日水曜日:チュートリアル講演の受講をお願いします. 第1回:7月24日(水)16:25~ 第2回:7月25日(木) 9:00~ 第3回:7月25日(木)16:25~ 第4回:7月26日(金) 9:00~ 第5回:超初級者編 7月26日(金) 14:00~ (各回90分,第1回~第4回は同じ内容,第5回は重複受講可能です。) 場: サブ会場 (1階会議室2) 会 運 営 ス タ ッ フ: 原 武史 (岐阜大学) /中田 典生 (東京慈恵会医科大学) /小田 昌宏 (名古屋大学) 福岡 大輔 (岐阜大学) /田中 利恵 (金沢大学) /中山 良平 (立命館大学) 本セミナーは、コニカミノルタ科学技術振興財団の支援を得て実施しています。また、岐阜大学人工知能推進 センターの協力で実施します.

15. シンポジウム・ミニシンポジウム

ミニシンポジウム1:7月25日(木) 10:40~11:30 会場:メイン会場 CT・MR イメージングにおける深層学習 世話人/座長: 增谷 佳孝 (広島市立大学) 講演1:深層学習を用いた CT 及び PET/SPECT の画像再構成 工藤 博幸(筑波大学) 講演2:深層学習を用いた CT 画像の金属アーチファクト低減処理 大竹 義人 (奈良先端科学技術大学院大学) 講演3:深層学習を利用した MR イメージング 伊藤 聡志 (宇都宮大学) 講演4:生成型 Q 空間学習による拡散 MR イメージング 增谷 佳孝(広島市立大学) シンポジウム1:7月25日(木)15:05~16:25 会場:メイン会場 医用画像のビッグデータと AI 開発の展望 世話人/座長:村尾 晃平(国立情報学研究所)/中田 典生(東京慈恵会医科大学) 講演1: 医療画像ビッグデータクラウド基盤 合田 憲人 (国立情報学研究所) 講演2:AMED プロジェクトにおける画像解析タスク俯瞰,眼科画像の解析 佐藤 真一(国立情報学研究所) 講演3:病理と内視鏡画像における胃がん検知システムの開発 原田 達也/黒瀬 優介(東京大学)

> 講演4:大腸の画像診断:大腸生検の病理画像解析および大腸の内視鏡画像解析 内田 誠一/備瀬 竜馬(九州大学)

講演5: AMED 大規模データベースを用いた CT 画像解析と病変検出への応用 森 健策/小田 昌宏(名古屋大学)

講演6:大規模CTデータ解析による骨格解剖知識の抽出 大竹 義人/日朝 祐太(奈良先端科学技術大学院大学) 高尾 正樹/菅野 伸彦(大阪大学)

佐藤 嘉伸(奈良先端科学技術大学院大学) 講演7:超音波画像データベース構築とAI開発の取り組み

椎名 毅(京都大学)/目加田慶人(中京大学)

講演8:OpenAIと TradeAI

中田 典生 (東京慈恵会医科大学)

総合討論:臨床診断の立場からの特別発言と総合討論

縄野 繁(国際医療福祉大学)/シンポジウム1演者全員

ミニシンポジウム2:7月26日(金) 10:40~11:30 会場:メイン会場 生命機能イメージングの革新:今後の課題と展望 世話人/座長:清末 優子(理化学研究所)/末次 志郎(奈良先端科学技術大学院大学) 講演1:イントロ: JST CREST 情報計測領域について 清末 優子 (理化学研究所) 講演2: クライオ電子顕微鏡法による生体分子の構造解析 光岡 薫 (大阪大学) 講演3:高速原子間力顕微鏡による生体分子イメージングと機械学習・データ同化 高田 彰二 (京都大学) 講演4:細胞活動の高精度3D計測と画像情報解析の次世代化に向けて 清末 優子 (理化学研究所) シンポジウム2:7月26日(金) 15:35~16:55 会場:メイン会場 多元計算解剖学のこれから - さらなる飛躍を目指して 世話人/座長:森 健策(名古屋大学)/清水 昭伸(東京農工大学) 講演1:多元計算解剖学において生み出されたもの 橋爪 誠(九州大学) 講演2:多元計算解剖学における数理 本谷 秀堅(名古屋工業大学) 講演3:多元計算解剖学における多元モデリング 佐藤 嘉伸(奈良先端科学技術大学院大学) 講演4:多元計算解剖学と人工知能ブーム 藤田 広志 (岐阜大学) 講演5: 多元計算解剖学のその先にあるもの 森 健策(名古屋大学) パネル討論:多元計算解剖学の今後の発展に向けて

16. NVIDIA / GDEP アドバンス 共催ランチョンセミナー

 7月26日(金) 11:50~12:40
 CGX-2によって加速されるメディカル AI 開発のためのデータ構造化プラットフォーム 小林 和馬(国立研究開発法人国立がん研究センター研究所 がん分子修飾制御学分野)
 座 長:中田 典生(東京慈恵会医科大学)
 参加者の皆様にお弁当をご用意いたしますが,数に限りがございます.

17. 懇親会

参加者相互の情報交換のため,懇親会を企画いたしました.ぜひご参加ください. 日 時:7月25日(木) 18:30~20:00 会 場:奈良国立博物館B1 レストラン『葉風泰夢(ハーフタイム)』 参加費:無料(大会参加費に含まれます.参加は大会参加者に限ります.)

ご協力団体

本大会は下記企業及び団体にご協力いただきました. 心より感謝申し上げます.

共催セミナー: NVIDIA 合同会社 株式会社 GDEP アドバンス

助 成 : 公益財団法人 コニカミノルタ科学技術振興財団

企業展示:アプライド株式会社
 株式会社 HPC テック
 株式会社エクセル・クリエイツ
 株式会社 GDEP アドバンス

協 賛 金 :株式会社メディアーク

広告掲載: PSP 株式会社 医歯薬出版株式会社 富士通株式会社 富士フイルムメディカル株式会社 株式会社インナービジョン 株式会社オーム社 株式会社オプティム 株式会社 島津製作所 株式会社メディアーク

	第1日目 / 7月 24日 (水)										
	メイン会場(レセプションホール 1)	ポスター会場(会議室 3・4)	展示会場(ロビー)	サブ会場(1 階 会議室 2)							
12:30		12:30 - 16:10		12:30 - 13:00 広報委員会							
13:10	13:10 - 13:20 開会式		展示								
13:20	第9回JAMITチュートリアル講演会(教育委員会企画) (コニカミノルタ科学技術振興財団、JAMIT ハンズオンセミナー連携企画) TL [Beyond Deep Learning] 13:20-14:20 TL1 [世間の流行に左右されない深層学習所感] 鈴木 賀治 14:30 - 15:20 TL2 [様々な大規模計算環境の得手・不得手~何ができて何ができない? ~] 平野 靖 15:20 TL3 [医師が取り組んだ深層学習:臨床からスパコンまで] 花岡 昇平 座長:中田 典生/小田 昌宏										
16:10	コーヒーブレイク										
16:25	16:25 - 18:00 一般演題セッション1(前半:メイン会場にて口頭発表 後半:ボスターセッシ OP1「イメージング/画質改善」「画像解析/モデリング」「CAD/臨床応用」(OP1-1 座長:湯浅 哲也/健山 智子/石田 隆行	ョン) ~ 25)		16:25 - 17:55 ハンズオンセミナー 1 HS1 [Deep Learning]							
18:00											

	第2日目/7月25日(木)										
	メイン会場(レセプションホール 1)	ポスター会場(会議室3・4)	展示会場(ロビー)	サブ会場(1 階 会議室 2)							
9:00	9:00 – 10:30 一般演題セッション2(前半:メイン会場にて口頭発表 後半:ポスターセッショ OP2「イメージング / 画質改善」「画像解析 / モデリング」「CAD/ 臨床応用」(OP2-1 / 座長:小尾 高史/中口 俊哉/花岡 昇平	展示	9:00 – 10:30 ハンズオンセミナー 2 HS2 [Deep Learning]								
10:30 10:40	コーヒーブレイク 10:40 - 11:30 ミニシンボジウム 1 MS1「CT・MRイメージングにおける深層学習」 工藤 博幸/大竹 義人/伊藤 聡志/増谷 佳孝 座長:増谷 佳孝	10:30 – 12:00 OP1 / OP2 ボスター撤去		11:45 - 12:45 幹事会							
11:30	昼食										
13:00 14:00	13:00 - 14:00 総会 14:00 - 14:50 特別講演 1 SLI「軟骨伝導の発見から MBT(医学を基礎とするまちづくり)へ」 細井 裕司 座長:佐藤 嘉伸	12:30 - 16:10 - OP3 / OP4 / OP5 ポス ター貼付									
14:50 15:05	コーヒーブレイク 15:05 - 16:25 シンボジウム 1 SY1 [医用画像ビッグテータと AI開発の展望] 合田 憲人/佐藤 真一/原田 達也/黒瀬 優介/内田 誠一/備瀬 竜馬/森 健策/小田 昌宏/佐藤 嘉伸/大竹 義人/椎名 毅/目加田慶人/中田 典生/縄野 繁 座長:村尾 晃平/中田 典生										
16:25	16:25 – 17:55 一般演題セッション3(前半:メイン会場にて口頭発表 後半:ボスターセッシ OP3「イメージング / 画質改善」「画像解析 / モデリング」「CAD/ 臨床応用」(OP3-1 · 座長:伊藤 聡志/上村 幸司/内山 良一		16:25 – 17:55 ハンズオンセミナー 3 HS3「Deep Learning」								
18:30) 18:30 - 20:00 懇親会(会場:奈良国立博物館 B1 レストラン<葉風泰夢(ハーフタイム)>)										

	第3日目/7月26日(金)									
	メイン会場(レセブションホール 1)	ポスター会場(会議室 3・4)	展示会場(ロビー)	サブ会場(1 階 会議室 2)						
9:00	9:00 – 10:30 一般演題セッション4(前半:メイン会場にて口頭発表 後半:ポスターセッショ OP4「イメージング / 画質改善」「画像解析 / モデリング」「CAD/ 臨床応用」(OP4-1 / 座長:山谷 泰賀 / 本谷 秀堅 / 畑中 裕司	展示	9:00 - 10:30 ハンズオンセミナー 4 HS4「Deep Learning」							
10:30	コーヒーブレイク									
10:40	10:40 - 11:30 ミニシンボジウム2 MS 2「生命機能イメージングの革新:今後の課題と展望」 光岡 薫/高田 彰二/満末 優子 座長:清末 優子/末次 志郎									
11:50	11:50 – 12:40 ランチョンセミナー LS [DGX-2 によって加速されるメディカル AI 開発のためのデータ構造化プラット フォーム] 小林 和馬 座長:中田 典生			11:45 - 12:45 編集委員会						
13:00	13:00 - 13:50 特別講演2 SL2「ネオコグニトロンと畳み込みニューラルネットワーク」 福島 邦彦 座長:尾川 浩一									
13:50	13:50 – 15:20 一般演題セッション5(前半:メイン会場にて口頭発表 後半:ボスターセッシ OP5「イメージング / 画質改善」「画像解析 / モデリング」「CAD/ 臨床応用」(OP5-1 - 座長:菅 幹生 / 滝沢 穂高 / 野村 行弘	・ ョン) ~ 24)		14:00 – 15:30 ハンズオンセミナー 5 超初級者編 HS5「Deep Learning」						
15:20	コーヒーブレイク	15:20 - 17:15								
15:35	15:35 – 16:55 シンボジウム 2 SY2「多元計算解剖学のこれから - さらなる飛躍を目指して」 橋爪 誠/本谷 秀堅/佐藤 嘉伸/藤田 広志/森 健策 座長:森 健策/清水 昭伸	ボスター撤去								
16:55	16:55 - 17:00 閉会式									

特別講演

7月25日(木)14:00~14:50 メイン会場(レセプションホール1)

SL1「軟骨伝導の発見から MBT (医学を基礎とするまちづくり)へ」

座長:佐藤 嘉伸

(奈良先端科学技術大学院大学/JAMIT2019大会長)

 SL1
 軟骨伝導の発見から MBT (医学を基礎とするまちづくり)へ

 細井 裕司 (奈良県立医科大学 理事長・学長)

|7月26日(金)13:00~13:50 メイン会場(レセプションホール1)

SL2「ネオコグニトロンと畳み込みニューラルネットワーク」

座長:尾川 浩一(法政大学/JAMIT 学会長)

 SL2
 ネオコグニトロンと畳み込みニューラルネットワーク 福島

 邦彦(ファジィシステム研究所 特別研究員)

第9回 JAMIT チュートリアル講演会

(教育委員会企画)

- 7月24日(水)13:20~16:10 メイン会場(レセプションホール1)
- TL [Beyond Deep Learning]

座長:中田 典生(東京慈恵会医科大学) 小田 昌宏(名古屋大学)

- TL1世間の流行に左右されない深層学習所感
鈴木 賢治(東京工業大学/イリノイ工科大学(Illinois Institute of Technology))
- TL2
 様々な大規模計算環境の得手・不得手
 ~何ができて何ができない?~

 平野
 靖(山口大学)
- TL3 医師が取り組んだ深層学習:臨床からスパコンまで 花岡 昇平 (東京大学)

シンポジウム

7月25日(木)15:05~16:25 メイン会場(レセプションホール1)

SY1「医用画像のビッグデータと AI 開発の展望」

座長: 村尾 晃平 (国立情報学研究所)

中田 典生 (東京慈恵会医科大学)

- SY1-1
 医療画像ビッグデータクラウド基盤

 合田
 憲人(国立情報学研究所)
- SY1-2
 AMED プロジェクトにおける画像解析タスク俯瞰,眼科画像の解析 佐藤 真一(国立情報学研究所)
- SY1-3
 病理と内視鏡画像における胃がん検知システムの開発

 原田 達也 (東京大学)

 黒瀬 優介 (東京大学)
- SY1-4
 大腸の画像診断:大腸生検の病理画像解析および大腸の内視鏡画像解析

 内田 誠一 (九州大学)

 備瀬 竜馬 (九州大学)
- SY1-5
 AMED 大規模データベースを用いた CT 画像解析と病変検出への応用 森 健策(名古屋大学)

 小田 昌宏(名古屋大学)
- SY1-6
 大規模CTデータ解析による骨格解剖知識の抽出

 大竹 義人(奈良先端科学技術大学院大学)

 日朝 祐太(奈良先端科学技術大学院大学)

 高尾 正樹(大阪大学)

 菅野 伸彦(大阪大学)

 佐藤 嘉伸(奈良先端科学技術大学院大学)
- SY1-7
 超音波画像データベース構築とAI開発の取り組み 権名

 載(京都大学)

 目加田慶人(中京大学)
- SY1-8OpenAIとTradeAI中田 典生(東京慈恵会医科大学)
- SY1-9
 臨床診断の立場からの特別発言と総合討論 縄野

 2010
 第(国際医療福祉大学)

 シンポジウム1演者全員
 シンポジウム1演者全員

7月26日(金)15:35~16:55 メイン会場(レセプションホール1)

SY2「多元計算解剖学のこれから - さらなる飛躍を目指して」

座長:森 健策(名古屋大学)清水 昭伸(東京農工大学)

- SY2-1
 多元計算解剖学において生み出されたもの

 橋爪
 誠 (九州大学)
- SY2-2
 多元計算解剖学における数理

 本谷 秀堅(名古屋工業大学)
- SY2-3 多元計算解剖学における多元モデリング 佐藤 嘉伸(奈良先端科学技術大学院大学)
- SY2-4
 多元計算解剖学と人工知能ブーム 藤田 広志(岐阜大学)
- SY2-5
 多元計算解剖学のその先にあるもの

 森
 健策(名古屋大学)
- SY2-6 パネル討論 多元計算解剖学の今後の発展に向けて

ミニシンポジウム

|7月25日(木)10:40~11:30 メイン会場(レセプションホール1)

MS1「CT・MR イメージングにおける深層学習」

座長: 増谷 佳孝 (広島市立大学)

- MS1-1
 深層学習を用いた CT 及び PET/SPECT の画像再構成 工藤 博幸(筑波大学)
- MS1-2 深層学習を用いた CT 画像の金属アーチファクト低減処理 大竹 義人(奈良先端科学技術大学院大学)
- MS1-3
 深層学習を利用した MR イメージング

 伊藤 聡志 (宇都宮大学)
- MS1-4
 生成型 Q 空間学習による拡散 MR イメージング

 増谷
 佳孝(広島市立大学)
- MS1-5 質疑応答および全体討論

|7月26日(金)10:40~11:30 | メイン会場(レセプションホール1)

MS2「生命機能イメージングの革新:今後の課題と展望」

座長:清末 優子(理化学研究所)

末次 志郎 (奈良先端科学技術大学院大学)

- MS2-1 イントロ: JST CREST 情報計測領域について 清末 優子 (理化学研究所)
- MS2-2
 クライオ電子顕微鏡法による生体分子の構造解析

 光岡 薫(大阪大学)
- MS2-3 高速原子間力顕微鏡による生体分子イメージングと機械学習・データ同化 高田 彰二 (京都大学)
- MS2-4
 細胞活動の高精度 3D 計測と画像情報解析の次世代化に向けて 清末 優子(理化学研究所)

ランチョンセミナー

7月26日(金)11:50~12:40 メイン会場(レセプションホール1)

LS「DGX-2によって加速されるメディカル AI 開発のためのデータ構造化プラットフォーム」

座長:中田 典生 (東京慈恵会医科大学)

LS DGX-2 によって加速されるメディカル AI 開発のためのデータ構造化プラットフォーム 小林 和馬(国立研究開発法人国立がん研究センター研究所 がん分子修飾制御学分野)

ハンズオンセミナー

7月24日(水)16:25~17:55 サブ会場(1階会議室2)

HS1 [Deep Learning]

|7月25日(木)9:00~10:30 | サブ会場(1階会議室2)

HS2 [Deep Learning]

7月25日(木)16:25~17:55 サブ会場(1階会議室2)

HS3 [Deep Learning]

7月26日(金)9:00~10:30 サブ会場(1階会議室2)

HS4 [Deep Learning]

7月26日(金)14:00~15:30 サブ会場(1階会議室2)

HS5「Deep Learning」 超初級者編

プログラム

第1日 7月24日(水)

メイン会場(レセプションホール1)

13:00 ~ 13:20 開会式

チュートリアル講演会

13:20 ~ 16:10	TL1 [Beyond Deep Learning]		
	座長:中田	典生	(東京慈恵会医科大学)
	小田	昌宏	(名古屋大学)

 TL1
 世間の流行に左右されない深層学習所感 鈴木 賢治(東京工業大学/イリノイ工科大学(Illinois Institute of Technology))

- TL2
 様々な大規模計算環境の得手・不得手
 ~何ができて何ができない?~

 平野
 靖(山口大学)
- TL3 医師が取り組んだ深層学習:臨床からスパコンまで 花岡 昇平 (東京大学)

第1日 7月24日(水)

前半(口演):メイン会場(レセプションホール1)

後半:ポスター会場(会議室3・4)

一般演題セッション1

「イメージング / 画質改善」

座長:湯浅 哲也(山形大学)

- OP1-01 制約付きアンサンブル学習を用いた事後平均解の近似による MR 画像再構成 久保田菜々子(早稲田大学大学院 先進理工学研究科 電気・情報生命専攻)
- OP1-02
 X線CT画像上の雑音分散に対する検出器モデルの影響

 田之上和矢(名古屋大学大学院医学系研究科)
- OP1-03 スパース化空間の類似性を利用した単一画像超解像 竹間 康浩(宇都宮大学大学院工学研究科情報システム科学専攻)
- OP1-04 微小金属のアーチファクト補正を目的とした X 線トモシンセシス装置の検討 山川 恵介(株式会社日立製作所 研究開発グループ)

- OP1-05 敵対的生成ネットワークを利用した MR 圧縮センシング再構成の基礎検討 大内 翔平(宇都宮大学 大学院 工学研究科 情報システム科学専攻)
- OP1-06 Simulation study of a novel brain PET scanner using 100 ps TOF-DOI sub-millimeter resolution detectors 李 英英 (浙江大学)
- OP1-07
 サイクル損失を用いた3次元胸部CT像の超解像

 河合
 良亮(東京農工大学大学院工学研究院)

「画像解析 / モデリング」

座長:健山 智子(広島工業大学)

- OP1-08
 CycleGAN を用いた胸部 CT 画像のドメイン変換とその識別システムへの応用

 三宅
 将司(山口大学)
- OP1-09 楕円フーリエ記述子を用いた乳房 X 線像における石灰化クラスタの解析とデータ拡張への応用 志村 一男(駒澤大学医療健康科学部)
- OP1-10 演題取り下げ
- OP1-11 単眼腹腔鏡映像からの奥行き推定を利用した術具セグメンテーション 鈴木 拓矢 (中京大学 大学院工学研究科)
- OP1-12 深層学習を用いた骨密度測定時の X 線画像における大腿骨セグメンテーション 押川 翔太(株式会社島津製作所 医用機器事業部 技術部)
- OP1-13 金属表面の画像照合に基づく手術器具の個品管理システム 牧野 賢吾(日本電気株式会社 データサイエンス研究所)
- OP1-14 舌診断支援システムの自動化に向けた舌検出と領域抽出の検討 唐 啓超(千葉大学大学院融合理工学府)
- OP1-15 少量のラベルデータを用いた学習によるイレウス症例 CT 像における拡張腸管の自動抽出 小田 紘久(名古屋大学情報学研究科)
- OP1-16 高解像度連続切片標本画像による股関節周辺領域における神経筋骨格構造のモデル化のための 線維トラクトグラフィーの応用 時末 尚悟(奈良先端科学技術大学院大学)

「CAD/臨床応用」

座長:石田 隆行(大阪大学)

- OP1-17
 画像認識技術によるうつ病診断の定量化

 牧
 優太(神奈川工科大学)
- OP1-19 敵対的生成ネットワークを用いた硬性白斑画像の生成と検証 藤田 真穂(滋賀県立大学大学院工学研究科電子システム工学専攻)

- OP1-20 液状細胞診画像と患者情報の併用による肺癌組織型自動分類の基礎的検討 山田あゆみ(藤田医科大学医療科学部)
- OP1-21
 ResSENet を用いたオートエンコーダによる認知症の疾患鑑別

 藤林
 大毅(株式会社 Splink)
- OP1-22 ドメイン敵対的学習を用いる病理画像からの悪性リンパ腫候補領域の抽出と病型識別 古賀 諒一(名古屋工業大学)
- OP1-23 造影 CT 画像における 2 段階閾値処理及びテクスチャ解析による外傷出血自動検出の検討 木村 拓貴(千葉大学 大学院融合理工学府)
- OP1-24 深層学習における学習データセット規模拡大に応じた分類精度向上に関する実験的検討 ~超拡大大腸内視鏡画像における腫瘍性病変分類に向けた特徴量抽出~ 伊東 隼人(名古屋大学大学院情報学研究科)
- OP1-25
 CNN を用いた人工股関節全置換術術後 CT 画像からの自動インプラント姿勢推定

 阪本 充輝(奈良先端科学技術大学院大学先端科学技術研究科)

第1日 7月24日(水)

サブ会場(1階会議室2)

ハンズオンセミナー1

16:25 ~ 17:55 HS1 [Deep Learning]

前半(口演):メイン会場(レセプションホール1)

後半:ポスター会場(会議室3・4)

一般演題セッション2

9:00~10:30 **OP2**

「イメージング / 画質改善」

座長:小尾 高史(東京工業大学)

- OP2-01
 MR 圧縮センシングにおける ADMM-Net を利用した深層学習再構成の検討

 植松
 駿(宇都宮大学大学院地域創生科学研究科 工農総合科学専攻)
- OP2-02
 Electron-Tracking Compton Camera を用いた異なるエネルギー帯でのリストモード MLEM 画像の

 画質評価
 稲垣 将史(法政大学大学院 理工学研究科)
- OP2-03 コンプトン検出器を組み合わせた部分リング PET ジオメトリの提案 田島 英朗(量子科学技術研究開発機構 放射線医学総合研究所)
- OP2-04
 被写体スキャン方式による X 線位相イメージング法の開発 堀場

 日明(株式会社島津製作所
 基盤技術研究所)
- OP2-05 学習データセットを必要としない畳み込みニューラルネットワークを用いた Dynamic PET 画像の ノイズ除去手法 橋本二三生(浜松ホトニクス株式会社 中央研究所)
- OP2-06 畳み込みニューラルネットワークを用いた低線量 CT 画像再構成法の多時相 CT イメージング への拡張 森 和希(筑波大学システム情報工学研究科コンピュータサイエンス専攻)
- OP2-07FDTD による Shear wave elastography の不安定要因の検証
伊藤 大貴 (千葉大学 大学院 融合理工学府)

「画像解析 / モデリング」

座長:中口 俊哉(千葉大学)

- OP2-08 表現学習と SVM による胃壁マイクロ CT 像の半教師ありセグメンテーション手法 御手洗 翠(名古屋大学大学院情報学研究科)
- OP2-09 MR 画像と病理画像の統合による膵癌腫瘍の多重解像度モデルの構築 下村 智茂(名古屋工業大学生)
- OP2-10 機械学習を用いた人工膝関節画像からの機種の同定 ~マハラノビス距離による識別効果と CNNの適用~ 岸野万由子(埼玉工業大学工学部情報システム学科)
- OP2-11
 所見テキスト解析を用いる H&E 染色病理画像からの免疫染色群推定 黄

 単葡(名古屋工業大学)

- OP2-12 深層学習を用いた術野映像内肺領域抽出 今西 勁峰(イーグロース株式会社)
- OP2-13 高難易度画素用の損失関数を用いたセマンティックセグメンテーション 松月 大輔(名城大学)
- OP2-14Polyp size classification in colorectal cancer using a Siamese network
ヴィラードベンジャミン (名古屋大学大学院情報学研究科)
- OP2-15 病変検出支援アルゴリズムにおける局所画像特徴量の汎用的な自動生成 健常データのみの 学習による特徴量生成の検討 -牛房 和之(近畿大学大学院 生物理工学研究科)
- OP2-16 X線単純投影と流体構造連成解析を用いた狭窄柔軟管内流れにおける造影剤濃度勾配の評価 金子凌太朗(東京大学工学部)

「CAD/臨床応用」

座長:花岡 昇平(東京大学)

- OP2-17 Coxnet と NMF を用いた非小細胞肺癌の組織学的分類 山田 真大 (九州大学大学院 医学系学府 保健学専攻)
- OP2-18
 CNN を用いた CAD 開発における段階的学習法の提案

 安倍
 和弥(神奈川工科大学)
- OP2-19
 Coxnet によって選択されたレディオミクスシグネチャによる SVM を用いた頭頚部癌患者の5年

 生存確率の予測
 Le CuongQuoc (九州大学大学院 医学系学府 保健学専攻)
- OP2-20 Kinect を用いた効率的な3次元顔面腫れ顔の形態変化の観測と可視化 健山 智子(広島工業大学 情報学部 知的情報可視化研究室)
- OP2-21
 GAN による CT 肺結節画像の生成 濵口 拓真(山口大学大学院創成科学研究科)
- OP2-22 AutoEncoderの正常症例訓練モデルによる FDG-PET 画像中の悪性腫瘍検出手法に関する研究 前田 健宏(岐阜大学大学院自然科学技術研究科知能理工学専攻)
- OP2-23 低線量 CT 画像を用いた肺結節の経時変化による良悪性鑑別 東 勇太(徳島大学大学院先端技術科学教育部)
- OP2-24 造影 MR 画像における部分最小二乗法による肝臓形状解析及びテクスチャ解析を用いた肝線維化のステージ分類

スーフィーマーゼン (奈良先端科学技術大学院大学)

メイン会場(レセプションホール1)

ミニシンポジウム1

10:40~11:30 MS1 CT・MR イメージングにおける深層学習」

座長: 増谷 佳孝 (広島市立大学)

- MS1-1 深層学習を用いた CT 及び PET/SPECT の画像再構成 工藤 博幸(筑波大学)
- MS1-2 深層学習を用いた CT 画像の金属アーチファクト低減処理 大竹 義人(奈良先端科学技術大学院大学)
- MS1-3
 深層学習を利用した MR イメージング

 伊藤 聡志 (宇都宮大学)
- MS1-4
 生成型 Q 空間学習による拡散 MR イメージング

 増谷
 佳孝(広島市立大学)
- MS1-5 質疑応答および全体討論

第2日 7月25日(木)

メイン会場(レセプションホール1)

特別講演1

14:00~14:50 SL1「軟骨伝導の発見から MBT (医学を基礎とするまちづくり)へ」

座長:佐藤 嘉伸

(奈良先端科学技術大学院大学/JAMIT2019大会長)

 SL1
 軟骨伝導の発見から MBT (医学を基礎とするまちづくり)へ

 細井 裕司 (奈良県立医科大学 理事長・学長)

シンポジウム1

15:05 ~ 16:25 SY1 [医用画像のビッグデータと AI 開発の展望]

座長:村尾 晃平(国立情報学研究所)

中田 典生 (東京慈恵会医科大学)

- SY1-1
 医療画像ビッグデータクラウド基盤

 合田
 憲人(国立情報学研究所)
- SY1-2
 AMED プロジェクトにおける画像解析タスク俯瞰,眼科画像の解析 佐藤 真一(国立情報学研究所)
- SY1-3
 病理と内視鏡画像における胃がん検知システムの開発

 原田 達也 (東京大学)

 黒瀬 優介 (東京大学)

- SY1-4
 大腸の画像診断:大腸生検の病理画像解析および大腸の内視鏡画像解析

 内田 誠一 (九州大学)

 備瀬 竜馬 (九州大学)
- SY1-5
 AMED 大規模データベースを用いた CT 画像解析と病変検出への応用 森 健策(名古屋大学)

 小田 昌宏(名古屋大学)
- SY1-6
 大規模CTデータ解析による骨格解剖知識の抽出

 大竹 義人(奈良先端科学技術大学院大学)

 日朝 祐太(奈良先端科学技術大学院大学)

 高尾 正樹(大阪大学)

 菅野 伸彦(大阪大学)

 佐藤 嘉伸(奈良先端科学技術大学院大学)
- SY1-7
 超音波画像データベース構築とAI開発の取り組み 椎名

 載(京都大学)

 目加田慶人(中京大学)
- SY1-8OpenAIとTradeAI中田 典生(東京慈恵会医科大学)
- SY1-9
 臨床診断の立場からの特別発言と総合討論 縄野

 2010
 第(国際医療福祉大学)

 シンポジウム演者全員
 シンポジウム演者全員

第2日 7月25日(木)

前半(口演):メイン会場(レセプションホール1)

後半:ポスター会場(会議室3・4)

ー般演題セッション3

「イメージング / 画質改善」

座長:伊藤 聡志(宇都宮大学)

- OP3-01 少数方向トモシンセシスにおける正則化項を用いた画像再構成 堀 拳輔(杏林大学大学院保健学研究科)
- OP3-02 超音波造影剤の動態情報を利用した模擬リンパ管の可視化 齋藤 勝也(千葉大学大学院融合理工学府)
- OP3-03
 EM-TV アルゴリズムを用いた少数投影での骨 SPECT 画像再構成の検討

 金澤
 道和(弘前大学大学院理工学研究科)
- OP3-04
 頭部専用 PET における放射能・減弱補正係数同時推定法の深層学習を用いた精度向上手法の検討

 呉
 博文(東京工業大学)

- OP3-05 膵癌腫瘍病理顕微鏡画像の染色変換 足立 秀雄(名古屋工業大学)
- OP3-06
 MR エラストグラフィによる内包ファントムの粘弾性分布の評価

 菅
 幹生(千葉大学)
- OP3-07
 Generative Adversarial Frameworks を用いた腹部 CT 像における非造影像からの造影像の推定

 小田
 昌宏(名古屋大学大学院情報学研究科)

「画像解析 / モデリング」

座長:上村 幸司(国立循環器病研究センター)

- OP3-08 マルチチャンネル化処理と CNN を用いた嚥下時 X 線透視動画における頸椎椎間板の抽出 藤中 彩乃(筑波大学大学院)
- OP3-09 CT におけるアトラス誘導による肝抽出に関する比較研究 王 進科(大阪大学大学院医学系研究科放射線統合医学)
- OP3-10
 屈折コントラスト X 線 CT を用いた乳頭組織の 3 次元可視化および解析

 砂口
 尚輝(名古屋大学)
- OP3-11 深層学習による超音波画像からの肝腫瘍検出に関する初期的検討 堤 一晴(中京大学工学部)
- OP3-12
 腹腔鏡動画像からの Fully Convolutional Network による血管領域抽出 盛満慎太郎(名古屋大学大学院情報学研究科)
- OP3-13 非接触型微小循環観察環境の構築と敗血症モデルラットの血行動態解析 川崎 真未(千葉大学大学院融合理工学府基幹工学専攻医工学コース)
- OP3-14 手術の多視点動画撮影および画像認識による自動視点切替表示 梶田 大樹 (慶應義塾大学医学部 形成外科)
- OP3-15 覚醒下脳腫瘍摘出術における術中情報を用いた脳機能マッピング工程同定手法の提案 佐藤 生馬(公立はこだて未来大学大学院 システム情報科学研究科)

「CAD/臨床応用」

座長:内山 良一(熊本大学)

- OP3-16
 GAN を用いた病理組織画像における異常組織の自動同定法

 林
 大誠(立命館大学理工学部)
- OP3-17
 3 次元 CT 画像を用いたじん肺の重症度診断支援システム 森

 森
 奈々(徳島大学大学院 先端技術科学教育部)
- OP3-18
 Generative adversarial network を用いた肺結節の3次元CT 画像の生成

 西尾 瑞穂(京都大学附属病院 先制医療・生活習慣病研究センター)
- OP3-19 眼底画像における OCT 検査結果を用いた CNN による網膜神経線維層欠損解析 渡邊 颯友(岐阜大学大学院自然科学技術研究科知能理工学専攻)
- OP3-20 小児腸閉塞患者のCT 像における CycleGAN を用いた電子洗浄手法の検討 西尾 光平(名古屋大学大学院情報学研究科)

- OP3-21
 低線量 CT 画像に基づいた骨ミネラル量の推定法

 山田 凌大(岐阜大学大学院自然科学技術研究科知能理工学専攻)
- OP3-22
 胸部 CT 像中の肺結節の良悪性鑑別における自動抽出された画像特徴の可視化

 平島
 翔(山口大学大学院創成科学研究科)
- OP3-23
 CT 画像を用いた脊柱海綿骨内の骨密度定量化

 李
 新 (大阪電気通信大学大学院)
- OP3-24 二段階分類による胸部 X 線画像を用いた異常部位検出システムの検討 堂園 貴弘(千葉大学 大学院 融合理工学府 基幹工学専攻 医工学コース)

第2日 7月25日(木)

サブ会場(1階会議室2)

ハンズオンセミナー2

9:00~10:30 HS2 [Deep Learning] (1 と同一内容)

ハンズオンセミナー3

16:25~17:55 HS3「Deep Learning」(1と同一内容)

前半(口演):メイン会場(レセプションホール1)

後半:ポスター会場(会議室3・4)

一般演題セッション4

9:00~10:30 **OP4**

「イメージング / 画質改善」

座長:山谷 泰賀

(量子科学技術研究開発機構 放射線医学総合研究所)

- OP4-01 ブロックマッチング 5D フィルターを用いたダイナミック PET スキャンのための画像ノイズ除去 大手 希望(浜松ホトニクス株式会社 中央研究所)
- OP4-02
 μ CT を用いた改良版 Cycle-GAN による臨床用 CT 像の超解像処理

 鄭
 通(名古屋大学大学院情報学研究科)
- OP4-03
 視覚情報提示による頭部 PET 体動抑制手法の開発

 鈴木 海斗(千葉大学 大学院融合理工学府)
- OP4-04
 静止型 SPECT システムを用いた心筋画像再構成 藤代 鷹平(法政大学 理工学研究科)
- OP4-05
 マルチ CNN による MRI 画像におけるノイズ低減

 金子 幸生(株式会社日立製作所研究開発グループ)
- OP4-06 全身撮影が可能な立位 CT の開発:ファントムスタディ、人体に対する重力の影響 横山 陽一 (慶應義塾大学医学部放射線科学教室(診断))
- OP4-07
 GAN を用いた人工股関節全置換術術後 CT 画像の金属アーチファクト低減

 阪本
 充輝(奈良先端科学技術大学院大学先端科学技術研究科)

「画像解析 / モデリング」

座長:本谷 秀堅(名古屋工業大学)

- OP4-08 複数の皮膚毛細血管に対する血流速度推定の自動化 塚本 唯斗(千葉大学大学院融合理工学府)
- OP4-09
 TMS 検査のための脳 MRI 画像からの誘導電流強度の回帰とその推定誤差分散推定

 牧
 豊大(名古屋工業大学)
- OP4-10
 開腹手術映像における遮蔽物除去システムの VR 化

 北坂
 孝幸 (愛知工業大学情報科学部)
- OP4-11
 手術器具検出を用いた整形外科手術の工程認識における最適な Data Augmentation の検討

 西尾
 祥一(兵庫県立大学)
- OP4-12
 敵対的生成ネットワークによる MRI 脳画像の頭蓋骨除去の提案 藤山 眞梧(法政大学理工学研究科応用情報工学専攻)

- OP4-13 深層学習を用いた腹腔鏡手術動画像の出血領域自動セグメンテーション 山本 翔太(名古屋大学大学院情報学研究科)
- OP4-14 血管仮想操作のための脳血管描画方法の検討 田中 康太(近畿大学大学院生物理工学研究科)
- OP4-15 転移学習を用いた腹部 thick-slice CT 像における多臓器領域の自動抽出の初期検討 申 忱(名古屋大学大学院情報学研究科)
- OP4-16
 歯科的個人識別のための Relation Networks for Object Detection を用いた歯科用 Cone-beam CT

 における歯牙の検出
 沓名 将太(岐阜大学大学院自然科学技術研究科知能理工学専攻知能情報学領域)

「CAD/臨床応用」

座長: 畑中 裕司(滋賀県立大学)

- OP4-17
 時間 周波数解析と CNN を用いた呼吸音の自動分類手法の開発

 南
 弘毅(九州工業大学)
- OP4-18
 HE 染色標本画像と診断テキストデータを併用する免疫染色パターン推定 橋本 典明(名古屋工業大学)
- OP4-19 舌の表面特徴に基づく機械学習を用いた舌苔分布推定手法の検討 吉村裕一郎(千葉大学フロンティア医工学センター)
- OP4-20
 肺がん体幹部定位放射線治療における3次元計画CT画像上の肉眼的腫瘍体積のDense V-net 自動抽出法

 中野
 里彩(九州大学大学院医学系学府保健学専攻)
- OP4-21 半教師あり学習を用いた根拠提示可能なメラノーマ識別 村林 誠也(法政大学大学院理工学研究科)
- OP4-22 転移性肝がん検出のための Conditional GAN による学習画像生成 池田 裕亮(中京大学大学院工学研究科)
- OP4-23
 Deep CNN における分類器のアテンションメカニズムを利用した CT 画像からの乳腺領域の自動 抽出法

 山岸 誠也(岐阜大学大学院自然科学技術研究科知能理工学専攻)
- OP4-24 Automated approach for estimation of sizes of lung cancer on planning CT images using deep learning with non-negative matrix factorization MaZhuangfei (Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan)

メイン会場(レセプションホール1)

ミニシンポジウム2

10:40 ~ 11:30		N	MS2「生命機能イメージングの革新:今後の課題と展望」										
								座長:	清末	優子	(理化学研	开究所)	
									末次	志郎	(奈良先端	制学技術	大学院大学)
N	MS2-1	イントロ 清末 値	t:JST 優子(T CREST 理化学研	〔情報計測 究所〕	側領域に	ついて						
N	MS2-2	クライオ 光岡	·電子 重 薫(預微鏡法 大阪大学	による生()	体分子の	構造解析						
N	MS2-3	高速原子 高田 章	- 間力」 彰二(頃微鏡に 京都大学	よる生体()	分子イメ	ージングと	と機械学	学習・	データ	可同化		
N	MS2-4	細胞活動	の高精	青度 3D 言	計測と画像	象情報解	析の次世代	代化に向	けて				

ランチョンセミナー

清末 優子 (理化学研究所)

11:50 ~ 12:40 LS「 DGX-2 によって加速されるメディカル AI 開発のための データ構造化プラットフォーム」

座長:中田 典生 (東京慈恵会医科大学)

LS DGX-2 によって加速されるメディカル AI 開発のためのデータ構造化プラットフォーム 小林 和馬(国立研究開発法人国立がん研究センター研究所 がん分子修飾制御学分野)

特別講演2

13:00 ~ 13:50 SL2「ネオコグニトロンと畳み込みニューラルネットワーク」

座長: 尾川 浩一(法政大学/JAMIT 学会長)

 SL2
 ネオコグニトロンと畳み込みニューラルネットワーク 福島

 邦彦(ファジィシステム研究所 特別研究員)

前半(口演):メイン会場(レセプションホール1)

後半:ポスター会場(会議室3・4)

一般演題セッション5

13:50 ~ 15:20 **OP5**

「イメージング / 画質改善」

座長: 菅 幹生(千葉大学)

- OP5-01 非ランダム間引き収集による MR 圧縮センシングの深層学習再構成 佐藤 佑紀(宇都宮大学大学院地域創生科学研究科工農総合科学専攻)
- OP5-02 CT 画像再構成におけるメタルアーティファクト除去の新手法 千北 一期(筑波大学大学院システム情報工学研究科)
- OP5-03
 2D U-Net の畳み込みネットワークを用いた隣接スライスからの CT 画像再構成 武 淑ケイ (京都大学情報学研究科)
- OP5-04 TV 正則化と辞書学習を用いた OS-EM 法における PET 画像再構成 奥村 直裕 (電気通信大学情報理工学研究科)
- OP5-05
 拡散尖度撮像法のパラメタ推定のための生成型 Q 空間学習における最適雑音量の自動決定に 向けて

 内濱
 良介(広島市立大学)
- OP5-06 カラー腹腔鏡画像診断のためのコントラスト強調と SRCNN 超解像処理の最適条件に関する考察 河畑 則文(東京理科大学理工学部)

「画像解析 / モデリング」

座長: 滝沢 穂高(筑波大学)

- OP5-07動作計測による顔の粘弾性シミュレーション黒田嘉宏 (大阪大学 大学院基礎工学研究科)
- OP5-08
 対称性解析に基づく3次元データから顔の対称面検出

 細木
 大祐(九州工業大学)
- OP5-09
 放射光 CT を用いた肺 3 次元ミクロ血管解析

 島谷 崚平(徳島大学大学院先端技術科学教育部システム創生工学専攻)
- OP5-10
 CT 画像と顎運動情報を用いた VR 咬合器の開発

 伊藤 崇弘(鶴見大学歯学部クラウンブリッジ補綴学講座)
- OP5-11 グラフ畳み込みニューラルネットワークを用いた腹部動脈血管名自動命名の初期検討 日比 裕太(名古屋大学大学院情報学研究科)
- OP5-12
 Btrfly 型 CAE を用いた骨シンチグラムにおける骨格認識処理の改良

 星野 ゆり(東京農工大学 大学院 工学研究院)

- OP5-13
 Mask R-CNN を用いた小児胸部 X 線画像における肺領域の自動抽出 魚住 春日 (藤田医科大学大学院 保健学研究科)
- OP5-14 深層学習を用いた非造影 CT 画像からの複数臓器領域の抽出に関する検討 林 雄一郎(名古屋大学大学院情報学研究科)
- OP5-15 顎口腔領域の CT 画像における金属アーチファクト低減を用いた筋骨格セグメンテーション - 金属アーチファクトのシミュレーションによる精度検証 – 森谷 友香 (奈良先端科学技術大学院大学 先端科学技術研究科)

「CAD/ 臨床応用」

座長:野村 行弘 (東京大学)

- OP5-16
 Faster R-CNN による肝臓がん候補領域の抽出法

 古月 夢奇 (九州工業大学)
- OP5-17 マクロ病理マルチスペクトル画像からの再構成反射率を用いた皮膚組織の二元悪性腫瘍分類 アルポヤニエレニ(東京工業大学工学院 情報通信系)
- OP5-18 FDG PET-CT の腫瘍領域教師データを半自動的に作成するアルゴリズムの提案と性能評価 平田 健司(北海道大学大学院医学研究院核医学教室)
- OP5-19 乳腺領域の自動抽出を用いた深層ニューラルネットワークによる乳房超音波画像における腫瘤検出 楊 凱文(産業技術総合研究所)
- OP5-20 レディオミクスによる肺がんの再発リスクの予測 レディオミクス特徴量の比例ハザード性の検証 -吉岡 拓弥(熊本大学大学院保健学教育部)
- OP5-21 深層学習を用いた胃X線検査画像における腫瘍領域自動検出の試み 市川 梨沙(法政大学理工学部)
- OP5-22 疾患股関節の CEA の自動計測と大規模データベース解析への有用性の検討 田中 雄基(奈良先端科学技術大学院大学情報科学領域)
- OP5-23
 3D fully convolutional network を用いた腎腫瘍の定量評価における初期検討

 王
 成龍(名古屋大学情報科学研究科)
- OP5-24
 網膜動脈硬化症分類のための静脈口径計測

 畑中 裕司(滋賀県立大学工学部電子システム工学科)

メイン会場(レセプションホール1)

シンポジウム2

15:35~16:55 SY2「多元計算解剖学のこれから-さらなる飛躍を目指して」

座長:森 健策(名古屋大学)

清水 昭伸(東京農工大学)

- SY2-1
 多元計算解剖学において生み出されたもの

 橋爪
 誠 (九州大学)
- SY2-2
 多元計算解剖学における数理

 本谷 秀堅(名古屋工業大学)
- SY2-3 多元計算解剖学における多元モデリング 佐藤 嘉伸(奈良先端科学技術大学院大学)
- SY2-4
 多元計算解剖学と人工知能ブーム 藤田 広志(岐阜大学)
- SY2-5
 多元計算解剖学のその先にあるもの

 森
 健策(名古屋大学)
- SY2-6 パネル討論 多元計算解剖学の今後の発展に向けて

16:55 ~ 17:00 閉会式

第3日 7月26日(金)

サブ会場(1階会議室2)

ハンズオンセミナー4

9:00 ~ 10:30 | HS4 [Deep Learning] (1 と同一内容)

ハンズオンセミナー5:超初級者編

14:00 ~ 15:30

HS5「Deep Learning」 (第1回〜第4回は同じ内容, 第5回は重複受講可能です。)

抄 録

(著者から提出された内容をそのまま掲載します)

第1日 7月24日(水)

メイン会場(レセプションホール1)

13:10~13:20 開会式

チュートリアル講演会

13:20 ~ 16:10

TL1 [Beyond Deep Learning]

座長:中田 典生 (東京慈恵会医科大学)

(概要) 深層学習を利用した論文が数多く報告されている.今後研究を進めるためには、最新の深層学習の動向を把 握するだけではなく、過去との差異を明確にし、データ収集や実行環境の効率化などの観点が必要である.今回の JAMIT チュートリアルは、大会期間中に会場で開催される「コニカミノルタ科学技術振興財団 JAMIT ハンズオ ンセミナー」と一部連携して、医用画像における深層学習の実際について集中的に講演を企画した.講演1では、人 エニューラルネットワーク利用した画像処理の過去から現在、そして、将来への展望を、国際的な観点から幅広く講 演いただく.講演2では、スパコンや大容量ストレージが必須となる研究を実行するための環境としてのクラウドサー ビスの実際とその見積について、講演いただく.講演3では、正解データの作成、プログラム構築、その評価、論文 化と、ともすれば一人ですべてをワンオペのように解決できる深層学習の研究状況において、研究者が共同研究を行 う新たな環境について講演いただく.

TL1

世間の流行に左右されない深層学習所感

○鈴木 賢治

東京工業大学/イリノイ工科大学(Illinois Institute of Technology)

深層学習が革新的な技術として世界的な話題となり,学会,産業界,そして世間を騒がしている.革新的な技術分野に加わ ることは大変良いことである.しかしながら,世間全体がブームに踊らされている感じがあることは否めない.本講演では, 24年間深層学習の研究開発を続けてきた講演者の深層学習所感について述べる.深層学習は,従来の機械学習と本質的に何が 違うのか?学習には大量の症例が本当に必要か?層は深ければ深いほど良いのか?大規模計算,大規模メモリは必須か?など の疑問について,講演者独自の深層学習モデル(MTANN)の研究開発,AI支援診断や仮想画像化への応用,実用化を交えな がら解説する.

TL2 様々な大規模計算環境の得手・不得手 ~何ができて何ができない?~

○平野 靖

山口大学

スパコン, PC クラスタ, クラウドコンピューティングなど, 様々な大規模計算環境があり, さらに演算装置には CPU や GPU などいくつかの種類がある.この講演では, それぞれの計算環境・演算装置を紹介し, どのような処理をどのような計算 環境で行えばよいかを解説する.また, 医用画像処理の分野ではストレージ環境も重要であるため, 有償のストレージ環境の 概要や独自のストレージ環境を構築する際の概要などについても紹介する.

TL3 医師が取り組んだ深層学習:臨床からスパコンまで

○花岡 昇平

東京大学

講演者は放射線科診断専門医であり, Keras や Tensorflow を扱う深層学習の研究者でもある. その立場から, (1) 今の医用画 像処理において深層学習が与えたショック, (2) 臨床医が今考えていること, (3) 医用画像工学者の「中抜き」の危険性, そして (4) これからの工学者と医学者の役割分担と競争, について私見を述べさせていただければと考えている. (1) では深層学習が工 学者の職人芸を奪った, いわば「産業革命」となったのではないか, という観点から歴史をおさらいする. (2) では幾人かの深 層学習を使いこなして業績を上げつつある放射線科医を紹介し, また彼らにとって律速段階がなにになっているかを提示した い. 特にデータ収集や正解入力の実際について例示するつもりである. (3) は私がいま焦っているところでもあるが, これまで パタレコからの新アルゴリズムを医用画像というニッチに適用してご飯の種にしてきた医用画像工学者が, データと正解ラベ ルさえあれば研究が成り立ってしまうような時代に, どうやって生き残れるのかを論じたい. (4) は, 医師が supercomputer で python を扱うような時代に, 工学者と医学者がどのような協働関係を作っていけるかを模索して結びとしたい.

前半(口演):メイン会場(レセプションホール1)

後半:ポスター会場(会議室3・4)

一般演題セッション1

16:25 ~ 18:00 **OP1**

「イメージング / 画質改善」

座長:湯浅 哲也(山形大学)

OP1-01 制約付きアンサンブル学習を用いた事後平均解の近似による MR 画像再構成

○久保田菜々子¹, 原田 賢², 藤本 晃司³, 岡田 知久³, 井上 真郷¹

¹ 早稲田大学大学院 先進理工学研究科 電気・情報生命専攻,² 早稲田大学 理工学術院総合研究所,³ 京都大学大学院 医学研究科 脳機能総合研究センター

MR 画像再構成においては、複数の画像事前分布を組み合わせることで精度が向上することが知られているが、最適な重みの組み合わせを交差検証法により求めることは、組み合わせ数が指数的に増加するため大変であった。以前の我々の研究では制約付きアンサンブル学習を用いることで、複数の画像事前分布の組み合わせを線形オーダーの計算量で実現した.また、推定解に事後平均の近似解という意味づけを行うことで、本手法による再構成の精度向上の理論的裏付けを行った.本研究ではさらに画像事前分布の種類を増やした際に本手法が有用であることを報告する.

OP1-02 X線CT 画像上の雑音分散に対する検出器モデルの影響

○田之上和矢,池田 充,梅田 祐司,藤井 啓輔,川浦 稚代,今井 國治 名古屋大学大学院医学系研究科

雑音を量子雑音に限定した場合における X 線 CT 画像上の関心領域内の雑音分散の(アンサンブル領域における)期待値に ついて,X線検出器のモデル(quantum counter と energy integrating detector)の差が与える影響について検討した.両検出 器モデルの出力が類似した結果を与える条件下で,CT 画像上の関心領域内の雑音分散の期待値について,解析的に計算した結 果と仮想的な撮影系を使用したシミュレーション画像から推定した値について検討した.両モデルにおいて,解析的に計算し た期待値はシミュレーション画像から推定した値とよく一致した.また,両モデル間で,雑音分散の値の差は少ない結果となっ た.今回の検討結果からは,両モデルの CT 画像上の関心領域内の雑音分散に与える影響は少なく,同雑音分散に関する検討 において,簡易な quantum counter model での検討の有効性が示唆された.

OP1-03 スパース化空間の類似性を利用した単一画像超解像

○竹間 康浩,大内 翔平,伊藤 聡志 宇都宮大学大学院工学研究科 情報システム科学専攻

MR 画像など画素数が少ない画像を観察する場合は、画像を補間拡大することが多い.このとき、単なる補間ではなく、超 解像の効果があれば生体の構造をより認識しやすくなり、画像診断の精度を高めることが期待できる。eFREBAS 変換によ りスパース展開された像は全て同サイズであり、かつ、周波数帯域別に分離した像は互いに相似性を持っている.そこで、 eFREBAS 空間における展開像の相似性を利用し、eFREBAS 空間にて信号を外挿する画像補間法について検討を行った.学習 型超解像や深層学習を利用する方法と比較した結果、比較した深層学習の方法と同等の近い補間誤差と鮮鋭さを有する補間像 が得られることが示された.

OP1-04 微小金属のアーチファクト補正を目的とした X 線トモシンセシス装置の検討

○山川 恵介¹,高橋 啓子²,中村 正² ¹株式会社日立製作所 研究開発グループ,²日立製作所 ヘルスケアビジネスユニット

近年,乳房や整形で用いられるX線トモシンセシスにおいて,代表的なFBP画像では投影データの角度欠損により,金属 と軟部組織間等の吸収値差が大きい条件で金属アーチファクトが増加する.これを低減するため,断層画像撮影では画像の金 属位置に基づく投影データの補間法が用いられるが,トモシンセシスでは位置毎のアーチファクトのばらつきが大きく画像上 の金属抽出が困難であった.報告者はJAMIT2018にて,全ての投影角度の投影データを仮想3次元データとし,3次元領域拡 張法を用いた投影データ金属抽出法を報告したが,ピン等の微小金属になるほど角度方向の領域拡張の精度が低下する課題が あった.そこで微小金属の抽出精度向上を目的として,投影角度間の金属の相関情報を用いる方法を提案する.整形用固定具 を模擬したファントム実験において,周辺領域の画質を維持し高いアーチファクト低減効果が得られたので報告する.

OP1-05 敵対的生成ネットワークを利用した MR 圧縮センシング再構成の基礎検討

○大内 翔平, 伊藤 聡志

宇都宮大学 大学院 工学研究科 情報システム科学専攻

MRIの撮像時間の短縮を目的として,圧縮センシングが応用されている.圧縮センシングによれば,収集する信号量の削減 が可能であり,撮像時間が短縮される.しかし,画像再構成ではL1-L2ノルム最小化問題を反復的に解くため時間を要し,再 構成像には人工的な様相が生じる場合がある.

近年では、CNN を利用した MR 画像の再構成法が提案されており、再構成像の品質と再構成時間の面で従前の反復的な手法 よりも優れることから、大きな注目を集めている。

本研究では、2つのネットワークを敵対的に学習させることで解の推定を目指す、敵対的生成ネットワーク (Generative Adversarial Network: GAN)を使用した再構成法について検討を行った.また,既存の反復的解法と比較を行った.再構成シミュレーションによって得られた結果を報告する.

OP1-06 Simulation study of a novel brain PET scanner using 100 ps TOF-DOI sub-millimeter resolution detectors

〇李 英英¹, 渡辺 光男², 磯部 卓志², 大手 希望², 森谷 隆広², 得居 奏², 大村 知秀², 劉 華鋒¹

1浙江大学,2浜松ホトニクス株式会社 中央研究所

A novel brain PET scanner using 100 ps TOF-DOI sub-millimeter resolution detectors has been proposed and simulation study was performed using the GATE (Geant4 application for tomographic emission) to estimate physical properties and the image quality of the scanner. The detector consists of four layers of independent scintillation detector having an outstanding TOF capability and true first interaction point (FIP) detection ability. The spatial resolution, sensitivity, and scatter fraction were estimated according to NEMA standards. To evaluate the image quality of the scanner implemented not only excellent spatial and timing resolution but also DOI detection with FIP information added, 3D Hoffman, Hot-Derenzo, and NEMA image quality phantom were simulated and analyzed reconstructed images. Our proposed PET scanner will have potential to open a new field of brain study.

OP1-07 サイクル損失を用いた3次元胸部 CT 像の超解像

○河合 良亮¹, 斉藤 篤¹, 木戸 尚治², 稲井 邦博³, 木村 浩彦³, 清水 昭伸¹ ¹東京農工大学大学院工学研究院,²大阪大学大学院医学系研究科,³福井大学医学部

教師あり学習に基づく超解像では、低解像度(Low Resolution; LR)画像とそれに対応する高解像度(High-Resolution; HR)画像の組を用いる方法が一般的である。しかし、この画像の組を得るためには生前に臨床用 CT,死後に作成した摘出標 本に MicroCT を適用する必要があり、大量に用意するのが困難である。本稿では、対応付けの無い LR 画像と HR 画像から、 サイクル損失を用いて超解像を実現する方法について報告する。具体的には、ResNet を超解像のための生成器、CNN を偽物 と本物の高解像度画像を識別する識別器とし、GAN の枠組みを利用して最適化するが、提案法では新しく定義するサイクル損 失(低解像度画像の再構成損失)を含む損失の最小化により ResNet を訓練した。この方法を実際の胸部 CT 像に適用して 8 倍 の超解像を行い、PSNR などを用いて結果を評価した。本稿では、対応付けのある画像組を用いた超解像の結果との比較も行 いながら、提案法の有効性と限界について議論する。

座長:健山 智子(広島工業大学)

OP1-08 CycleGAN を用いた胸部 CT 画像のドメイン変換とその識別システムへの応用 〇三宅 将司,間普 真吾,木戸 尚治,呉本 尭,平野 靖 山口大学

機械学習を用いた CAD システムの研究が活発に行われているが、ある医療機関で良い性能を示した CAD システムを他の医 療機関に転用する場合、医療機関によって画像の撮影条件が異なるため、CAD の診断精度が変動する可能性がある。その場合、 CAD の再学習には医療機関ごとに大量の訓練データを作成する必要がある。これでは、様々な医療機関で広く使いやすいシス テムとは言えず、本問題の解決が必要である。本研究では、びまん性肺疾患の陰影分類を例に、CycleGAN を用いて上記の問 題を解決する手法を提案する。具体的には、医療機関 A で撮影された胸部 CT 画像の条件を標準と定義し、医療機関 B で撮影 された CT 画像を CycleGAN によって A の条件に変換する方式(標準化)を研究する。標準化後の画像に適用する陰影識別器 として Residual Network(ResNet)を用い、まず医療機関 A の画像データで学習する。その後、標準化の有無によって医療機関 B の画像の診断精度に差があるかを検証する。同様に、B を標準とした場合も検証する。

OP1-09 楕円フーリエ記述子を用いた乳房 X 線像における石灰化クラスタの解析とデータ拡張への応用

○志村 一男¹, 安中 奨¹, 近藤 啓介¹, 縄野 繁² ¹ 駒澤大学医療健康科学部.² 国際医療福祉大学三田病院

医療分野において,深層学習の性能向上のキーとなる教師データの確保は容易ではなく,データ拡張技術が注目されている. 今回,輪郭情報の定量的評価法のひとつである楕円フーリエ記述子を用い,石灰化クラスタの輪郭を解析し,データ拡張に応用する手法を検討した.楕円フーリエ記述子とは輪郭等の閉曲線を周波数解析する手法であり,円形度やアスペクト比といった既存の特徴量と比較し,より詳細な形状の特徴を表現可能である.

データベースから得た石灰化クラスタ形状を楕円フーリエ記述子に変換し,得られた特徴量空間から新たな石灰化クラスタ 分布の輪郭形状を生成する.別途,抽出した石灰化陰影を生成された石灰化クラスタ分布に応じ配置し,別の乳房X線画像に 埋め込むことにより新たな教師画像を生成する.

以上の方法を乳房 X 線画像の公開データベースである CBIS-DDSM を用いて検証した結果について報告する予定である.

OP1-10 演題取り下げ

OP1-11 単眼腹腔鏡映像からの奥行き推定を利用した術具セグメンテーション

〇鈴木 拓矢¹,道満 恵介¹,目加田慶人¹,三澤 一成²,森 健策³
 ¹中京大学大学院工学研究科,²愛知県がんセンター,³名古屋大学大学院情報学研究科

腹腔鏡下手術の手術支援システムでは手術の安全性向上のために,腹腔鏡映像に映る術具領域の正確な抽出が必要である. 近年ではFCNを用いた術具領域抽出手法が効果を挙げている.色情報に加えて奥行き情報を学習することで,抽出精度が向上 すると報告されている.本研究では,深層学習による単眼腹腔鏡映像からの奥行き推定と,推定した奥行きと色情報を学習す ることで,術具領域抽出の精度向上を目指す.MICCAI2017のロボット器具データセットを対象に実験した.4分割交差検証 の実験結果は平均 IOU が 89%,平均 Dice 係数が 94% となった.推定した奥行き情報を学習に追加することで,誤抽出の低減 と輪郭の抽出精度が向上した.

OP1-12 深層学習を用いた骨密度測定時のX線画像における大腿骨セグメンテーション

○押川 翔太¹, 胡 尓重¹, 中矢 知宏¹, 髙橋 渉²

¹株式会社島津製作所 医用機器事業部 技術部,²株式会社島津製作所 基盤技術研究所 AI ソリューションユニット

骨粗鬆症の診断では DXA(dual-energy X-ray absorptiometry)法を用いた骨密度の測定が重要視されている. DXA 法によ る骨密度測定では、骨部の正確なセグメンテーションが再現性の高い骨密度の測定に重要である. そこで本研究では、骨密度 測定時の大腿骨 X 線画像の骨部を、深層学習を用いて高精度にセグメンテーションする手法を提案する. 骨密度測定時の臨床 X 線画像を用いて学習を行い、学習に使用していない評価用データ 100 枚を用いて性能評価を行った. 結果として骨密度測定 に重要な大腿骨頸部を中心とした領域において平均 IoU(Intersection over Union) 96.5% となり、高精度にセグメンテーション 可能であることを確認した. OP1-13 金属表面の画像照合に基づく手術器具の個品管理システム

○牧野 賢吾,高橋 徹,工藤 佑太,石山 塁 日本電気株式会社 データサイエンス研究所

本稿では、画像照合による手術器具の個品管理システムを提案する.

資産管理や作業履歴の管理のために、手術器具の個品管理が必要である.

一般に、マーキングやタグによる個体識別が使われているが、器具によっては付与が不可能であり、タグの脱落や付与のコストの問題もある.

本稿では、物体表面の微細なランダム凹凸パターンをマクロ撮影によって画像化し、画像照合で個体識別を行う物体指紋認 証技術の適用を提案する.

器具そのものの物体表面を撮影するだけでよいため、タグ付与が困難で管理できなかった器具についても、写真を撮るだけ で容易に個品管理を実現できる.

実験では、メス、ピンセット、ハサミの3種類の金属製手術器具を各5個体用いて、ある特定部位の画像を撮影し、画像照 合によって照合精度100%で個体識別が可能であることを確認した。

また,読取の手間を無くすため,物体認識技術とロボットアームを活用した自動撮影システムを試作した.

OP1-14 舌診断支援システムの自動化に向けた舌検出と領域抽出の検討

○唐 啓超¹, ヤンテイショウ¹, 吉村裕一郎², 長谷川 豊¹, 森 康久仁³, 須鎗 弘樹³, 並木 隆雄⁴, 中口 俊哉²

¹千葉大学大学院融合理工学府,²千葉大学フロンティア医工学センター,³千葉大学大学院工学研究院,⁴千葉大学大 学院医学研究院和漢診療学

我々はこれまで舌撮影装置 TIAS を開発し、舌色診断支援システムを構築してきた.

この舌色診断支援システムのクリニックや家庭への普及に向けて使用手順の自動化が求められている. そこで本研究ではシ ステム自動化に向けた舌検出と領域抽出の手法を検討した. 舌検出について, 先行研究の結果では感度と精度は 0.9 以上に達し たが特異度は 0.4 未満と誤検出が多発していた. そこで MobileNets 深層学習モデルを用いた舌検出手法を提案した. TIAS で 撮影した舌画像 798 枚を用いてモデルを学習させたところ, 舌検出特異度と精度の大幅な向上を確認した. 舌の領域抽出につ いて, SLIC と GrabCut を用いた先行研究の結果では平均 IoU 値が 0.75 未満と精度に課題があった. そこで本研究では Pix2Pix 深層学習モデルと領域拡張法を組み合わせた舌領域抽出法を提案した. 関連手法との比較評価実験の結果, 提案手法の優位性 を確認した.

OP1-15 少量のラベルデータを用いた学習によるイレウス症例 CT 像における拡張腸管の自動抽出

○小田 紘久¹, 西尾 光平¹, 北坂 孝幸¹, 天野 日出², 千馬 耕亮², 内田 広夫², 鈴木耕次郎³, 伊東 隼人¹, 小田 昌宏¹, 森 健策^{1,4,5}

¹名古屋大学情報学研究科,²名古屋大学医学系研究科,³愛知医科大学放射線医学講座,⁴名古屋大学情報基盤センター, ⁵国立情報学研究所医療ビッグデータ研究センター

本研究では、Fully convolutional network を用いたイレウス患者の CT 像における腸管領域の抽出において、手塗りされた 教師データが少量であっても精度よく抽出を行う手法を提案する。イレウス症例においては、小腸が直径 30 ミリ程度まで拡張 することが多い、一般に Fully convolutional networks の学習を行う場合には大量の学習データが必要であるが、小腸は複雑 に入り組んでいるほか非常に長く、手動でのラベル作成は容易でない、提案する腸抽出手法のネットワークを学習するための 教師データとして、症例ごと数枚のスライスを手塗りするほか、手塗りの行われていないスライスの一部ではフィルタベース の手法により抽出したラベルを一部修正して併用する。ネットワークは U-net をベースとして入出力サイズ等の変更を施した ものを用い、Keras にて実装する、学習したネットワークを用いて、イレウス患者の腹部 CT 像全体において腸領域を抽出する。

OP1-16 高解像度連続切片標本画像による股関節周辺領域における神経筋骨格構造のモデル化のための線 維トラクトグラフィーの応用

○時末 尚悟¹, 大竹 義人¹, Mazen Soufi¹, 福田 紀生¹, 高尾 正樹², 菅野 伸彦², BeomSun Chun³, JinSeo Park⁴, 佐藤 嘉伸¹

¹奈良先端科学技術大学院大学,²大阪大学,³Ajou University,⁴Dongguk University

整形外科での診断精度向上などの観点から, 正確な筋骨格モデルの構築が求められている.しかし, 現状のモダリティでの腱・ 靭帯領域の撮像や解剖での骨格筋の内部構造把握は困難とされており, 骨格筋の起始から停止に至る正確な3次元構造のモデ ル化はなされていない.そこで本研究では, 遺体から得られる股関節周辺領域の高解像度の標本画像を用いることで, 骨格筋 の起始から停止までの正確な3次元構造のモデル化を目指す.先行研究では大臀筋を対象にその周辺の腱・靭帯組織をマニュ アルトレースにより抽出し筋腱線維の構造解析を行った.本研究では解析領域を拡大するために CNN を用いて, データセット 全体から腱・靭帯組織を自動抽出し,マニュアルトレースとの線維構造の比較・検討を行う.また, 解析した腱・靭帯線維を クラスタリングすることで周辺の骨や骨格筋とのコネクティビティを検証し, 解剖学的知見からモデルの整合性の向上を行う.

座長:石田 隆行(大阪大学)

OP1-17 画像認識技術によるうつ病診断の定量化

○牧 優太¹,和田 昇太¹,安倍 和弥¹,武尾 英哉¹,永井 優一² ¹神奈川工科大学,²国立がん研究センター東病院

近年の精神病の診断は主に DSM-5 や ICD-10 などの国際疾病分類を用いており、これらによってうつ病は当て嵌まる症状の 数による診断が行われている.この診断方法は医者の主観や患者のその日の体調によって診断結果が左右されてしまうため、 科学的、客観的な評価による診断ができていないという問題がある.そのため、うつ病の客観的な評価を行うために、うつ病 であるかどうか画像工学技術を利用して、うつ病の定量化(重症度の算出)とうつ病であるかどうかの判定を行うシステムの開 発を行った.

定量化には主に視線方向と顔表情に着目した.うつ病患者及び健常者の動画像から,視線方向と顔表情を CNN を用いて検 出し,各々の時系列データを得る.そして,それらのデータを機械学習によって定量化し,算出された重症度の評価を行った. その結果,得られた重症度にはうつ病との関連性が見られた.

OP1-18 肝細胞癌に対する選択的 TACE 施行時の Angio-CT を用いた栄養血管同定ナビゲーションソフト (Embolization plan)の初期使用成績と注入造影剤濃度の影響について

○葛和 剛¹, 前原 健吾¹², 新家 睦巳², 秋山 敬純², 小西 佳之², 穴井 洋³, 小屋敷 誠⁴, 広瀬 聖史⁴, 前田 達郎⁴

¹奈良県立医科大学連携大学院 先端画像下治療開発応用学講座,²市立奈良病院 医療技術部放射線室,³市立奈良病院 放射線科・IVR 研究センター,⁴キヤノンメディカルシステムズ

【背景】 肝細胞癌の選択的 TACE に対し, Angio-CT(ACT) を使用した automated feeder detection system (AFD)の開発 (Embolization plan; EP), 造影剤濃度に着目して初期臨床評価を行った.

【方法】対象は肝細胞癌 29 患者 33 結節 (腫瘍径; 平均 11.4(5.0-23.0) mm). 総肝もしくは固有肝動脈より秒間 1.0-2.0ml で造 影剤 185(L:8 結節) もしくは 295mg I/ml(H:25) で注入し CT hepatic angiography(CTHA) を施行. DSA をゴールデンスタンダー ドとして EP による栄養血管同定評価を行い,完全一致:Excellent(E),ほぼ一致:good(G),臨床上許容可能:fair(F),許容不 可能:poor(P) とした.

【結果】E;2 (L0,H2) 結節, G;19 (4,15) 結節, F;7 (1,6) 結節, P;5 (3,2) 結節で, F 以上は 28 (5,23) 結節 84.8(62.5, 92)%であった. 【結語】ACT を用いた EP による栄養血管同定は臨床的有用性が示唆された. 更なる精度向上には造影剤の注入条件のみな らず, EP ソフトウエアなど他条件の検討を要する.

OP1-19 敵対的生成ネットワークを用いた硬性白斑画像の生成と検証

○藤田 真穂¹, 畑中 裕司², 砂山 渡², 村松千左子³, 藤田 広志³

¹滋賀県立大学大学院工学研究科電子システム工学専攻,²滋賀県立大学電子システム工学科,³岐阜大学工学部電気電子・ 情報工学科

糖尿病網膜症は中途失明の原因となる病であるが、早期発見と治療によって失明を防ぐことができる病でもある.近年は 眼底画像からの初期病変の検出に、畳み込みニューラルネットワーク (CNN:Convolutional Neural Network) が成果を挙げて いる.一方で CNN を用いる際には、病変データと非病変データとの不均衡が課題となる.現在は敵対的生成ネットワーク (GAN:Generative Adversarial Nets)を用いて病変データ数を増加させ、上記の問題の解決を図る研究が行われている.これら を踏まえて本研究では、初期病変の一つである硬性白斑の画像を生成した.白斑には硬性白斑と軟性白斑があるが、硬性白斑 は糖尿病網膜症の初期段階にあらわれる境界が明瞭な白斑である.また生成データと実データ間との分布の差異について、複 数の指標を用いて検証を行った、当日は生成したデータに関する検証結果と、生成したデータが CNN に与える影響について報 告する予定である.

OP1-20 液状細胞診画像と患者情報の併用による肺癌組織型自動分類の基礎的検討

○山田あゆみ¹, 寺本 篤司¹, 桐山 諭和³, 塚本 徹哉³, 今泉 和良³, 星 雅人¹, 齋藤 邦明¹², 藤田 広志⁴

¹藤田医科大学 医療科学部,²藤田医科大学大学院 保健学研究科,³藤田医科大学 医学部,⁴岐阜大学 工学部 電気電子・ 情報工学科

病理診断において, 肺癌の組織型やサブタイプを正確に把握することは, 治療方針を決定するために重要である.本研究では, 液状細胞診(LBC) 画像と患者臨床情報を用いた肺癌組織型分類手法を開発し, 基礎評価を行った. はじめに, 深層畳み込みニュー ラルネットワークを用いて, 液状細胞診画像から肺癌組織型に関する画像特徴量を抽出した.次に, 電子カルテより患者臨床 情報(喫煙情報, 腫瘍マーカー値等)を収集し, 主成分分析により次元圧縮を行った.得られた画像特徴量とその画像に対応す る患者臨床情報の主成分を識別器に入力し, 3 種類の肺癌組織型の分類結果を得た. 149 症例の臨床データを用いて, 3-fold 交 差検証にて評価を行ったところ, 細胞診画像単体での分類精度は, 82.9% であった. 画像特徴に喫煙情報・腫瘍マーカー値を 加えて, SVM で識別を行ったところ, それぞれ総合識別率は向上した.これらの結果から, 提案手法の有用性が示唆された.

情報工学科 病理診断において, 肺癌の組織型やサブタイプを正確に把握することは, 治療方針を決定するために重要である.本研究では, 状細胞診(LBC) 画像と患者臨床情報を用いた肺癌組織型分類手法を開発し.基礎評価を行った.はじめに、深層畳み込みニュー
OP1-21 ResSENetを用いたオートエンコーダによる認知症の疾患鑑別

○藤林 大毅

株式会社 Splink

深層学習の活用で医療画像解析におけるニューラルネットワークモデルの有効性が近年多数報告されている.本研究報告で は3次元T1強調 MRI 画像によるアルツハイマー病の疾患鑑別において、全脳の大域的なコンテキストの特徴化を考慮した モデル構築を行い、本課題においても深層学習が高い精度を実現することを報告する.提案するモデルは画像の Encoding / Decoding を行う U-net における Encoder ネットワークの畳み込み部分に Squeeze-and-Excitation ブロックを用いた ResNet を 用いるものである.学習には北米の ADNI データセットから脳画像の特性を利用したデータ増強処理を行いこれを用いた、学 習後のモデル評価は external validation としてオーストラリアの AIBL データベースを用い、従来手法より高い精度が確認さ れた.

OP1-22 ドメイン敵対的学習を用いる病理画像からの悪性リンパ腫候補領域の抽出と病型識別

○古賀 諒一¹, 橋本 典明¹, 横田 達也¹, 中黒 匡人², 高野 桂², 中村 栄男², 竹内 一郎¹, 本谷 秀堅¹

¹名古屋工業大学,²名古屋大学医学部付属病院

本研究では,悪性リンパ腫の薄切切片の HE 染色病理顕微鏡画像より,病名を推定する手法を提案する.悪性リンパ腫には70 種類以上の病型があり,その病型に依存して治療法や治療後の経過が異なるうえに,その病型を病理画像より診断することは専 門の病理医であっても容易ではない.この病型識別を支援するシステムを構築するために,切片全体を含む病理画像中より悪性 腫瘍領域の部位を選択的に取り出し,そのうえで病型を推定する手法を提案する.この際,施設や染色を行った技師ごとに異な る HE 染色の色味の違いを積極的に無視するために,ドメイン敵対的学習を採用する.これにより,切片全体の病理画像から悪 性腫瘍領域の抽出ができるようになり,病理画像における腫瘍領域の可視化が可能となった.また,選択的に取り出された悪性 腫瘍を含むパッチのみを用いて病型を推定することで,病型推定の精度向上が確認できた.

OP1-23 造影 CT 画像における 2 段階閾値処理及びテクスチャ解析による外傷出血自動検出の検討

○木村 拓貴¹, 吉村裕一郎², 田中久美子³, 中田 孝明³, 中口 俊哉²

¹千葉大学 大学院融合理工学府,²千葉大学 フロンティア医工学センター,³千葉大学大学院医学研究院 救急集中 治療医学

現在の外傷治療では救急医による造影 CT 画像を用いた読影診断が行われているが,1000 枚以上の CT 画像を迅速かつ正確 に読影する必要があることから医師の負担は大きい.本研究では,医師の負担軽減を目的に外傷出血の自動検出を検討する. 外傷出血候補領域の抽出においては,各組織の CT 値分布を参考に,骨領域の除去及び抽出範囲を限定した2段階の閾値処理 によって出血領域の候補を抽出する.抽出した候補領域のテクスチャ特徴量からランダムフォレスト学習器を用いて候補領域 を分類することで誤検出領域の低減を行った.実験として外傷29 例の全身 CT 像を用意し,計 153 箇所の外傷出血の検出を試 みた.読影医によって抽出された正解領域との重心間距離が7.5mm 以下を正解として評価したところ,感度96%の出血領域 の検出に成功し,候補領域分類を行うことで偽陽性を約70% 低減した.

OP1-24 深層学習における学習データセット規模拡大に応じた分類精度向上に関する実験的検討 ~超拡大大腸内視鏡画像における腫瘍性病変分類に向けた特徴量抽出~

○伊東 隼人¹,森 悠一²,三澤 将史²,小田 昌宏¹,工藤 進英²,森 健策^{13.4}
 ¹名古屋大学大学院 情報学研究科,²昭和大学横浜市北部病院 消化器センター,³名古屋大学 情報基盤センター,
 ⁴国立情報学研究所 医療ビッグデータ研究センター

超拡大大腸内視鏡による超倍率の拡大観察はリアルタイムなポリープの組織学的分類を実現しうる.この新しいモダリティ による高精度な実時間診断の達成に向け,内視鏡医には高度な知識と十分な知識が要求される.超拡大大腸内視鏡の普及と人材 確保に向け,非熟練医の教育・サポートを対象とした CAD システムが求められている.CAD システムにおいては高精度な画 像分類器がその中核をなす.特に機械学習に基づく分類器の構成においては大規模な学習データセットが不可欠である.中でも 深層学習はデータセットから分類に適したパターン表現を自動的に学習して特徴量抽出を行い,それらの分類を行う.したがっ て,深層学習においては良質なデータセットの構築は非常に重要となる.本研究では大規模データセットを構築し,深層学習に 基づく分類器構築における症例数・画像数・分類精度の関係を実験的に調査する.

OP1-25 CNN を用いた人工股関節全置換術術後 CT 画像からの自動インプラント姿勢推定

○阪本 充輝¹, 槇野 大樹¹, 大竹 義人¹, 日朝 祐太¹, 高尾 正樹², 菅野 伸彦², 佐藤 嘉伸¹ ¹奈良先端科学技術大学院大学先端科学技術研究科,²大阪大学大学院医学研究科

人工股関節全置換術において、カップ位置・角度といった置換されたインプラント姿勢は術後評価のにおいて重要な役割を 果たす. 従来, 術後 CT 画像からの解析が行われているが, 金属アーチファクトによる画像の乱れが原因となり自動解析は容 易ではなく,半自動での解析が行われてきた. しかし, 大規模データセットでの解析には高速かつ自動で解析を行い, インプ ラント姿勢を推定する手法が求められる. そこで本研究では, CNN (Convolutional Neural Network)を用いて, 術後 CT 画 像からのインプラントのセグメンテーション・ランドマーク検出により自動でインプラント姿勢を推定する手法を提案する.

前半(口演):メイン会場(レセプションホール1)

後半:ポスター会場(会議室3・4)

一般演題セッション2

9:00~10:30 **OP2**

「イメージング / 画質改善」

座長:小尾 高史(東京工業大学)

OP2-01 MR 圧縮センシングにおける ADMM-Net を利用した深層学習再構成の検討

○植松 駿,伊藤 聡志

宇都宮大学 大学院地域創生科学研究科 工農総合科学専攻

圧縮センシングを MRI の撮像時間に応用することにより,撮像時間を短縮することができるが,画像再構成に多くの時間を 要する問題がある.再構成時間の短縮と高画質化のいずれにも効果的として深層学習を利用した再構成法が注目されている.

深層学習再構成として,L1-L2ノルム最小化問題を解く一解法である ADMM を CNN で実現した ADMM-Net が提案されている.本研究では、ADMM-Net において CNN のレイヤー数,学習する画像数,学習画像とテスト画像の関係などについて検討を行った.また,従来法である反復的解法と再構成時間および画質を比較し、ADMM-Net の優位性を確認した.

OP2-02 Electron-Tracking Compton Camera を用いた異なるエネルギー帯でのリストモード MLEM 画像 の画質評価

○稲垣 将史¹, 尾川 浩一¹, 谷森 達²

¹法政大学大学院理工学研究科,²京都大学大学院理学研究科

ETCC は機械的なコリメータを使用せず、ガンマ線を観測することが可能であり、空間的に自由な位置にカメラを設置し て計測し3次元画像を再構成することが可能である.このため、放射線治療装置と組み合わせて治療を行いながら、リアルタ イムで治療部位などを観測可能である.本研究では異なるエネルギーの光子を使用したときに、得られる光子と画質の関係を 検討する.光子の発生および被検体内での光子輸送計算には geant コードを用い、発生光子エネルギーは 300keV、511keV、 4438keV と変化させ、実験系とほぼ同等のジオメトリでデータ収集を行うものとした.ファントムとしては解像度等を評価で きる数値ファントムを用い、リストモード ML-EM 法を適用し、画像再構成を行った.高エネルギーでの再構成結果の方が低 エネルギーでの再構成結果に比べて高画質の結果となり、単純なファントムであれば低エネルギーでも再構成可能であること が確認できた.

OP2-03 コンプトン検出器を組み合わせた部分リング PET ジオメトリの提案

○田島 英朗, 山谷 泰賀

量子科学技術研究開発機構 放射線医学総合研究所

リングの一部を開放化した部分リング PET は、リングの体軸方向のみならず開放部からも患者にアクセスでき、また、MRI コイルー体型の頭部用 PET インサートとして開放部を下にすれば、患者の頭部に被せるようにセットアップができるなど利便 性が向上する.一方で、測定可能な投影データには欠損が生じ、画像に強いアーチファクトが生じてしまうという問題がある. 本研究では、開放部と対向する部分の検出器をコンプトン検出器とすることで、欠損方向の情報をコンプトンイメージングの 原理を用いて補い、投影データの欠損によるアーチファクトを低減可能な新しい部分リング PET ジオメトリを提案する.計算 機シミュレーションとして、システムマトリクスを用いた順投影によって投影データを作成し、MLEM 法によって画像再構成 を行った.その結果、通常の部分リング PET で生じてしまうアーチファクトが、コンプトン検出器を組み合わせることによっ て低減できることが示された.

OP2-04 被写体スキャン方式による X 線位相イメージング法の開発

○堀場 日明¹, 佐野 哲¹, 和田 幸久¹, 徳田 敏¹, 池田 凡子², 衛藤翔太郎², 中川 貴之², 田邊 晃一¹, 北村 圭司¹

1株式会社島津製作所 基盤技術研究所,2東京大学大学院 農学生命科学研究科 獣医外科学研究室

Talbot 干渉計をはじめとする X 線位相イメージング法は, 従来の X 線の吸収像では検出が困難であった軟組織でも視認性良 く描出できることから, リウマチや乳がんなどを早期発見するための有用な手法として医療への応用が期待されている. しか しながら Talbot 干渉計の医療応用にあたっては, 被写体の視野範囲が回折格子のサイズによって制限されるという課題がある. そこで, 我々は視野サイズを拡大するため, Talbot 干渉計をベースとして被写体をスキャン撮影する光学系を開発した. 本光 学系は格子なしの吸収像と位相イメージング画像を同時に取得することが可能であり, さらに格子方向に対して被写体を回転 させて撮影することで位相像を取得する方法も開発した. この光学系を用いて動物の乳がん検体を撮影し, 従来の吸収法では 得られなかった腫瘍のコントラストが描出できることを確認した.

OP2-05 学習データセットを必要としない畳み込みニューラルネットワークを用いた Dynamic PET 画像のノイズ除去手法

○橋本二三生¹, 大手 希望¹, 寺本 篤司²

¹浜松ホトニクス株式会社 中央研究所,²藤田医科大学 医療科学部

深層学習を医用画像処理に応用する場合、多数の教師ラベル付き臨床データセットを用意する必要がある.しかし、症例数 の不足や倫理的な制約等により、大規模で高品質な臨床データセットを構築することは容易ではない.本研究では、学習デー タセットを必要としない畳み込みニューラルネットワーク(CNN)を用いることで、多数の教師ラベル付き臨床データセット を用意することなく Dynamic PET 画像のノイズを除去する手法を提案する.本手法は、当該の計測 PET データのみを CNN の学習に利用する.まず、教師ラベルとして Dynamic PET 画像を、入力画像として計測データすべてを用いて再構成した Static PET 画像を用意する.これら一対のデータペアを Encoder-decoder 型の CNN を用いて逐次学習させることにより、大 幅にノイズが除去された Dynamic PET 画像を取得する.定量評価の結果、本手法を用いることで、従来使用されていたノイ ズ除去手法と比較し、大幅なノイズ除去性能の向上がみられ、本手法の有効性が示された.

OP2-06 畳み込みニューラルネットワークを用いた低線量 CT 画像再構成法の多時相 CT イメージングへの拡張

〇森 和希¹, 千北 一期¹, 工藤 博幸²

¹ 筑波大学システム情報工学研究科コンピュータサイエンス専攻,² 筑波大学 システム情報系

近年,低線量 CT を目的とした深層学習画像再構成法の研究が精力的に行われている.これらの研究では、フィルタ補正逆 投影(FBP)法で再構成した劣化画像をコンボリューション層とデコンボリューション層からなる畳み込みニューラルネット ワーク(CNN)に入力して雑音を低減した高画質の画像を得る画像再構成法を提案している.本研究では、この画像再構成法 を腹部 CT 撮影(4時相)に代表される多時相 CT イメージングに拡張した新手法を提案する.提案手法では、M時相の画像 のうち M-N 枚を通常線量で撮影しそれ以外の N 枚を低線量で撮影することで低被曝での CT 撮影を実現する.そして、M時 相全ての画像を入力とし低線量で撮影した N 枚の画像を出力とする CNNを用いて、雑音を除去した高画質の再構成画像を得る. M 時相全ての画像を CNN の入力とすることにより、CNN は通常線量画像を先験情報として低線量画像の画質を改善するよう に動作して、1入力1出力の CNN で各時相の画像を独立に処理する単純な手法と比較して、より上手く雑音除去することが可 能となることがキーである.CNN の学習は、位置合わせした多数患者の CT 画像から CT イメージング過程をシミュレーショ ンしたデータセットを用いて行う.腹部 CT 実画像データセットを用いたシミュレーション実験により提案手法の有効性を評 価した.具体的には、4時相のうち何枚のどの時相を低線量で撮影するかの組み合わせを変化させた幾つかの典型的な撮影プ ロトコルについて、深層学習を用いた手法の有効性を示す.提案手法は、MRI など他のマルチチャンネルイメージングにおい ても有効と考えられる.

OP2-07 FDTD による Shear wave elastography の不安定要因の検証

○伊藤 大貴¹, 大栗 拓真¹, 山田 敦子¹, 吉田 憲司², 山口 匡²
 ¹千葉大学 大学院 融合理工学府, ²千葉大学 フロンティア医工学センター

超音波で生体組織の硬さを評価する手法として,音響放射力によって組織内に発生するせん断波の伝播速度(shear wave velocity; SWV)を利用する方法である Shear wave elastography (SWE)が臨床で実用化されている.しかし,メーカ間で SWV の評価結果に差を有することや,計測部位によっては評価結果が不安定になることが示されている.前者の主な要因は,音響放射力の空間的および時間的特性がメーカによって異なることや,せん断波の波形を判定するための処理および解析に使用されるアルゴリズムの違いによると考えられるが,生体内の組織構造や物性による不安定性も含めた検証が必要である.

本研究では、SWEの標準化のアプローチのために、有限差分時間領域法(Finite-Difference Time-Domain method; FDTD) を用いて、実際の診断装置から送信される音響放射力の分布を模擬した送信条件下において、任意の生体組織性状におけるせん断波の伝播シミュレートし、送信条件や各種の信号処理がSWVの評価に与える影響について検証する。

座長:中口 俊哉(千葉大学)

OP2-08 表現学習と SVM による胃壁マイクロ CT 像の半教師ありセグメンテーション手法

○御手洗 翠¹, 小田 紘久¹, 杉野 貴明¹, 守谷 享泰¹, 伊東 隼人¹, 小田 昌宏¹, 小宮山琢真², 森 雅樹³, 高畠 博嗣⁴, 名取 博⁵, 森 健策¹⁶⁷

¹名古屋大学大学院情報学研究科,²名古屋大学大学院医学系研究科,³札幌厚生病院,⁴札幌南三条病院,⁵恵和会西岡病院,⁶名古屋大学情報基盤センター,⁷国立情報学研究所医療ビッグデータ研究センター

本稿では、Spherical K-means (SpK) による表現学習と SVM を用いた胃壁 μ CT 像の解剖学的構造に基づいた半教師あり抽 出手法について報告する. μ CT 画像は μ m オーダーで標本を 3 次元で観察可能であり、胃壁 μ CT 像から腫瘍及び層構造を 抽出することで腫瘍の立体的構造把握が可能である.しかし、豊富なラベルデータを作成するのは容易ではないため,教師あり の抽出手法を用いるのは難しい.また、胃壁 μ CT 像はコントラストが低いことから、教師なしの抽出手法で精度良く抽出す ることは困難である.そこで本手法では、対象画像とごく少量のラベルデータを利用する半教師ありの抽出手法により問題の 解決、抽出精度の向上を図った.本手法は (1): SpK による表現学習、(2): 特徴抽出、(3): SVM を用いたラベルの割り当ての 3 段 階から成る.本手法を胃壁 μ CT 像に適用した結果、良好な結果が得られた.

OP2-09 MR 画像と病理画像の統合による膵癌腫瘍の多重解像度モデルの構築

○下村 智茂¹, クグレマウリシオ¹, 岩本 千佳², 大内田研字², 橋爪 誠², 横田 達也¹, 本谷 秀堅¹ ¹名古屋工業大学, ²九州大学

本研究では膵癌腫瘍の多重解像度モデルを構築する.多重解像度モデルは膵癌腫瘍の MRI 画像のボクセルと,対応した Hematoxylin-Eosin 染色顕微鏡病理画像のパッチとの同時確率分布を表現するモデルである.このモデルにより MRI 画像中の 各位置において観察されるであろう病理画像のパターンを予測し,これら MRI 画像と病理画像との関係を明らかにすることが 本研究の目的である.この多重解像度モデルは,MRI 画像の各ボクセルから確率分布に従い対応する顕微鏡病理画像のパッチ 群を予測する生成モデルでもある.この生成モデルを Neural Network を用いて構築し,MRI 画像と顕微鏡病理画像とを位置 合わせすることで作成したデータセットを用いて学習した.この生成モデルを用いて MRI 画像の各ボクセルから対応する顕微 鏡病理画像のパッチ群を推定することで同時確率分布を近似したので,その結果を報告する.

OP2-10 機械学習を用いた人工膝関節画像からの機種の同定 ~マハラノビス距離による識別効果と CNN の適用~

○岸野万由子¹, 山崎 隆治¹, 冨田 哲也², 佐藤 嘉伸³, 菅本 一臣²

¹埼玉工業大学 工学部 情報システム学科,²大阪大学大学院 医学系研究科 運動器バイオマテリアル学,³奈良先端科 学技術大学院大学 情報科学研究科

術後人工膝関節の3次元的な運動情報を正確かつ定量的に把握するために,我々はこれまで,1方向X線透視画像と人工膝 関節CAD (Computer Aided Design)モデルを用いた2D/3D レジストレーション手法を開発してきた.現在,その3次元運 動計測の全自動化に向けていくつかの要素技術の開発を行っており,その一つとして,X線画像から人工膝関節の種類(タイプ) を識別,同定することは重要である.そこで本研究では,多種類の人工膝関節のシルエット画像(シミュレーション画像)を 用いて機械学習による識別性能の基礎的な検討を行った.具体的には,①マハラノビス距離による識別効果と,②畳み込みニュー ラルネットワーク (CNN: Convolutional Neural Network) による識別性能について検証を行った.結果として,マハラノビ ス距離による識別では,誤識別が減少,識別性能が向上することが分かった.また,CNNによる識別では,少ない特徴量の場 合においても識別率が100%と興味深い結果が得られ,ヒトの感覚とは異なる最適な特徴量が存在,選択されることが示唆さ れた.

OP2-11 所見テキスト解析を用いる H&E 染色病理画像からの免疫染色群推定

○黄 果葡¹, 橋本 典明¹, 横田 達也¹, 中黒 匡人², 高野 桂², 中村 栄男², 竹内 一郎¹, 本谷 秀堅¹

1名古屋工業大学,2名古屋大学医学部附属病院

悪性リンパ腫は形態や性質によって70種類以上のタイプに分類され、タイプごとに大きく治療方針が異なる.このため悪性 リンパ腫のタイプを病理画像に基づき正確に同定することが治療には不可欠であり、タイプの同定には多数の免疫染色を施し た病理画像を観察しなければならない、タイプの同定に必要な免疫染色は症例ごとに異なり、病理医はまず HE 染色画像を観 察し、その結果に基づきタイプの同定に必要な免疫染色群を推定する.本研究では、悪性リンパ腫の診断に使用した免疫染色 の結果を示す所見テキストデータと HE 画像を併用することにより、免疫染色推定器を構築する.所見データを解析すると、 同一タイプの悪性リンパ腫であっても、施した免疫染色群が互いに異なる症例がある.このことに注目することにより、HE 染 色画像からの免疫染色群の推定がどの程度容易であるかを症例毎に定量評価する試みについても紹介する.

OP2-12 深層学習を用いた術野映像内肺領域抽出

○今西 勁峰¹, 武 淑瓊², 中尾 恵², 松田 哲也² ¹イーグロース株式会社,²京都大学大学院 情報学研究科

外科手術の安全性向上において、血管および腫瘍の三次元構造を把握することは不可欠であるため、術中における臓器の変 形推定に関する研究が進められており、カメラ画像内における二次元臓器領域が抽出できれば、臓器の三次元変形推定が可能 であることが従来の研究によって示されている.しかし、呼吸性移動を伴う時系列な変化が大きい臓器に対するカメラ画像内 領域を精度よく自動抽出する手法が確立できていない.本研究では、深層学習を用いて、肺手術の術中カメラ画像に対し、肺 領域を自動抽出可能なモデルを構築した.実際の肺がん切除術の術中カメラ画像を用いて本モデルを訓練し、検証用症例の画 像を用いて有効性を検証した結果、初期画像に対する肺領域の自動抽出精度、および時系列的な領域変化を伴う連続画像に対 しての自動抽出精度がともに良好であったので報告する.

OP2-13 高難易度画素用の損失関数を用いたセマンティックセグメンテーション

○松月 大輔, 堀田 一弘

名城大学

セマンティックセグメンテーションは画像を1画素ずつ識別, ラベル付けを行う. 当然, 画像の画素毎に識別の難易度の高 い箇所もあれば, 簡単な箇所もある. 通常, セマンティックセグメンテーションのラベル付けは, 出力層で出力したいチャン ネル数まで次元削減した後に softmax 関数を適用し, チャンネル毎に確率に変換する. その際, チャンネル毎の確率値が均等 に与えられるような箇所は, 一般的に識別が難しい箇所であることが多い. そこで我々は, チャンネル毎の確率値に基づき, 識別の難しい箇所を強く学習するような学習法を提案する. 評価実験では, 「細胞膜」,「細胞核」,「細胞質」を含むデータセッ トを用い, 従来の学習方法と我々の提案する学習方法の精度比較を行った. その結果, Intersection over Union を用いた精度 評価において提案手法が従来法を上回ることを確認した.

OP2-14 Polyp size classification in colorectal cancer using a Siamese network

 ○ヴィラードベンジャミン¹,伊東 隼人¹,小田 昌宏¹,森 悠一²,一政 克朗²,三澤 将史², 工藤 進英²,森 健策¹³⁴
 ¹名古屋大学大学院情報学研究科,²昭和大学横浜市北部病院消化器センター,³名古屋大学情報基盤センター,⁴国立 情報学研究所医療ビッグデータ研究センター

Colorectal cancer is one of the leading cause of cancer related deaths with increasing prevalence. One key factor in the likelihood of adenomatous cell differentiation is polyp diameter. Much research has shown polyp size to be a major characteristic contributor to the risk of colorectal cancer. There exist a significant cut-off value of 10 mm which clinicians use regarding their treatment diagnosis and patient surveillance. However, polyp measurement is highly variable and there exist a high variance between clinician measurement surrounding this threshold value. We propose a novel method to classify polyp size into above or below 10 mm classes based on a Siamese network. In a first step, a Siamese networks is trained to build a high dimensional embedding of features extracted for each polyp size. In as second step, we train an feed-forward neural network that classifies the polyp size based on the distance between the feature embedding of the input image, and the whole embedding space learned by the Siamese network. This method allows for better binary classification of the sub- and sup- 10 mm polyp size classes. Furthermore, our method can be used in a real time classification system as the classification relies only on computing the distances between feature embeddings. Our data consist of around 33,000 images from 129 movies classified into various polyp sizes ranging from 1-15 mm. We trained our model on 23,000 images, and tested on 10,000 images equally split into each binary category. We obtained 89.2% in feature classification.

OP2-15 病変検出支援アルゴリズムにおける局所画像特徴量の汎用的な自動生成 - 健常データのみの 学習による特徴量生成の検討 -

○牛房 和之¹,根本 充貴²,木村 裕一¹,永岡 隆¹,山田 誉大¹,林 直人³
¹近畿大学大学院 生物理工学研究科,²近畿大学 生物理工学部,³東京大学 医学部附属病院 22 世紀医療センター

様々な病変検出支援 (CADe) アルゴリズムにおいて適用が可能な,局所画像特徴量の汎用的自動生成法について検討する. 特に,不十分量の病変データで CADe アルゴリズムの研究が行われることが少なくないことから,健常部の局所画像パッチデー タのみで学習が可能な手法を検討する.教師無し学習法である深層畳み込みオートエンコーダと主成分分析を用いて画像パッ チから得た特徴量の比較,およびそれらを併用した際の識別性能を検証する.特徴量は,局所画像パッチのアピアランスベク トルから得られる潜在変数と,潜在変数から再現した画像パッチと本画像との誤差とする.胸部 CT から自動検出した肺結節 候補データセットおよび頭部 MRA から自動抽出した脳動脈瘤候補データセットを用いて自動生成された画像特徴量について 実験的に検証したので,その結果を報告する.

OP2-16 X線単純投影と流体構造連成解析を用いた狭窄柔軟管内流れにおける造影剤濃度勾配の評価

○金子凌太朗,高本 聡,波田野明日可,泉 聡志 東京大学工学部

冠動脈の狭窄は心筋梗塞などの重大な病気を引き起こす原因となっている.狭窄の機能的重症度を低侵襲かつ簡易に診断す る方法として造影剤濃度勾配を指標とする TAG (Transluminal Attenuation Gradient)が挙げられるが、精度の向上が求めら れている.狭窄後に生じる再循環領域における造影剤の拡散は、TAG に大きく影響すると考えられる.そこで本研究では造影 剤拡散動態を明らかにするため、狭窄血管を模擬したシリコンゴム製の柔軟管に流した造影剤を X 線単純投影により撮影した. 流体は水及び血液を用い定常流及び拍動流の条件で流した.また実験を模した流体構造連成解析を行い比較を行った.

定常流で流体に水を用いた実験では、狭窄後の造影剤は管断面全体に広がり一様に拡散する様子が観察された.一方、血液 を用いた実験では、造影剤濃度の高い領域が管壁を伝いらせん状に回転しながら流れていた.血液を想定した解析では狭窄率 が高い場合に噴流が軸中央を外れ管壁を伝う様子が観測され傾向は一致したが、拡散に伴う濃度勾配の定量的な一致には課題 が残った.

「CAD/臨床応用」

座長:花岡 昇平 (東京大学)

OP2-17 Coxnet と NMF を用いた非小細胞肺癌の組織学的分類

○山田 真大¹, 有村 秀孝², 二宮 健太¹

¹九州大学大学院 医学系学府 保健学專攻,²九州大学大学院 医学研究院 保健学部門

Histological classification of non-small cell lung cancer (NSCLC) affects the decision making of treatment policies. However, histological subtypes, i.e. adenocarcinoma (ADN) and squamous cell carcinoma (SCC), identified from a single biopsy occasionally differ from actual subtypes decided by surgical resections for NSCLC. We aim to explore classification approaches of histological subtypes of NSCLC using three support vector machines (SVMs) with radiomic signatures determined by Coxnet and non-negative matrix factorization (NMF). Classification models of Gaussian, linear and polynomial SVMs constructed with radiomic signatures achieved the areas under the curves (AUCs) of 0.7021, 0.6803, 0.7131 using Coxnet, and 0.7128, 0.6660, 0.7143 using NMF, respectively. The polynomial SVM with the radiomic signature determined by NMF could more correctly classify histological subtypes of NSCLC into ADN and SCC.

OP2-18 CNN を用いた CAD 開発における段階的学習法の提案

○安倍 和弥¹, 武尾 英哉¹, 永井 優一², 縄野 繁³

¹神奈川工科大学,²国立がん研究センター東病院,³国際医療福祉大学三田病院

近年, CAD の研究分野にも CNN が積極的に用いられるようになった.一般的に, 機械学習には様々なバリエーションを有 する症例画像を網羅的に与えて学習することで, 汎用的で高性能な判別器を設計する.しかし, CNN の学習データを構成する 中で, データを一様に与えるのではなく, 複数のサブセットに分け, その比率を調整することで効果的な学習ができることが 実験的にわかった. CNN が持つ学習データの補間的な特性を検証するとともに, その理由を分析し報告する.

本研究では、乳がん腫瘤の学習データを腫瘤の大きさと濃淡をもとに個々のサブセットを作成し、学習した CNN を評価用と して複数用意したデータセットを用いて最適比率を検討し、実際の未知データで性能評価を行う.そして、評価データで検出 ミスの多かったサブセットの比率を上げて再学習を行う.これを AUC の上昇が見られる間複数回繰り返し、性能の高い CNN を設計した.この CNN を未知データへ適用した結果、単純に網羅的に学習データを与えた CNN と比べて AUC が高いことが 確認でき、本学習法の有効性が確認できた.

また、本学習法を肝腫瘍にも適用したところ、同様の結果が得られ、この学習法の汎化性も確認できた.

OP2-19 Coxnet によって選択されたレディオミクスシグネチャによる SVM を用いた頭頚部癌患者の5 年生存確率の予測

○ Le CuongQuoc¹, 有村 秀孝², 山田 真大¹, 亀澤 秀美³

¹九州大学大学院 医学系学府 保健学専攻,²九州大学大学院 医学研究院 保健学部門,³帝京大学 医療技術学部 診療放射線学科

Five-year survival probability may affect the choices of treatment policies for head-and-neck (H&N) cancer patients. The aim of this study was to investigate an automated approach to predict of 5-year survival probabilities of H&N cancer patients using a support vector machine (SVM). Engineered features representing tumor heterogeneity of cancer patients were extracted from gray-level histogram and texture matrices within cancer regions. The signatures, i.e., sets of significant features, were constructed using a Coxnet algorithm. The signatures were fed into the SVM with a polynomial kernel to estimate the 5-year survival probabilities. The polynomial SVM learning with radiomic signatures archived an area under the curve of 0.665 for stratification of patients based on 5-year survival. The polynomial SVM could be feasible to estimate the 5-year survival probabilities of H&N cancer patients.

OP2-20 Kinectを用いた効率的な3次元顔面腫れ顔の形態変化の観測と可視化

○健山 智子¹, 大野 瑛史¹, 松本 慎平², 澤本 尚哉³

¹広島工業大学 情報学部 知的情報可視化研究室,²広島工業大学 情報学部,³東京大学医学系研究科 公共健康医 学専攻

顔面浮腫の診断は、医師の目視による主観的観測が一般的であり、客観的な評価手法の確立が切望されている。本研究では、 顔面浮腫の形態変化の数値化より、浮腫具合を評価する計算機診断支援 (CAD)の確立を目指す。顔面浮腫の形態観測として、 高精度レーザスキャナを用いた顔形状の3次元形状情報の取得などが挙げられるが、使用する機材が高価、キャリブレーショ ンのための計算コストが高いことなどの問題点がある。そのことから、安易な撮像方法で顔形状情報を取得するデバイスの導 入として、我々は、汎用性のある RGB-D センサとして、Kinect を導入し、顔面浮腫の形態変化の観測が可能であるかを検証する。 検証では、正常10名に擬似腫れ顔として頬を膨らまし、その差分についての可視化を解析することで検証をおこなう。その 可視化について、臨床医から評価を行い、顔面浮腫の形態変化の診断支援に有効であるかについて議論する。

OP2-21 GAN による CT 肺結節画像の生成

○濵口 拓真¹, 木戸 尚治², 平野 靖¹, 岩野 信吾³

1山口大学大学院創成科学研究科,2大阪大学大学院医学系研究科,3名古屋大学大学院医学系研究科

近年, CT 画像中の肺結節の解析を Convolutional Neural Network (CNN)を用いて行う手法が数多く提案されており,高い 性能を示すことが報告されている.一方で,このような解析に用いる学習画像を大量に用意できないことが原因で汎化性能を 向上させることができない場合が多いという問題がある.この問題を解決するため,一般的には画像に対して回転や鏡映など を行って学習画像数を増加させる手法(水増し)がとられているが,根本的な解決にはなっていない.そこで本研究では、2次 元画像に対して Deep Convolutional Generative Adversarial Networks (DCGAN)を用いた画像水増し手法を開発することを目 的とした.

具体的には、DCGAN によって肺結節画像を生成するモデルを作成し、このモデルを用いて学習画像の生成を行った.比較 対象として、水増しを行わなかった場合、および平行移動や回転・鏡映によって水増しを行った場合(従来法)のそれぞれで CNN の学習を行い、それらの良悪性鑑別精度を比較した.

5分割交差検証を行った結果,提案法,水増しを行わなかった場合,および従来法の良悪性鑑別の精度は,それぞれ75.81 ± 6.36[%],76.38 ± 4.32[%] および76.57 ± 4.40[%] であった.

結果として本手法の優位性は得られなかったが、本手法では従来法と比較して大量の画像を生成できる可能性が示唆された.

OP2-22 AutoEncoderの正常症例訓練モデルによる FDG-PET 画像中の悪性腫瘍検出手法に関する研究

○前田 健宏¹, 原 武史¹, 周 向栄¹, 片渕 哲朗², 藤田 広志¹

1岐阜大学大学院自然科学技術研究科知能理工学専攻,2岐阜医療科学大学保健科学部

本研究の目的は、医師の負担軽減や見落としを防ぐために、体幹部 FDG-PET 画像における悪性腫瘍の自動検出手法の開発 を目的とする.ここでは、異常症例より収集が容易な正常症例を利用して、異常検知の観点から検出を行う.PET スライス画 像を12×12 画素のパッチ画像へ分割する.正常症例のみで訓練した AutoEncoder モデルによるパッチ画像の特徴量抽出を行う.再構成誤差を特徴量として加え、外れた傾向を持つパッチ画像を抽出する.抽出されたパッチ画像群を k-means 法により 2 クラスタへ分割し、PCA による第一、第二主成分をそれぞれ軸とする 2 次元空間上にプロットする.クラスタ重心との距離 を基にパッチ画像にスコア付けをし、スコアの集積する部位を腫瘍領域とする.腫瘍を含む 33 症例を対象に検出精度を求める. 検出率 95.1%、1 症例あたりの偽陽性領域数は 53 領域となり、正常症例のみで訓練した AutoEncoder モデルは腫瘍検出に有用 である可能性を示唆した.

OP2-23 低線量 CT 画像を用いた肺結節の経時変化による良悪性鑑別

○東 勇太¹, 鈴木 秀宣², 河田 佳樹², 仁木 $3amega^2$, 楠本 昌彦³, 土田 敬明⁴, 中野 恭幸⁵, 金子 昌弘⁶, 江口 研二⁷

¹徳島大学大学院先端技術科学教育部、²徳島大学大学院理工学研究部、³国立がん研究センター東病院、⁴国立がん研究 センター中央病院、⁵滋賀医科大学、⁶東京都予防医学協会、⁷帝京大学医学部

日本における死因別死亡率はがんが第一位であり,現在もがんによる死亡率は上昇しつづけている.その中でも部分別に見たとき肺がんは,がん死亡者数第一位を占め,こちらも増加傾向にある.肺がんの治療には,早期発見が必須であり,その方法のひとつとして,胸部3次元CT画像を用いた肺がんCTスクリーニングが施行されているが,これには被爆の影響が大きいため低線量CT肺がん検診が取り入れられている.また,NLSTやNELSON trialにより低線量CT検診は肺がん死亡率の減少に効果があることが示されたことにより,低線量CT肺がんによる検診の有用性が示されたほか,これからどのように病状が進行していくかを示す特徴が存在している可能性があることがわかった.本研究では、肺結節の経時変化から病状の悪化に伴いどのような特徴量が変化しているのかを明らかにし肺結節の良悪性鑑別を行う.

OP2-24 造影 MR 画像における部分最小二乗法による肝臓形状解析及びテクスチャ解析を用いた肝線維化のステージ分類

○スーフィーマーゼン¹, 大竹 義人¹, 堀 雅敏², 今井 康陽³, 澤井 良之³, 太田 崇詞², 富山 憲幸², 佐藤 嘉伸¹

1奈良先端科学技術大学院大学,2大阪大学,3市立池田病院

We aimed at the staging of liver fibrosis by using image features derived from partial least squares regression (PLSR)-based statistical shape and texture analyses applied to contrast-enhanced MR images. MR images of 51 patients were used. Fifty-four texture features were derived from the image histogram and 4 texture analysis matrices. A statistical shape model was constructed by using PLSR. The fibrosis stage was estimated by using a support vector machine (SVM) based on texture features and PLSR scores. The accuracy (in terms of the AUC) at the classifications F0/1 vs. F2–4 (early), F0–2 vs. F3–4 and F0–3 vs. F4 (cirrhosis) were 0.93 \pm 0.03, 0.77 \pm 0.05 and 0.84 \pm 0.05, respectively, thus showing the feasibility of the proposed approach for staging of liver fibrosis.

第2日 7月25日(木)

メイン会場(レセプションホール1)

ミニシンポジウム1

10:40 ~ 11:30 MS1「CT・MR イメージングにおける深層学習」

座長: 增谷 佳孝 (広島市立大学)

深層学習による医用イメージング技術,特にCTやMRIの画像再構成を中心に最新の研究成果を紹介する.

MS1-1 深層学習を用いた CT 及び PET/SPECT の画像再構成

○工藤 博幸

筑波大学

CT や PET/SPECT の画像再構成は,歴史的に解析的手法(第1世代)・逐次近似法(第2世代)という順序で研究や実用が 進んできた.深層学習を用いた画像再構成法は,これらに続く第3世代と呼ばれる.本発表では,深層学習を用いた CT 及び PET/SPECT の画像再構成に関する発表者らの研究事例を紹介し,これらに基づき私見も含むが期待できる点・問題点・今後 の展望などに言及したい.

MS1-2 深層学習を用いた CT 画像の金属アーチファクト低減処理

○大竹 義人

奈良先端科学技術大学院大学

我々は、人工股関節手術における術前計画、術中支援、術後の予後予測を目的として、CT・MRI・X線画像から患者個別の 筋骨格モデルを構築することを目指している。本発表では、術後CT画像の解析に着目し、人工股関節部品のCADモデルを学 習データした深層学習モデルによる金属アーチファクト低減処理、およびアーチファクト低減後画像からの股関節周辺筋骨格 のセグメンテーションについて報告する。

MS1-3 深層学習を利用した MR イメージング

○伊藤 聡志

宇都宮大学

MRIの画像処理に深層学習を利用する方法が注目されている. 圧縮センシングの再構成に利用すると方法によってはスパース化関数を用いずとも良質な画像を再構成することが可能となる. 人工的な画像になりにくく,かつ反復的計算を必要としないので,短時間で再構成を行うことができるのも魅力である. 雑音処理に利用すると,従来の非線形フィルタでは困難であった生体内の構造を十分に反映した良質な雑音除去フィルタを構成できる. 超解像に応用すると従来の学習型解像度を超える高解像度の画像を生成する. 本講演では深層学習を利用したいくつかの事例を紹介する.

MS1-4 生成型 Q 空間学習による拡散 MR イメージング

○ 増谷 佳孝 広島市立大学

拡散 MRI とは、単一あるいは異なる複数の撮像設定による拡散強調イメージングの手法およびデータの総称である.様々な 信号値モデルのパラメタにより脳白質神経などの生体構造の定量化が可能となるが、そのパラメタ推定はこれまでのフィッティ ングに加え、近年では機械学習によるアプローチによって行われる.本発表では、特に学習を合成データのみで行う生成型 Q 空間学習に注目し、DTI, DKI や NODDI などのモデルに対し深層学習を適用した結果を紹介するとともに、その利点や注目す べき特性を議論する.

MS1-5 質疑応答および全体討論

特別講演1

14:00~14:50 SL1「軟骨伝導の発見から MBT (医学を基礎とするまちづくり)へ」

座長:佐藤 嘉伸

(奈良先端科学技術大学院大学/JAMIT2019大会長)

SL1 軟骨伝導の発見から MBT (医学を基礎とするまちづくり) へ

○細井 裕司

奈良県立医科大学 理事長・学長

【MBE, MBT とは】対象が医療産業だけではなく、すべての産業に医学の光を当て、医学による産業の創生・再生を図る MBE をまちづくりの中で実現するのが MBT である.現在、奈良医大を中心に 104 の企業・団体がコンソーシアムを形成し、 この理念の実現を目指している.

【MBE, MBT の発想】 MBE は, CT や MRI のように工学が医学を助ける ME(医用工学)の逆の発想で, 医学的知見を工学 や産業の発展に生かすものである. 2004 年に私が「軟骨伝導聴覚現象」を発見したことが発想の原点となったので, MBT と 合わせて軟骨伝導を紹介する.

シンポジウム1

15:05 ~ 16:25 SY1 [医用画像のビッグデータと AI 開発の展望]

座長: 村尾 晃平 (国立情報学研究所)

中田 典生 (東京慈恵会医科大学)

国立研究開発法人日本医療研究開発機構(AMED)により「臨床研究等ICT 基盤構築・人工知能実装研究事業」が 開始されており,順次採択された医学系の学会と国立情報学研究所(NII)を中心とする国内の画像解析のエキスパー トの研究室が連携して医用画像の収集・解析に取り組んでいる.現在参画している医学系の学会は、日本消化器内視 鏡学会、日本病理学会、日本医学放射線学会、日本眼科学会、日本超音波医学会、日本皮膚科学会であり、画像解析 に参加している組織は、NIIのほか、東京大学、名古屋大学、九州大学、奈良先端科学技術大学院大学、中京大学で ある.

本シンポジウムでは、データの収集・解析の基盤の仕組みについて NII から紹介し、様々な具体的な解析タスクについて各組織から事例を紹介する、一方、海外でのデータ収集の状況についても俯瞰し、我が国における今後の研究から社会実現までについて展望を議論する.

SY1-1 医療画像ビッグデータクラウド基盤

○合田 憲人

国立情報学研究所

医療の質・安全性の向上,高度化,効率化,均てん化のため,ICT を活用して医療画像に代表される医療ビッグデータを収 集・利活用するための仕組みが求められている。国立情報学研究所では、全国規模で収集される大量の医療画像データの受入・ 解析が可能な医療画像ビッグデータクラウド基盤を整備・運用している。本クラウド基盤には、現在、医学系6学会が全国の 病院から収集した医療画像が匿名加工された上で収集され、AIを用いた画像解析研究に活用されている。本講演では、医療画 像ビッグデータクラウド基盤の概要および活用状況について紹介する。

SY1-2 AMED プロジェクトにおける画像解析タスク俯瞰, 眼科画像の解析

○佐藤 真一

国立情報学研究所

国立研究開発法人日本医療研究開発機構(AMED)の支援のもと「臨床研究等 ICT 基盤構築・人工知能実装研究事業」が2017年より開始されており、先の講演で紹介したクラウド基盤の中で各医学系学会から提起されたタスクに取り組んでいる. これらのタスクについて全体を俯瞰し、その中から眼科画像を用いた解析として、緑内障の検出、緑内障を含めた複数疾患の 識別を例に取組みを紹介する.

SY1-3 病理と内視鏡画像における胃がん検知システムの開発

○原田 達也. 黒瀬 優介

東京大学

国立研究開発法人日本医療研究開発機構(AMED)の支援のもと「臨床研究等 ICT 基盤構築・人工知能実装研究事業」が2017年より開始されており、我々は医学系の学会と連携して画像診断支援アルゴリズムの開発に取り組んでいる。本発表では、日本病理学会から提供された Whole slide image (WSI)と日本消化器内視鏡学会から提供された内視鏡画像それぞれに対して開発した胃がん検知アルゴリズムについて報告する。

SY1-4 大腸の画像診断:大腸生検の病理画像解析および大腸の内視鏡画像解析

○内田 誠一, 備瀬 竜馬

九州大学

本発表では、内視鏡学会及び病理学会との取り組みについて報告する。内視鏡で撮影した大腸画像において、部位や炎症の クラス分類を行うことは臨床応用上重要である。本発表では、このような課題を実現するための機械学習に必須の学習データ 収集を簡易にするクラスタリング手法について報告する。また、病理画像解析としては、大腸の病理画像における「正常」「良 性腫瘍」「悪性腫瘍」の3領域分割課題に関して報告する。

SY1-5 AMED 大規模データベースを用いた CT 画像解析と病変検出への応用

○森 健策,小田 昌宏

名古屋大学

本講演では、AMED 大規模データベースを用いた CT 画像解析と病変検出への応用について紹介する. AMED 研究プロジェクト「医療ビッグデータ利活用を促進するクラウド基盤・AI 画像解析に関する研究」では、全国の臨床関係学会から医用画像データを収集し、得られた画像データベースを用いて、機械学習等を用いた画像診断アルゴリズムの開発を進めている. 本講演では、その中でも放射線領域のデータベースに注目し、クモ膜下出血などの病変の自動検出、異なる機関から収集されたダイバシティの高い画像を用いた解剖学構造自動認識などについて、事例を挙げながら紹介したい.

SY1-6 大規模CTデータ解析による骨格解剖知識の抽出

○大竹 義人¹, 日朝 祐太¹, 高尾 正樹², 菅野 伸彦², 佐藤 嘉伸¹ ¹奈良先端科学技術大学院大学,²大阪大学大学院医学系研究科

我々は、本プロジェクトで日本医学放射線学会が収集している大規模 CT 画像データベースから、整形外科手術の術前計画・ 術後評価に有用な骨格解剖に関する新たな知識の抽出を目指している.本発表では、股関節手術支援のため、未整理の CT 画 像データベースから深層学習を用いて骨盤を含む画像を抽出し、骨盤上の解剖学的特徴点の抽出を行う事で、男女差や加齢に 伴う骨盤傾斜角の変化を解析した結果について報告する.

SY1-7 超音波画像データベース構築と AI 開発の取り組み

〇椎名 $\overline{3}^{1}$, 目加田慶人²

1京都大学.2中京大学

日本超音波医学会では、AMEDの事業として昨年度から肝腫瘤と乳腺腫瘤を対象に超音波画像データベース構築を開始し、 同時にそれらを利用した AI 診断支援システムの開発に取り組んでいる.超音波検査はプローブの操作と読影が同時に要求され る検査であり、瞬時の画像認識による診断支援ツールが期待されている.講演では、超音波画像特有の問題の難しさと肝腫瘍 の AI 診断システムの開発状況について述べる.

SY1-8 OpenAI と TradeAI

○中田 典生

東京慈恵会医科大学

画像診断 AI の活用は世界的に急速に加速が進んでいる.しかし欧州諸国では、AI 技術はあるが医用画像データが少なく、 日本は医用画像があっても、AI 開発が遅れた国もある.画像データを鉱山資源に例えると、日本は膨大な埋蔵資源があるのに、 例えば「鉄鉱石を鉄に加工して売る技術」が乏しい後進国の状態である.日本は、「鉄鉱石を鉄に加工する殖産興業と貿易促進」 を進めて OpenAI と TradeAI へと変化する必要がある.

SY1-9 臨床診断の立場からの特別発言と総合討論

○縄野 繁

国際医療福祉大学

第2日 7月25日(木)

前半(口演):メイン会場(レセプションホール1)

後半:ポスター会場(会議室3・4)

一般演題セッション3

16 : 25 ~ 17 : 55 **OP3**

「イメージング / 画質改善」

座長:伊藤 聡志 (宇都宮大学)

OP3-01 少数方向トモシンセシスにおける正則化項を用いた画像再構成

○堀 拳輔¹, 齊藤 典生², 王 波², 橋本 雄幸¹

¹ 杏林大学大学院保健学研究科,² つくばテクノロジー株式会社

トモシンセシスは、制限された角度から得られた投影像を用い、断層像を再構成する技術である. 臨床機では、X線管を 機械的に動作させ、60投影/30°の収集を10秒程度で行う.一方、現在開発中の装置は4投影/20°しか収集しないため、1秒 以内の検査が可能であるが、ストリークアーチファクトが出現する.近年、CTや MRIの画像再構成では正則化項を組み込 むことにより、スパースな情報からの再構成を可能にしている.本検討では、4方向トモシンセシスの画像再構成に正則化 項を組み込むことでアーチファクトの軽減を試みた.実験は、数値シミュレーションおよび実測データを用い、従来用いて きた Maximum likelihood expectation maximization (ML-EM) 法と、それに正則化を組み込んだ手法との比較検討を行った. ML-EM 法では顕著なストリークアーチファクトが出現したが、Total Variation 正則化を組み込むことで、大幅にアーチファ クトを軽減することができ、RMSE も向上した.

OP3-02 超音波造影剤の動態情報を利用した模擬リンパ管の可視化

○齋藤 勝也¹, 吉田 憲司², 大村 眞朗¹, 田村 和輝³, 山口 E^{2}

¹千葉大学大学院 融合理工学府,²千葉大学 フロンティア医工学センター,³浜松医科大学 光尖端医学教育研究センター

超音波画像診断において検出が困難とされているリンパ管を対象として、従来の生体組織の形態情報に超音波造影剤の動的 情報を加えた描出法を提案する.本手法では、造影剤が皮下注射を介してリンパ管内に吸収され、ほぼ静止している状態を想 定しており、超音波照射に伴う音響放射力により生じる造影剤の動態をドプラ法により定量する.実験では、皮膚組織の散乱・ 減衰特性を模擬した散乱体を含有した寒天ゲルファントム内に円筒形チャンバを形成することでリンパ管を模擬した.チャン バ内に超音波造影剤(Sonazoid)の懸濁液を充填し、その上部に設置した単一凹面振動子を方位方向に走査させながら超音波 の送受信を行うことで、模擬リンパ管断面の可視化を試みた.提案法を用いることで、形態(エコー強度)情報のみでは弁別 が困難である場合においても、位相(動態)情報を用いることで模擬リンパ管を高コントラストに描出可能であることを確認 した.

OP3-03 EM-TV アルゴリズムを用いた少数投影での骨 SPECT 画像再構成の検討

○金澤 道和¹, 笹谷 典太², 細川 翔太³, 渡部 浩司⁴, 湯浅 哲也², 高橋 康幸³, 銭谷 勉¹ ¹弘前大学大学院理工学研究科,²山形大学大学院理工学研究科,³弘前大学大学院保健学研究科,⁴東北大学サイクロ トロン・ラジオアイソトープセンター

悪性腫瘍の骨転移などの骨に関する画像診断において、SPECT 装置を用いる骨 SPECT 検査は、2次元骨シンチグラフィ では解剖学的な位置関係の把握が困難な胸郭や骨盤などの部位について有用となる.しかし、患者への負担などの様々な要因 により撮像時間の短縮が望まれている.そこで本研究では、統計的逐次近似再構成法である ML-EM 法と圧縮センシングを組 み合わせた EM-TV アルゴリズムでの画像再構成法を骨 SPECT へ応用し、少数投影での骨 SPECT 画像再構成を検討した. EM-TV アルゴリズムによる画像再構成は、観測データにおける統計的な尤度に関する更新と画像のトータルバリエーション (TV)に基づく正則化を交互に行うことにより実現する.少数投影の骨 SPECT 投影データについて EM-TV アルゴリズムでの 画像再構成を行い、従来法として ML-EM 法との比較を行ったところ、アーチファクトおよび定量性を大きく改善することが できた.これより、EM-TV アルゴリズムを用いた骨 SPECT における少数投影での画像再構成の可能性が示唆された.

OP3-04 頭部専用 PET における放射能・減弱補正係数同時推定法の深層学習を用いた精度向上手法の検討

〇呉 博文¹, 田島 英朗², 山谷 泰賀², 小尾 高史¹

1東京工業大学,2量子科学技術研究開発機構 放射線医学総合研究所

高齢化社会の進展により,認知症患者の増加が大きな問題となっているが,陽電子放出型断層像撮像装置(PET)はアルツ ハイマー型認知症の原因物質である特定のタンパク質の蓄積状況を画像として測定することが可能であることから,認知症の 早期発見を目的とした検診での利用への期待が高まっている.しかし,現在開発を進めている頭部専用 PET は、コンパクトな 筐体を目指した PET 専用機であり,吸収補正を行うための機構がないため,良好な画質の PET 画像を得るためには、別途撮 影した CT や MRI などを位置合わせして補正用のデータを生成する必要がある.これに対して、本研究では、頭部専用 PET の測定のみから診断に十分な画質を得るために、PET 画像再構成に必要となる吸収補正画像を同時推定する手法と深層学習を 利用した画像補正手法を組み合わせた再構成手法を提案し、計算機シミュレーションにより、その有効性を示した.

OP3-05 膵癌腫瘍病理顕微鏡画像の染色変換

○足立 秀雄¹, クグレマウリシオ¹, 岩本 千佳², 大内田研宙², 橋爪 誠², 横田 達也¹, 本谷 秀堅¹ ¹名古屋工業大学, ²九州大学

本研究の目的は膵臓癌病理画像の3次元多チャンネル画像を生成することである.本発表では病理画像の染色変換について 報告する.空間的に連続する病理切片の顕微鏡画像より3次元画像を再構成する.すべての切片をHEなど単一の染色で染め れば、その染色の3次元病理画像を得ることができる.この3次元病理画像は生体のミクロな3次元解剖構造を観察する上で 有用である.ただし、観察できる構造は病理切片を染める染色液に依存して変化するが、単一の切片は単一の染色でしか染め ることが出来ない.このため、同一の生体標本を異なる染色で染めたときに得られるであろう複数の3次元病理画像を同時に 観察することは、実現できれば解剖構造の理解にとって有用であるにも関わらず容易ではない.そこで、(1)連続する切片を異 なる染色で染めることにより様々な染色病理画像を獲得し、(2)それら病理画像を用い染色変換を行う Neural Network を構築 する手法を提案する.

OP3-06 MR エラストグラフィによる内包ファントムの粘弾性分布の評価

○菅 幹生¹²,石井 孝樹¹,岸本 理和²,小畠 隆行²

1千葉大学,2量子科学技術研究開発機構 放射線医学総合研究所

Magnetic resonance imaging (MRI) を利用して,生体内の粘弾性率を非侵襲的に評価する手法として magnetic resonance elastography (MRE) がある。MRE は外部加振装置により撮像対象内部に発生させた弾性波を MRI で画像化し,弾性波画像から逆問題を解くことで粘弾性率を推定する。本研究では生体組織の粘弾性率と周波数特性を模擬した内包ファントムを使用して,MR エラストグラフィによる内包領域の検出可能な撮像条件を検討することを目的とした。硬さの異なる内包領域を有するファントムを用いた実験結果より,小領域の検出には小領域内に半波長以上の弾性波が伝播し,弾性波の波長が4 pixel 以上となる条件を満たす必要があると考えられた。

OP3-07 Generative Adversarial Frameworks を用いた腹部 CT 像における非造影像からの造影像の推定

○小田 昌宏¹, 隈丸加奈子², 青木 茂樹², 森 健策^{1,3}

1名古屋大学大学院情報学研究科,2順天堂大学医学部放射線医学講座,3国立情報学研究所医療ビッグデータ研究センター

本稿では、深層学習を用いて腹部領域の非造影 CT 像から造影 CT 像を推定する方法について述べる. 診断及び治療時にお ける血管を含む解剖構造や異常の確認を目的として、血管造影下での CT 像撮影が広く行われている. しかし造影剤の影響 で呼吸困難や心停止といった重大な合併症を引き起こす場合が存在し、患者によって造影剤が使用できないことがある. 本 稿では深層学習による画像処理を用いて、腹部 CT 像の非造影像から造影像を推定する方法を提案する. Fully convolutional network (FCN)を用いた学習データの直接的学習, generative adversarial framework における FCN の間接的学習等を用い、 非造影から造影像への変換ネットワーク構築を行う. 腹部 CT 像における推定実験を行ったところ、血管等が強調された造影 CT 像に近い画像を推定可能であった.

座長: 上村 幸司(国立循環器病研究センター)

OP3-08 マルチチャンネル化処理と CNN を用いた嚥下時 X 線透視動画における頸椎椎間板の抽出

○藤中 彩乃¹, 目片幸二郎², 滝沢 穂高³, 工藤 博幸³ ¹ 筑波大学大学院, ² 神戸赤十字病院, ³ 筑波大学システム情報系

嚥下時の頸部動態解析において,頸椎椎間板の同定は嚥下障害の原因疾患の病態理解のために重要である.本報告では,嚥下時X線透視動画 (Videofluorography, VF)から CNN を用いて椎間板を自動抽出する手法を提案する.X線透視動画の各フレームは濃淡画像である.その濃淡画像に濃度正規化、トップハット変換、ソーベルフィルタ、Local Binary Pattern 処理をそれぞれ適用して4つの中間画像を生成する.それらの中間画像から3つの画像を選択し、RGBの各チャンネルに保存した1つのカラー画像を生成する.このカラー画像にパッチベースの CNN を適用し、椎間板候補領域を抽出する.小領域削除などの後処理を適用し、椎間板領域を抽出する.中間画像の組み合わせの中から最適なものを選択する.実際のX線透視動画に本手法を適用した結果を示す.

OP3-09 CTにおけるアトラス誘導による肝抽出に関する比較研究

〇王 進科 12 ,程 遠志 3 ,田村 進一 4 ,富山 憲幸 1

¹大阪大学大学院医学系研究科放射線統合医学,²ハルビン理工大学ソフトウェア工学部,³ハルビン工業大学コンピュータ 科学技術学部,⁴株式会社 NBL 研究所

Atlas-guided approaches have shown good prospects on automatic medical image segmentation, in which probabilistic atlas (PA) and multi-atlas segmentation (MAS) have become the most popular models. This paper provides a comparative study between PA and MAS on liver segmentation in CT. For PA, a single atlas is built for spatial correspondence purpose, via co-registrations of all the training images, and segmentation is implemented by registering the resulting atlas to the target image. For MAS, no atlas building process is needed. Each pairwise registration between the target image and the training atlas is performed, followed by propagating all the atlas labels to the target coordinate, the segmentation result is then achieved. In the experiments, a set of 30 abdominal CT images from cooperative hospital was used, and comparative results showed distinct superiorities of the two atlas-guided models on liver segmentation.

OP3-10 屈折コントラスト X線 CT を用いた乳頭組織の 3次元可視化および解析

○砂口 尚輝¹, 島雄 大介², 市原 周³, 西村理恵子³, 渡邊 彩¹, 丹羽輝久子¹, 黄 卓然¹, 湯浅 哲也⁴, 安藤 正海⁵

1名古屋大学,2北海道科学大学,3名古屋医療センター,4山形大学,5総合科学研究機構

非浸潤性乳管癌 (DCIS) は癌細胞が乳管内に留まって増殖し、乳管に沿って進展する特徴を持つ. DCIS が乳管から周囲の結 合組織へ浸潤すると、浸潤性乳癌となり、リンパ管や血管に進入する可能性が出てくる. 浸潤のない、純粋な DCIS は、癌細 胞が乳管内に存在するため、手術により DCIS を完全に除去し、DCIS を残さなければ完治する. DCIS の標準的な治療としては、 一般的には乳房全摘出か温存術が行われる. 乳房全摘を行うとしても、術前に乳頭部の DCIS の有無が分かれば外観を維持し た乳頭温存術が可能になるが、現在の臨床画像(マンモグラフィ、超音波、MRI)では、乳頭内の DCIS の有無を術前に判定 することは困難である. 乳管は、いくつかの葉(セグメント)に分かれているが、これらを集約する主乳管が集合する乳頭の 詳細な解剖学的構造は、主乳管同士の吻合の有無など不明な点が多い.

本研究では、染色なしで組織標本と同等のコントラストと約10 µmの空間分解能により生体組織の3次元構造を可視化で きるX線暗視野法による屈折コントラストCTを用いて、乳頭内の乳管構造を詳細に解析する.具体的には、53症例の乳頭か ら乳管数、乳管面積、乳管断面形状などを調査する.また、本研究で乳頭内の乳管同士が吻合する様子が多数確認されており、 詳細について報告する.

OP3-11 深層学習による超音波画像からの肝腫瘍検出に関する初期的検討

○堤 一晴⁻¹, 中島 崇博⁻¹, 道満 恵介⁻¹, 目加田慶人⁻¹, 西田直生志⁻², 工藤 正俊⁻² ⁻¹中京大学 工学部, ⁻²近畿大学 医学部

本研究では、腹部超音波画像を対象として深層学習による肝腫瘍検出の初期的検討結果について報告する.腹部超音波にお ける検査水準は実施者の経験に影響され、その均てん化にはコンピュータ支援診断が期待されている.本報告では、肝細胞が ん領域とそれ以外の領域を分類する畳み込みニューラルネットワークによる肝腫瘍領域検出について述べる.学習データとし て、肝細胞がん領域 61 例にデータ増強を施したものと非腫瘍領域をそれぞれ用いて CNN の学習をし、学習に利用しなかった データによる評価をおこなった、実験の結果、腫瘍の領域を正しく検出できているが、腫瘍以外の領域を過検出する傾向が見 られた.今後、学習データを追加することで検出精度の改善を試みる.

OP3-12 腹腔鏡動画像からの Fully Convolutional Network による血管領域抽出

 ○盛満慎太郎¹,小澤 卓也¹,北坂 孝幸²,林 雄一郎¹,小田 昌宏¹,伊藤 雅昭³,竹下 修由³, 三澤 一成⁴,森 健策^{1,56}

¹名古屋大学大学院情報学研究科,²愛知工業大学情報科学部,³国立がん研究センター東病院,⁴愛知県がんセンター, ⁵名古屋大学情報基盤センター,⁶国立情報学研究所医療ビッグデータ研究センター

本稿では内視鏡動画からの血管領域の自動抽出手法について述べる.腹腔鏡手術は難易度の高い手術であるため,腹腔鏡 などで撮影した動画の自動解析による手術支援システムの開発が進められている.動画からの術具や臓器の自動認識は、コン ピュータに手術工程を理解させ、術者の手技を適切に支援させることにつながる.手術工程の理解において、体内構造を表す 血管の抽出は重要である.しかし、血管は手術中の把持や切断などにより形が変化するため、単純な処理で抽出することは困 難である.そこで本研究では、深層学習を用いることにより、腹腔鏡動画像から血管領域を自動的に認識する手法の初期検討 を行った.モデルには 2D U-net を用い、動画中の各フレーム画像に対応する血管領域ラベルを手動で作成し、学習を行った. 実験の結果から、腹腔鏡手術動画からの血管領域の抽出が可能であることが確認された.

OP3-13 非接触型微小循環観察環境の構築と敗血症モデルラットの血行動態解析

○川崎 真未¹, 中野 和也², 大西 峻², 羽石 秀昭²

¹千葉大学大学院融合理工学府基幹工学専攻医工学コース。²千葉大学フロンティア医工学センター

敗血症は感染症に起因して発症し、生命に危機を及ぼす臓器障害である。発症初期には100μm以下の血管径である微小循環が障害される。よって敗血症に対する薬効の調査では、微小循環の変化を観察することが重要となる。先行研究では、生体の微小循環が観察可能なSidestream Dark-Field (SDF)撮影法を用い、敗血症モデルラットの血流速度低下を確認した。しかしSDF撮影法は装置を組織に接触させる必要があり、組織圧迫の影響や衛生面で懸念がある。そこで本発表では、非接触型撮影装置を構築し、敗血症モデルラットの微小循環の観察及び血流速度解析を行った。非接触型撮影装置による取得動画像から敗血症モデルラットの血流や血管密度の減少が確認された。また血流速度を算出した結果、健常ラットの血流速度は減少しなかったのに対して敗血症モデルラットの血流速度は減少傾向が確認された。これらの結果から、非接触型撮影装置により微小循環の変化を取得可能であることが示唆された。

OP3-14 手術の多視点動画撮影および画像認識による自動視点切替表示

○梶田 大樹¹,大石 圭²,高詰 佳史³,斎藤 英雄²,杉本 麻樹² ¹慶應義塾大学医学部 形成外科,²慶應義塾大学大学院 理工学研究科,³慶應義塾大学医学部 解剖学教室

手術の動画撮影の有用性は以前から認識されており,多くの手術室には天吊式の術野カメラが設置されている.しかし,従 来は外科医の頭部や体によって術野が隠れてしまう問題あった.

そこで我々は、無影灯の光源に対応して複数のカメラを設置し、術野が明るい限りは少なくとも1台のカメラからは、術野 の映像が記録可能な「マルチカメラ搭載型無影灯」を試作した.

ただし、同時に多数の映像を見るのは大変であるので、術野が良好に映っている映像を画像認識によって識別し、自動的に 映像を切り替える手法を作成した。術野は、人体の色やテクスチャの情報からセグメンテーションを行う機械学習の手法によっ て認識し、この領域が大きい映像を選択して表示させた。これにより、カメラが自動で切り替わりながら、常に術野を視認で きる術野映像の表示が可能となった。

本技術によって、あらゆる場面における術野映像の活用が促進されることが期待される.

OP3-15 覚醒下脳腫瘍摘出術における術中情報を用いた脳機能マッピング工程同定手法の提案

〇佐藤 生馬¹, 南部 優太¹, 藤野 雄一¹, 堀瀬 友貴², 楠田 佳緒², 田村 学², 村垣 善浩², 正宗 賢²

¹公立はこだて未来大学大学院 システム情報科学研究科,²東京女子医科大学 先端生命医科学研究所

脳腫瘍摘出手術において,熟練医は最大限の腫瘍摘出と最小限の術後合併症リスクを実現するため,患者の脳構造や機能を 把握し,独自の判断プロセスにより腫瘍を切除する.この判断プロセスは,熟練医が培った知識や経験にもとづく暗黙知とさ れており,医療の質の向上や若手医師教育のために可視化が望まれている.本研究では,覚醒下脳腫瘍摘出術において患者毎 に異なる腫瘍付近の脳機能を把握する脳機能マッピング時の暗黙知の可視化に向け,術中情報を用いた脳機能マッピング工程 同定手法を提案する.本提案手法では,術中MRIやナビゲーションシステムからの位置情報および顕微鏡などからの動画より 特徴量を抽出し,これらの特徴量を用いて2階層からなる階層型隠れマルコフモデルより,手術の流れと脳機能マッピング時 の工程を可視化する.そして,過去の臨床データを用いて,本手法により手術工程を同定し,その精度を評価したので報告する.

座長:内山 良一(熊本大学)

OP3-16 GAN を用いた病理組織画像における異常組織の自動同定法 ○林 大誠¹,中山 良平¹,檜作 彰良¹,黒住 眞史²,真鍋 俊明² ¹立命館大学理工学部、²滋賀県立総合病院研究所

本研究の目的は、異常組織の病理組織型を推定する診断システム開発の前段階として、アノテーションが不必要な腫瘍を含 まない病理組織像のみを、人工知能の一つである GAN (Generative Adversarial Nets) に学習させることで、病理組織像から 異常組織を自動同定するアルゴリズムを開発することである。実験試料は、HE 染色された腫瘍を含む病理組織像、腫瘍を含ま ない病理組織像を 20 倍率でデジタル化した画像を用いた。GAN の学習では、学習用の腫瘍を含まない病理組織像から抽出し た関心領域を GAN に入力することにより、正常組織構造をネットワークに学習させた。そして、学習済みネットワークを用 いて、正常組織構造とは異なる構造を有すると評価された関心領域を異常組織として同定した。学習した GAN を評価用画像デー タの関心領域に適用した結果、正答率 91.6% が得られ、提案手法の有効性が示唆された。

OP3-17 3次元 CT 画像を用いたじん肺の重症度診断支援システム

○森 奈々¹, 日野 公貴¹, 松廣 幹雄², 鈴木 秀宣², 河田 佳樹², 仁木 登², 加藤 勝也³, 岸本 卓巳⁴, 芦澤 和人⁵

¹ 徳島大学大学院 先端技術科学教育部,² 徳島大学大学院 社会産業理工学研究部,³ 川崎医科大学,⁴ 岡山ろうさい病院, ⁵ 長崎大学

じん肺は,粉じんを肺に吸入することによって生じる職業性呼吸器疾患である.日本では毎年24万人前後の粉じん作業従事 労働者がじん肺健康診断を受診している.近年では歯科技工じん肺など新たな症例が発生しており,粉じん労働者数は増加傾 向となっている.

じん肺健康診断では胸部単純X線写真を用いて診断され、第0型、第1型、第2型、第3型、第4型に分類される.ここで、 第1型以上の患者は労災認定となるが第0型の患者は労災認定の対象とならないため正確に診断しなければならない.また、 CT 画像は胸部単純X線写真に比べて第1型の微小な病変を検出することができるため、胸部CT 検査による診断法が検討されている.

本報告では、3次元じん肺 CT 画像からマニュアル処理によって粒状影を抽出し、じん肺 CT 画像データベースを作成する. このデータベースを用いて X 線写真の診断結果と粒状影の個数・大きさを重症度別に解析・比較・評価・診断支援システムの 開発を行う.

OP3-18 Generative adversarial network を用いた肺結節の3次元CT 画像の生成

〇西尾 瑞穂¹²,野口峻二郎³,尾上 宏治²,子安 翔²,八上 全弘¹²,村松千左子⁴,藤田 広志⁴, 富樫かおり²

¹京都大学附属病院 先制医療・生活習慣病研究センター,²京都大学大学院医学研究科 放射線医学講座(画像診断学・ 核医学),³大阪赤十字病院 放射線診断科,⁴岐阜大学工学部電気電子・情報工学科

目的

GAN による肺結節の3次元 CT 画像の生成を行い、放射線科医による評価を行った.

方法

LUNA16のデータセットの888 セットの3次元 CT 画像,1415 個の肺結節を用いた. 肺結節に対し40x40x40 voxelsの VOI をセットして,CT 画像を切り出し,その CT 値を1000 で除算して正規化を行った.改変した3次元 Resnet を generator, 改変した3次元 VGG を discriminator とし,GAN を構成した.トレーニングには1281 個,テストには134 個の肺結節を利 用し,L1 loss と GAN loss を混合したものを最適化のためのロスとした.学習時には random erasing をベースにした data augmentation を行った.テスト用の134 個の肺結節につき,ランダムに真の肺結節と生成された肺結節を提示し,二名の放射 線科医が評価した.放射線科医には真の肺結節である確信度を入力させ,それを用いて ROC 解析による Area under the curve (AUC) を計算した.

結果

放射線科医のAUCは0.717と0.814であった. 正診率は71.6%と81.3%,感度は71.0%と78.3%,特異度は72.3%と84.6%であった.

考察

GANによって、放射線科医による真偽の判断が難しい肺結節の3次元CT画像の肺結節を生成できる可能性が示された.

OP3-19 眼底画像における OCT 検査結果を用いた CNN による網膜神経線維層欠損解析

○渡邊 颯友¹,村松千左子²³,周 向栄²³,畑中 裕司⁴,原 武史²³,藤田 広志²³

¹岐阜大学大学院自然科学技術研究科知能理工学専攻,²岐阜大学工学部電気電子情報工学科,³岐阜大学大学院医学系研究科知能イメージ情報分野,⁴滋賀県立大学工学部電子システム工学科

緑内障は日本における中途失明原因の第1位とされており、40歳以上の20人に1人が緑内障と推定されている.しかし、早 期の緑内障は自覚症状が非常に少ないため、早期発見のためには定期検査が必要である.定期検査の中でも特に眼底検査では、 緑内障診断の指標の一つとして網膜神経線維層欠損(NFLD)の有無を調べる.また、OCT 検査は精密検査であり、網膜神経 線維層の厚みを定量する.しかし、定期検査においては一般的にOCT 検査ではなく眼底検査が行われる.そこで、我々は同時 期に得られた眼底画像とOCT 検査結果をそれぞれ学習データ、教師データとして全畳み込みニューラルネットワークの学習を 行い、眼底画像単体から NFLD を検出するコンピュータ支援診断システムを構築した.評価方法は、視神経乳頭中心部から眼 底画像を8方向に分割し、各領域の NFLD の一致率を調べた.結果として、眼底画像単体から OCT 検査結果を用いて NFLD を解析することに成功した.

OP3-20 小児腸閉塞患者の CT 像における CycleGAN を用いた電子洗浄手法の検討

○西尾 光平¹, 小田 紘久¹, 千馬 耕亮², 北坂 孝幸³, 伊東 隼人¹, 小田 昌宏¹, 檜 顕成², 内田 広夫², 森 健策^{1,4,5}

¹名古屋大学大学院情報学研究科,²名古屋大学大学院医学系研究科,³愛知工業大学情報科学部,⁴名古屋大学情報 基盤センター,⁵国立情報学研究所 医療ビッグデータ研究センター

本研究では、血管造影された小児腸閉塞患者のCT 像における CycleGAN を用いた電子洗浄手法の検討について報告する. これまでの腸管閉塞部位検出手法は、腹水等と濃度値の差が小さい残渣が含まれていることから精度が低下する問題があった. そこで、電子的に腸管内を洗浄し、残渣が含まれていない CT 像を生成することで腸管閉塞部位検出精度向上を目指す.しか し、多くの電子洗浄手法は残渣が造影された CT 像に対する手法であり、小児腸閉塞患者の CT 像に適用することが困難である. そこで、本研究では CycleGAN を用いた電子洗浄手法について検討する.残渣の多い小児腸閉塞患者の CT 像と残渣の少ない 大腸 CT 検査画像を学習データとして、CycleGAN による双方向それぞれの画像生成モデルを学習する.その後、残渣の多い 画像から残渣の少ない画像への生成モデルを小児腸閉塞患者の CT 像に適用する.実験の結果、小児腸閉塞患者の CT 像から 残渣の少ない良好な CT 像を得ることができた.

OP3-21 低線量 CT 画像に基づいた骨ミネラル量の推定法

○山田 凌大¹,石原 匡彦²,原 武史¹,周 向栄¹,片渕 哲朗³,藤田 広志¹
¹岐阜大学大学院自然科学技術研究科知能理工学専攻,²岐阜大学医学部附属病院放射線部,³岐阜医療科学大学保健科

核医学画像の定量解析の中で,骨に集積する放射性薬剤のSUVの計算では,全身の骨ミネラル量の測定が重要である.本研究は,低線量CT画像を用いた骨ミネラル量の推定法の開発を目的とした.等方化したCT画像に閾値処理や空間フィルタを利用し,骨格抽出を行う.骨格のMIP画像を基に骨面積を定める.骨面積に骨密度を乗じた値を骨ミネラル量の推定値とする. 日本人健常者2411人に対し行われた体組成計測におけるDXAの測定データにより,全身の骨ミネラル量の回帰式が定められている.この回帰式から算出される症例の全身の骨ミネラル量と,123 症例のCT画像に基づき推定した胴部骨ミネラル量の相関係数は0.88であった.また,骨格を解剖学的構造に基づき,大腿骨,骨盤(寛骨,仙骨・尾骨),脊柱,頭蓋骨,腕部骨に自動分類し,部位ごとの骨ミネラル量の推定も可能である.以上より,CT画像に基づく骨ミネラル量の定量解析の有用性が示唆された.

OP3-22 胸部 CT 像中の肺結節の良悪性鑑別における自動抽出された画像特徴の可視化

○平島 翔¹, 平野 靖¹, 木戸 尚治¹, 岩野 信吾², 本田 健³, 関 順彦³ ¹山口大学大学院創成科学研究科,²名古屋大学大学院医学系研究科,³帝京大学医学部附属病院

肺結節は CT 像上に高 CT 値の陰影として写し出され, 医師は肺結節やその周辺の画像所見を基に肺結節の良悪性を判断する. また,近年では Deep Learning を用いた CADx(Computer-Aided Diagnosis) システムの研究が行われており,従来の手法に比べて高い性能を示すことが報告されている.しかし, Deep Learningの判断過程は解釈が難しい.

本研究では Deep Learning で構築された CADx システムの判断結果の根拠を明示的にするために, Deep Learning が抽出した画像特徴の可視化を目的とする. 具体的には, 肺結節周辺の 3 次元画像を用いて CNN (Convolutional Neural Network)の学習と識別を行い, Guided Grad-CAM(Guided Gradient-weighted Class Activation Mapping)を用いて CNN の抽出した画像特徴 を可視化した.

OP3-23 CT 画像を用いた脊柱海綿骨内の骨密度定量化

○李 新¹, 光本 浩士¹, 平野 雅嗣², 山崎 克人³, 田村 進一⁴
¹大阪電気通信大学大学院,²新居浜工業高等専門学校,³栄宏会小野病院,⁴(株)NBL 研究所

近年,高齢化に伴い,骨粗鬆症患者が年々増加している.その影響により医師による CT 像の読影が膨大化し多大な時間と 労力が必要になり見落としが危惧されている.このため,骨粗鬆症患者の CT 画像を対象としたコンピュータ支援システムの 開発がなされ骨密度の計測が報告されている.先行研究のシステムにおいて,骨密度の計測は,脊柱スライスデータ内の椎体 を囲む矩形を求め,その各辺の 1/3 の長さを持つ楕円形の ROI 内の平均 CT 値を骨密度としている.また,Snakes 手法を用い 海綿骨を抽出し骨密度を計測する研究もあるが,Snakes 手法には初期値の設定が必要である.

本稿では抽出した脊柱の各スライスに対し、海綿骨と皮質骨の境界を検出し海綿骨領域のデータ値を用いた CT 値の平均を 求める. その結果,骨密度の脊柱に沿った変化,椎骨ごとの変化を計測することができた

OP3-24 二段階分類による胸部 X 線画像を用いた異常部位検出システムの検討

○堂園 貴弘¹, 吉村裕一郎², 田中久美子³, エズムトルスン², 中田 孝明³, 織田 成人³, 中口 俊哉²
¹千葉大学 大学院 融合理工学府 基幹工学専攻 医工学コース,²千葉大学 フロンティア医工学センター,³千葉
大学 大学院医学研究院 救急集中治療医学

集中治療室における移動困難な重症患者の経過観察のためX線ポータブル撮影が用いられる.しかし,座位や仰臥位などの 様々な体位での撮影となるため,通常時と臓器状態に差異が生じることで読影困難となり,読影精度の低下が課題となってい る.そこで本研究では胸部X線ポータブル画像からの肺疾患の診断能を向上するため深層学習の適用を試みた.提案システム は、まず無気肺と肺炎を1クラスとして,異常なし,胸水の3クラスで分類後,無気肺または肺炎と分類された画像を2クラ ス分類する2段階分類を行う.評価実験に千葉大学医学部附属病院で収集されたデータと米国立衛生研究所のオープンデータ の2種類を用いた.その際,左右反転と±7度回転処理を行い,データ数を14倍に拡張,評価方法に3分割交差検証法を用いた. 実験の結果,提案する2段階分類手法は4クラス同時分類時よりもモデル全体の分類精度が向上し,有効性が示唆された.

前半(口演):メイン会場(レセプションホール1)

後半:ポスター会場(会議室3・4)

ー般演題セッション4

9:00~10:30 **OP4**

「イメージング / 画質改善」

座長:山谷 泰賀

(量子科学技術研究開発機構 放射線医学総合研究所)

OP4-01 ブロックマッチング 5D フィルターを用いたダイナミック PET スキャンのための画像ノイズ除去

○大手 希望¹, 橋本二三生¹, 垣本 晃宏¹, 磯部 卓志¹, 犬伏 知生¹, 得居 葵¹, 吉川 悦次¹, 大村 知秀¹, 尾内 康臣²

¹浜松ホトニクス株式会社 中央研究所,²浜松医科大学 生体機能イメージング研究室

PETリガンドの取込みの定量には、PET検査において連続的なスキャン計画が必要となる.しかし、連続的な PET(ダイナミック PET) 画像は、データ収集が複数の短時間フレームよりなるため、ノイジーになりやすい.この欠点を克服するため、ダイ ナミック PET スキャンのための新しいエッジ保存型平滑化フィルターによる画像復元法を開発した.既に 3D 医用画像のノイ ズ除去のためにブロックマッチング 4D フィルター(BM4D) が提案されている.そこで、ワンショットの BM4D を、連続的 な画像をまとめて処理する BM5D に拡張した.ピーク信号対雑音比、構造化類似度を指標として、数値シミュレーションにより性能を評価した.加えて、臨床条件での被検者データ1例により画質を評価した.結論として、ダイナミック PET 画像のノイズ除去において BM5D は、BM4D、ガウシアンフィルターより、定量的・定性的に比較的高い性能を示した.

OP4-02 µ CT を用いた改良版 Cycle-GAN による臨床用 CT 像の超解像処理

○鄭 通¹, 小田 紘久², 守谷 享泰¹, 杉野 貴明¹, 中村 彰太³, 小田 昌弘¹, 森 雅樹⁴, 高畠 博嗣⁵, 名取 博⁶, 森 健策^{1,7,8}

¹名古屋大学大学院情報学研究科,²名古屋大学大学院情報科学研究科,³名古屋大学大学院医学系研究科,⁴札幌厚生病院, ⁵札幌南三条病院,⁶恵和会西岡病院,⁷国立情報学研究所医療ビッグデータ研究センター,⁸名古屋大学情報連携統括 本部情報戦略室

This paper presents a novel super-resolution method with unpaired training dataset of clinical CT and micro CT volumes. For obtaining very detailed information such as cancer invasion from pre-operative clinical CT volumes of lung cancer patients, super-resolution of clinical CT volumes to μ CT-level is desired. While most super-resolution methods require paired low- and high- resolution images for training, it is infeasible to obtain paired clinical CT and μ CT volumes. We propose a novel training approach based on Cycle-GAN, which does not need paired clinical CT and μ CT volumes. Experimental results demonstrated that our proposed method successfully performed super-resolution of clinical CT into μ CT-level.

OP4-03 視覚情報提示による頭部 PET 体動抑制手法の開発

○鈴木 海斗¹, 岩男 悠真², 高橋美和子², 山谷 泰賀²³

¹千葉大学 大学院融合理工学府,²国立研究開発法人量子科学技術研究開発機構 放射線医学総合研究所,³千葉 大学 フロンティア医工学センター

現在注目されている 頭部専用 PET 装置では、体動による取得画像の劣化を防ぐことが課題の一つとなっている. 従来手法として、バンド等を用いて物理的に被験者を拘束する手法や、画像再構成時に体動を補正する手法があげられる. しかし、被験者への負担増や、既存の装置への組み込みが困難などの理由により多くの課題が残されているのが現状である. そこで、本研究では非拘束かつ撮影システムに依存しない体動抑制法の開発を目的とした検討を行う.具体的には、Kinectを 用いて被験者の体動を取得し、体動をリアルタイムに可視化することで被験者自らが体動を抑制できるシステムを開発した. 人間の頭部の体動の特性を分析し、認識が容易な体動の可視化手法についての検討を行うとともに、システムの有効性を複 数の被験者を対象としたボランティア試験により検証した.結果として開発システムにより体動の標準偏差が 50.1% まで抑制

できることを確認した.

OP4-04 静止型 SPECT システムを用いた心筋画像再構成

○藤代 鷹平¹,村田 一心¹,本村 信篤²,尾川 浩一¹ ¹法政大学 理工学研究科,²キヤノンメディカルシステムズ

マルチピンホールコリメータを装着した SPECT システムは、検出器を回転させることなく多方向から検出器へ進入するガ ンマ線の飛来方向を推定可能であり、静止型 SPECT システムとして使用できる。静止 SPECT システムを用いた心筋画像再構 成おける問題点は、データ収集角度が一定程度、限定されることと肝臓等の他の臓器による散乱線の影響などである。本研究 では、静止型 SPECT におけるこれらの問題を検討するために、モンテカルロ法による光子輸送計算を用い、臨床に近い状態 で収集された投影データを作成し、心筋画像の評価を行った。ファントムとしては MCAT ファントムを用い、3 検出器(11 ピ ンホール)のジオメトリを想定し、画像再構成には ML-EM 法を用いた。この結果、ピンホール投影データには散乱線が含ま れるものの、適正な散乱線除去を実施することで、臨床上使用可能と思われる画像を得ることができた。

OP4-05 マルチ CNN による MRI 画像におけるノイズ低減

○金子 幸生¹, 野口 喜実¹, 尾藤 良孝², 荻野 昌宏¹

¹株式会社日立製作所 研究開発グループ,²株式会社日立製作所 ヘルスケアビジネスユニット

MRI(核磁気共鳴撮像装置)は、頭部をはじめ様々な部位の検査に用いられているが、撮像時間が長い点が課題である.近年、 撮像時間の短縮に関する研究が進んでおり、画像再構成に対して畳み込みニューラルネットワーク(CNN)を適用する研究が 注目されている.本研究では、MRI撮像の高速化を目指して、少数の計測データから再構成された低画質画像に対するノイズ 低減について検討を行った.MRI装置を用いて通常撮像および撮像時間を1/2とした撮像実験を行い、撮像画像データから約 90,000枚の学習パッチを作成した.学習パッチに含まれる輝度情報の特徴を基にサブセットに分類し、各サブセットに対して ネットワークを作成した.撮像時間1/2の画像を領域分割し、各領域ごとに最適なネットワークを選択し、画像を出力した.結果、 単一 CNN の場合と比べ、本手法では PSNR が約 0.5 dB向上し、ノイズ低減効果を確認した.

OP4-06 全身撮影が可能な立位 CT の開発:ファントムスタディ、人体に対する重力の影響

○横山 陽一¹, 山田 祥岳¹, 名倉 武雄², 中原 健裕¹, 成田 啓一¹, 山田 稔¹, 南島 一也³, 荻原 直道⁴, 陣崎 雅弘¹

¹慶應義塾大学医学部放射線科学教室(診断),²慶應義塾大学医学部整形外科学教室,³慶應義塾大学病院放射線技術室, ⁴慶應義塾大学理工学部機械工学科

[Objective] The purpose of this study was to evaluate the performance of upright CT in a phantom study and the effect of gravity on large vessels and the pelvic floor. [Methods] We compared the physical characteristics in a phantom between upright and supine CT. Asymptomatic volunteers underwent both CT examinations. The area of vena cava and aorta and the changes of pelvic floor were evaluated. [Results] The performance of upright CT was comparable to that of supine CT. In the upright position compared with the supine position, the area of SVC was significantly smaller, the area at the level of the diaphragm was similar, and the area of IVC was significantly larger, while the areas of aortas were not significantly different; the pelvic floor descended in the upright position. [Conclusion] Upright CT was comparable to supine CT in physical characteristics and useful in clarifying the effect of gravity on human body.

OP4-07 GAN を用いた人工股関節全置換術術後 CT 画像の金属アーチファクト低減

○阪本 充輝¹,日朝 祐太¹,大竹 義人¹,高尾 正樹²,菅野 伸彦²,佐藤 嘉伸¹ ¹奈良先端科学技術大学院大学先端科学技術研究科.²大阪大学大学院医学研究科

人工股関節全置換術において、術後 CT 画像の解析は人工股関節設置位置や筋骨格形状の評価に重要な役割を果たす.しか し術後 CT 画像では、金属製のインプラントによって発生するアーチファクトが画像解析の精度を大幅に低下させる要因となる. 我々はこれまでに、術前 CT 画像とシミュレーション画像を用いて学習した CNN(Convolutional Neural Network)によるアー チファクト低減を用いて、術後 CT 画像での筋肉セグメンテーション精度を向上させる手法を提案してきた.しかし、学習に 用いたシミュレーション画像と実術後 CT 画像には乖離があり、それが実画像でのセグメンテーション誤差の原因であると考 えている.そこで本研究では、GAN(Generative Adversarial Network)の一種である pix2pix の拡張によって、シミュレーショ ン画像と術後 CT 画像からの変換結果の分布が近づくような画像変換の学習手法について検討した.

座長:本谷 秀堅(名古屋工業大学)

OP4-08 複数の皮膚毛細血管に対する血流速度推定の自動化

○塚本 唯斗¹, 瀧本 麦², 中野 和也³, 大西 峻³, 羽石 秀昭³
 ¹千葉大学院融合理工学府, ²花王株式会社, ³千葉大学フロンティア医工学センター

皮膚毛細血管は、組織の健常性に関わる重要な血管系である.毛細血管のモニタリングにより組織状態の把握が可能となるが、 このための定量評価手法は発展途上にある.当研究室では、皮膚毛細血管の定量評価に向け、撮影装置及び血流速度推定手法 の開発を進めてきた.しかし、従来手法は血管内の局所的な画素値に着目したオプティカルフローに基づいた手法であるため、 体動やノイズの影響を受けやすい問題があった.そこで本研究では、血管内全域の画素値を考慮することで、ノイズや血球動 態にロバストな手法構築を行った.被験者3名の前腕部内側の皮膚毛細血管に対して提案手法を適用し、血流速度の推定を行っ た.提案手法による血流速度推定値の妥当性検証のため、手動追跡及び従来手法で推定した血流速度との比較を行った.その 結果、従来手法と比較し推定誤差の低減を確認した.提案手法の有効性が示唆された.

OP4-09 TMS 検査のための脳 MRI 画像からの誘導電流強度の回帰とその推定誤差分散推定

○牧 豊大¹, 酒井 隆志¹, ラークソイルッカ², 宇川 義一³, 村上 丈伸³, 横田 達也¹, 平田 晃正¹, 本谷 秀堅¹

1名古屋工業大学,2アールト大学,3福島県立医科大学

TMS 検査において, 脳内に誘発される電流強度を高速に高い精度で推定することは必須である. 電流強度を推定するために は VCM(Volume Conductor Modeling) を用いた電磁気学的な手法が用いられてきたが, 推定に数時間必要で医療の現場では実 用的ではない. そこで本研究は, DNN(Deep Neural Network) を用いる高速な電流強度回帰手法を開発した. さらに DNN で 推定した電流強度の曖昧性を推定する手法も合わせて提案する. 本研究では, 頭部 MRI 画像と脳に磁場を与えるコイルの位置 と姿勢からそのコイルによって誘発される誘導電流強度を, DNN を用いて回帰する. 本研究では, DNN のアーキテクチャと して U-Net を採用する. DNN の推定の誤差を定量化するためにベイズアプローチを用いた手法を用いる. この手法では DNN の信頼度を各ボクセル単位で評価できる. 曖昧性の分布から, DNN の推定の信頼度が脳溝とコイルの円の中心で悪くなること が発見できた. しかし医学的に重要なのは皮質であるため, 提案法の有効性が確認できた.

OP4-10 開腹手術映像における遮蔽物除去システムの VR 化

○北坂 孝幸¹, 伊藤 幹也¹, 駒形 和哉¹, 三澤 一成², 森 健策³
¹愛知工業大学情報科学部, ²愛知県がんセンター, ³名古屋大学情報連携統括本部

本稿では、開腹手術映像における遮蔽物除去システムの VR 化に関して報告する.

OP4-11 手術器具検出を用いた整形外科手術の工程認識における最適な Data Augmentation の検討

○西尾 祥一¹, ホセインベライアット¹, 八木 直美¹², 新居 学¹, 平中 崇文³, 小橋 昌司¹ ¹兵庫県立大学, ²姫路独協大学, ³高槻病院

整形外科手術は腹膣鏡手術や開腹手術と比較して手術工程及び使用する手術器具が多く,外科手術中に医療器具の受け渡し を行う看護師は大きな負担を強いられている。

私たちの以前の研究では人工膝関節置換術を対象とした整形外科手術における手術室看護師を支援するためのナビゲーショ ンシステムを提案した.この研究では畳み込みニューラルネットワークを用いて手術画像全体に基づいた画像認識により手術 工程の認識を試みたが、実用化に必要とされる精度には及ばなかった.

本研究では整形外科手術における手術工程の認識精度の改善を実現するために,手術映像から取得したフレーム毎に物体検出(YOLO)を行い,器具のクラス情報と位置座標を検出する.スマートグラス(眼鏡型のデバイス)を用いて記録した整形外科 手術映像は手術間で照明環境や撮影角度が大きく異なっており,それらの影響を低減させるための最適なデータの前処理法や データ拡張法を検討する.

OP4-12 敵対的生成ネットワークによる MRI 脳画像の頭蓋骨除去の提案

○藤山 眞梧¹,茶山 祐亮¹,彌富 仁¹,大石 健一²
 ¹法政大学理工学研究科応用情報工学専攻,²ジョンズホプキンス大学医学部放射線科

神経障害の診断のために MRI による撮影が日々行われ, MRI 画像は診断ならび研究に多く用いられている. MRI 画像を用 いた研究において,特に自動診断支援,類似症例検索実現のためには MRI 画像から頭蓋骨,皮膚のような非脳組織を取り除 く skull-stripping と呼ばれる処理が必要不可欠である.しかし既存の skull-stripping 手法は処理時間,除去精度において問題 が存在する.本研究は高速かつ正確な skull-stripping を実現する adversarial generative skull-stripping (AGSS) 法を提案する. AGSS は, deep learning 分野において近年多くの成果を挙げている generative adversarial networks (GANs) を応用し,限ら れた数の脳抽出データの学習を元に,優れた skull-stripping 画像を生成する. OP4-13 深層学習を用いた腹腔鏡手術動画像の出血領域自動セグメンテーション

○山本 翔太¹, 小田 紘久¹, 林 雄一郎¹, 北坂 孝幸², 小田 昌宏¹, 伊藤 雅昭³, 竹下 修由³, 森 健策^{1,4,5}

¹名古屋大学大学院情報学研究科,²愛知工業大学情報科学部,³国立がん研究センター東病院,⁴名古屋大学情報基盤 センター,⁵国立情報学研究所医療ビッグデータ研究センター

本稿では、腹腔鏡手術動画像に対して、深層学習を用い出血領域のセグメンテーションを自動的に行う手法について検討する. 出血領域のセグメンテーション結果は、内視鏡手術の安全性を高める研究において利用価値が高い.しかし、手術映像中にお ける出血領域を手動でセグメンテーションするのは困難であるため、効率的にセグメンテーションを行う手法が求められてい る.本研究では、深層学習を用いた出血領域の自動セグメンテーションを行う.出血領域は画像全体に対して小領域であるため、 出血領域を含む局所領域を切り出したデータで学習したモデル(局所モデル)と、広範囲を切り出したデータで学習したモデ ル(広域モデル)を用意し、広域モデルの推定結果に局所モデルの推定結果を統合することでセグメンテーション結果を得る. 実験により、腹腔鏡動画像における微小な出血領域の自動抽出には、局所領域に着目することが有効であるという知見が得ら れた.

OP4-14 血管仮想操作のための脳血管描画方法の検討

○田中 康太, 篠原 寿広, 中迫 昇 近畿大学大学院生物理工学研究科

現代の日本人の主な死因の1つに脳血管疾患がある. 脳血管構造は複雑であるため3次元で可視化する際に死角ができ,手前の血管に隠れる血管は観察しにくい. そこで,著者らは,脳血管をより直感的に観察できるようにすることを目的に,注目する血管を隠す血管を仮想的に操作し,注目する血管を観察できるようにする血管仮想操作を提案している. 本稿では,血管 仮想操作を実現するための脳血管描画方法を提案する. 具体的には,はじめに Computed Tomography Angiography (CTA) 画像から抽出した脳血管をサーフェイスレンダリング法で描画する. つぎに,注目血管を隠す血管に対し,同じ CTA 画像から推 定した血管の心線データ,すなわち,血管の心線位置情報,半径情報を用いて,チューブ状の簡易血管描画に切り替え,心線データを操作することによって,血管の仮想操作を実現する.実際の CTA 画像から抽出された脳血管および推定した血管の心線データを用いて,本描画手法の有効性の一端を確認した.

OP4-15 転移学習を用いた腹部 thick-slice CT 像における多臓器領域の自動抽出の初期検討

○申 忱¹, ロスホルガー¹, 林 雄一郎¹, 小田 紘久¹, 小田 昌宏¹, 三澤 一成², 森 健策¹³ ¹名古屋大学大学院情報学研究科,²愛知県がんセンター中央病院,³国立情報学研究所医療ビッグデータ研究センター

本稿では、転移学習を用いた腹部 thick-slice CT 像における多臓器領域の自動抽出に関して検討する. 臓器領域の自動抽出は 医用画像処理において重要な役割を果たしている. 近年,スライス厚が 0.5mm 程度の thin-slice CT 像を用いた臓器領域の自動 抽出が多く行われているが,スライス厚が 5mm 程度の thick-slice CT 像も医用現場において多く利用されている. そのため, スライス厚が厚い CT 像においても臓器領域の自動抽出ができれば有用である. しかし,CT 像の体軸方向の解像度が低いため, 従来の 3 次元 fully convolutional networks (FCNs) を用いた thick-slice CT 像における臓器領域の自動抽出手法をそのまま適用 することは困難である. 本研究では、thin-slice CT 像の学習済みモデルを用いて転移学習を行うことにより、thick-slice CT 像 における腹部多臓器の自動抽出を行う. 実験により、thick-slice CT 像からも腹部多臓器を抽出することが可能であることを確 認した.

OP4-16 歯科的個人識別のための Relation Networks for Object Detection を用いた歯科用 Cone-beam CT における歯牙の検出

○沓名 将太¹, 村松千左子², 林 達郎³, 周 向栄², 西山 航⁴, 有地 淑子⁵, 原 武史², 勝又 明敏⁴, 有地榮一郎⁵, 藤田 広志²

¹岐阜大学大学院自然科学技術研究科知能理工学専攻知能情報学領域、²岐阜大学工学部電気電子・情報工学科情報コース, ³メディア株式会社,⁴朝日大学歯学部口腔病態医療学講座放射線学分野,⁵愛知学院大学歯学部歯科放射線学講座

地震や津波などの大災害時には、多数の身元不明の遺体が生じる.その身元確認のために歯科情報が用いられることがあ り、歯科的個人識別と呼ぶ、歯科的個人識別にはデンタルチャートと呼ばれる用紙に遺体の口腔内の所見を記録する必要があ るが、一般の歯科医師も記録に協力する際、遺体を対象とした記録の経験に乏しいため、記録ミスや精神的負担が危惧される. そのため X 線写真から自動的にデンタルチャートの作成に必要な情報を取得する手法の開発が望まれている.本研究では、歯 科用 Cone- beam CT を対象とし、情報の取得の前段階として画像上の歯牙領域を検出する.検出ネットワークとして Relation Networks for Object Detection を使用する.オブジェクト同士の関係性を学習できるとされ、歯列の順序が歯種を判別する際 の大きな要素であるため、本研究に有効であると考えられる.ひとつの症例に対し、CT スライスにおける検出ネットワークか らの検出結果を統合することにより検出率の向上を図る.

座長: 畑中 裕司(滋賀県立大学)

OP4-17 時間 – 周波数解析と CNN を用いた呼吸音の自動分類手法の開発 ○南 弘毅¹, 陸 慧敏¹, 金 享燮¹, 間普 真吾², 平野 靖², 木戸 尚治² ¹九州工業大学、²山口大学

呼吸器疾患の診断方法として、聴診器を用いた呼吸音の聴診が簡便で安全な診断方法として長年用いられてきた、一方、聴 診音の診断には定量的な評価基準がないため、医師の診断支援を行うシステムの開発が必要である。そこで本論文では、畳み 込みニューラルネットワーク(CNN: Convolutional Neural Network)を用いた呼吸音の自動分類手法の提案を行う、主な手 法の流れとしては、呼吸音データに対して短時間フーリエ変換と連続ウェーブレット変換を適用し、スペクトログラム画像お よびスカログラム画像を生成する。その後、生成した画像を用いて CNN による正常呼吸音、連続性ラ音、断続性ラ音の識別を 行う、提案手法を呼吸音データ22 症例に適用した結果、Accuracy=79.44[%]、AUC=0.942 を得た。

OP4-18 HE 染色標本画像と診断テキストデータを併用する免疫染色パターン推定

○橋本 典明¹, 横田 達也¹, 中黒 匡人², 高野 桂², 中村 栄男², 竹内 一郎^{13,4}, 本谷 秀堅¹ ¹名古屋工業大学, ²名古屋大学医学部附属病院, ³理化学研究所, ⁴物質・材料研究機構

悪性リンパ腫は血液細胞に由来するがんで、白血球の1種であるリンパ球ががん化した病気である.これらの病気は多くの サブタイプに細分され、病理診断ではヘマトキシリン・エオジン(HE)染色標本を観察したのち複数の免疫染色標本を観察する ことで最終的な病名の決定が行われる.病理画像解析技術を用いた悪性リンパ腫の診断支援応用として HE 染色標本画像から のサブタイプ分類などが考えられるが、実際の診断においてもサブタイプ分類には複数の免疫染色の施行が必要であることか ら、HE 染色標本画像からの病名の同定は困難であることが予想される.本研究では、病理診断テキストデータが持つ免疫染色 情報を解析し、HE 染色画像と組合わせることにより、各症例の HE 染色標本画像に対するサブタイプの候補群を推定し、病気 を一意に決定するための免疫染色の組み合わせを求める手法を提案する.

OP4-19 舌の表面特徴に基づく機械学習を用いた舌苔分布推定手法の検討

○吉村裕一郎¹, 太田 雄大², Bochko Vladmir³, Falt Pauli⁴, Hauta-Kasari Markku³, 並木 隆雄⁵, 中口 俊哉¹

¹千葉大学フロンティア医工学センター,²千葉大学大学院融合理工学府,³ヴァーサ大学,⁴東フィンランド大学, ⁵千葉大学医学部和漢診療科

近年コンピュータ支援による定量的な舌診断に関する研究が進められている. 舌診は漢方の診断法の一種であり, 舌の色彩, 形状, 湿潤, 舌苔の状態等から患者の体調を診断するが, 計測の難しさから舌苔を解析する研究は少ない. そこで, 本研究で は RGB 画像からの機械学習を用いた舌苔推定を試みた. 具体的には, 舌苔に関する指標である舌苔の物理量と被覆領域を推定 した. 教師データとしては, 先行研究で舌苔計測における有効性が示された, 蛍光撮影画像を用いる. 回帰型学習器を用いて 蛍光量を推定し, 蛍光量と物理量との関係式から物理量を推定した. また被覆領域推定においては, 分類型学習器を用いて蛍 光撮影画像から小領域単位で被覆有無のラベルを作成した. 実験では学習器として Random Forest と深層学習を用いて性能を 比較評価した. 13 名の舌画像から 2725 サンプルを抽出し交差検証を行った結果, 通常撮影された RGB 画像からの舌苔推定の 有効性が示唆された.

OP4-20 肺がん体幹部定位放射線治療における3次元計画CT画像上の肉眼的腫瘍体積のDense V-net 自動抽出法

○中野 里彩¹, 有村 秀孝², Mohammad Haekal³, 大賀 才路⁴

¹九州大学大学院医学系学府保健学専攻,²九州大学大学院医学研究院保健学部門,³Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung,⁴九州大学大学院医学研究院臨床放射線科学

Automated segmentation of gross tumor volumes (GTVs) are demanded to reduce intra- and inter-observer variabilities in GTV contours, which affect to treatment dose distributions. Hence, we attempted to develop an automated approach using a dense V-Net deep learning, which can segment small structures.

Datasets of 3D planning CT images and GTV contours for 194 lung cancer cases determined by radiation oncologists were fed into the dense V-Net as input and teacher data, respectively.

The proposed approach achieved an average Dice's similarity coefficient (DSC) of 0.792. The average DSCs for solid and part solid GGO types were 0.807 and 0.782, respectively.

The proposed approach could be useful to delineate the various types of GTVs in treatment planning.

OP4-21 半教師あり学習を用いた根拠提示可能なメラノーマ識別

○村林 誠也, 彌冨 仁

法政大学大学院理工学研究科

診断が難しい悪性度の高い皮膚がんであるメラノーマ(悪性黒色腫)の早期発見と高精度な診断実現のため、画像認識によ る自動診断手法の開発が行われている.近年の深層学習を用いた手法は、複雑な特徴量抽出・設計を伴うことなく専門医に匹 敵する高い識別精度を実現しているが、識別根拠を提示できず信頼性の面で改善の余地が残されていた.我々はこれまでメラ ノーマ自動診断における識別根拠の提示について一連の検討を行い一定の成果を実現したが、臨床現場で利用される指標に基 づく可読性の高い教師データは作成を医師に依頼する必要からコストが高く、それに起因する予測器の過学習、精度面での改 善の必要性が残されていた.そこで本研究では、診断指標予測の精度向上を目的として、深層学習技術をベースに非ラベルデー タの知識移転・共有による改良を検討した.また、システム注目領域の推定により得られた視覚的表示との整合性についても 比較、評価した.

OP4-22 転移性肝がん検出のための Conditional GAN による学習画像生成

○池田 裕亮¹, 道満 恵介¹, 目加田慶人¹, 縄野 繁²

1中京大学大学院工学研究科,2国際医療福祉大学三田病院

現在, 肝がんの読影は医師の目視で行われている. 医師の負担を軽減するために機械学習による読影支援が望まれているが 学習のために必要な多様な症例画像を収集することは困難である. そのため, 健常症例に病変を埋め込む症例画像生成が行わ れている. 従来研究である DCGAN を用いた人工病変画像生成手法では特徴が異なる病変の画像を混ぜて学習に使用した. そ のため異なる特徴が混ざった不自然な病変画像を生成してしまう問題があった.

本研究では辺縁部の病変画像と非辺縁部の病変画像のラベルを付与した学習データを用いた Conditional GAN による画像生成法を提案する.生成した病変画像を CNN で構築した肝がん検出器の学習に用い,学習に使用していない 20 症例を適用した.実験の結果,従来手法より検出精度が向上し本手法の有効性を確認した.

OP4-23 Deep CNN における分類器のアテンションメカニズムを利用した CT 画像からの乳腺領域の自動 抽出法

○山岸 誠也¹, 周 向栄¹, 原 武史¹, 加賀 徹郎², 加藤 博基², 松尾 政之², 藤田 広志¹ ¹岐阜大学大学院自然科学技術研究科知能理工学専攻,²岐阜大学医学部附属病院放射線科

本研究の目的は、様々な検査の目的で撮影された体幹部 CT 画像から乳腺領域を抽出し、空間的な分布を把握することである. 深層学習で構築した乳腺領域のカテゴリ分類器の Attention Map を利用して、乳腺領域の自動抽出を行う.分類器の学習とテストには、それぞれ 80 症例と 16 症例を利用する.3 次元 CT 画像から切り出した乳房領域において、乳頭方向を回転軸とする 断面画像を1度ごとに生成する.Attention Map は学習用の 80 症例に基づいて作成される.角度ごとに定められた Attention Map を2 次元で作成し、Attention Map 上で画素値が 122 以上の領域を乳腺領域の抽出結果とする.Attention Map による抽 出結果と手動で作成した乳腺領域の 16 症例から求めた平均 Dice 値は 49.6% であった.Dice 値の低い症例は乳腺領域が散在し ていることを確認した.Attention Map は乳腺領域の空間的な分布を特定できると考えられるため、乳腺領域の確率アトラス の作成に利用できる可能性がある.

OP4-24 Automated approach for estimation of sizes of lung cancer on planning CT images using deep learning with non-negative matrix factorization

○ Ma Zhuangfei¹, Arimura Hidetaka², Nakano Risa¹, Yoshitake Tadamasa², Shioyama Yoshiyuki²

¹Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan, ²Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan

Assessment of the change in tumor volume is a substantial factor in the clinical evaluation of cancer treatment. However, it is tedious and difficult for medical doctors to manually measure lung tumor longest diameters (\geq 10mm) in three-dimensional computed tomography (CT) images, and evaluate tumor responses such as complete response and progressive disease. We have developed an automated approach to estimate lung cancer sizes on planning CT images using a deep learning with non-negative matrix factorization (NMF). The longest, middle and shortest diameters of lung cancer were estimated by the largest, middle and smallest standard deviations in the coefficient matrices in NMF, respectively. The errors of estimated lung cancer sizes in the longest, middle and shortest diameters were 17.53%, 21.14% and 20.58%. The NMF would have a potential for estimating the longest diameters in the lung cancer sizes.

メイン会場(レセプションホール1)

ミニシンポジウム2

10:40~11:30 MS2「生命機能イメージングの革新:今後の課題と展望」

座長:清末 優子(理化学研究所)

末次 志郎 (奈良先端科学技術大学院大学)

近年,生命科学研究における各種イメージング技術が革新的に進歩し,得られるデータの質と量が飛躍的に向上した.これに伴い,生命科学の異なる分野において共通して,データを解析する手段の刷新を迫られている.この課題を解決するために,JST CREST 情報計測領域に参画し,ディープラーニングをはじめとする最近の情報学の手法を導入することで分子や細胞の機能をデータから読み解く技術の開発を目指している3チームの研究を紹介する.生体分子内部の構造をとらえるクライオ電子顕微鏡法,分子の3次元構造の経時変化をとらえる高速原子間力顕微鏡(高速 AFM),及び,生体内で活動する細胞の3次元動態を高時空間分解能でとらえる格子光シート顕微鏡まで,幅広いスケールにまたがる生命機能イメージング技術について議論する.

MS2-1 イントロ: JST CREST 情報計測領域について

○清末 優子 理化学研究所

MS2-2 クライオ電子顕微鏡法による生体分子の構造解析

○光岡 薫

大阪大学

最近,クライオ電子顕微鏡法による生体高分子やその複合体の構造解析の分解能が著しく向上し,X線結晶構造解析やNMR と並んで,原子モデルを決定できる構造解析法の1つとして利用が進んでいる。その単粒子クライオ電子顕微鏡法について, 実際の解析例を含めて簡単に紹介する。さらに,同様の高分解能構造解析を細胞内にある生体高分子に応用することができる クライオ電子線トモグラフィー法とサブトモグラム平均化についても述べる。

MS2-3 高速原子間力顕微鏡による生体分子イメージングと機械学習・データ同化

○高田 彰二

京都大学

高速原子間力顕微鏡(高速 AFM)は、わが国で開発され、単一のタンパク質や DNA 分子の3次元構造の経時変化を観察で きる唯一の計測技術です.中程度の分解能をもつ高速 AFM 計測から高精度情報を得るために情報科学との融合研究が必要です. 我々は、データ同化と分子シミュレーション法によって、高速 AFM 計測からの生体分子の高精度4次元構造解析法を開発し ています.本講演では、機械学習による AFM 画像からの超解像度化、データ同化による高速 AFM 計測と分子シミュレーショ ンの融合の取り組みを紹介します.

MS2-4 細胞活動の高精度 3D 計測と画像情報解析の次世代化に向けて

○清末 優子 理化学研究所

我々が運用する「格子光シート顕微鏡」は、2014年に初めて発表された高解像型ライトシート顕微鏡で、三次元的な細胞活動をかつてない時空間分解能で計測することができる。本技術により得られる細胞情報が質的にも量的にも劇的に向上したが、 従来の技術のみでは解析が不可能となり、情報科学との高度融合によって画像とデータの解析手法を次世代化する必要が生じた。本講演では格子光シート顕微鏡の実際と、情報科学との融合における我々の取り組みを紹介する。

ランチョンセミナー

_____11:50 ~ 12:40 LS「DGX-2 によって加速されるメディカル AI 開発のための データ構造化プラットフォーム |

座長:中田 典生 (東京慈恵会医科大学)

LS DGX-2 によって加速されるメディカル AI 開発のためのデータ構造化プラットフォーム

○小林 和馬

国立研究開発法人国立がん研究センター研究所 がん分子修飾制御学分野

人工知能技術を用いた臨床支援システムを確立することは、個別化された医療に寄与するのみならず、高齢化で逼迫する医療の持続可能性からも急務である。国立がんセンター中央病院・研究所におけるプロジェクトでは、臨床データを構造化するためのプラットフォームを構築すると共に、メディカル AI 開発を加速するための NVIDIA DGX-2 を本邦の医療機関として先駆けて導入した。その最新の成果について紹介する。

特別講演2

13:00~13:50 SL2「ネオコグニトロンと畳み込みニューラルネットワーク」

座長:尾川 浩一(法政大学/JAMIT 学会長)

SL2 ネオコグニトロンと畳み込みニューラルネットワーク

○福島 邦彦

ファジィシステム研究所 特別研究員

高いパターン認識能力を学習によって獲得することができる手法として,深層学習(deep learning)や CNN (convolutional neural network)が最近注目を集めている.福島が1979年に発表したネオコグニトロンもそのような階層型多層神経回路の一種で,文字認識をはじめとする視覚パターン認識に高い能力を発揮する.ネオコグニトロンの歴史は古いが,現在に至るまで種々の改良が加えられ発展を続けている.現在広く用いられている deep CNN との相違点に重点を置きながら,最近のネオコグニトロンを紹介する.

ネオコグニトロンの考え方を更に発展させた種々のシステム,例えば,部分的に遮蔽されたパターンを認識する神経回路な ども開発されている. top-down 型の信号の流れを導入した選択的注意のモデルでは,複数のパターンに順番に注意を向けなが ら,パターンを切り出し認識することができる.

前半(口演):メイン会場(レセプションホール1)

後半:ポスター会場(会議室3・4)

一般演題セッション5

13:50 ~ 15:20 **OP5**

「イメージング / 画質改善」

座長: 菅 幹生(千葉大学)

OP5-01 非ランダム間引き収集による MR 圧縮センシングの深層学習再構成

○佐藤 佑紀, 伊藤 聡志

宇都宮大学 大学院地域創生科学研究科 工農総合科学専攻

MRI は撮像高速化が課題であり、近年では圧縮センシング (Compressed Sensing: CS) を用いた高速撮像が利用され始めている. CS はサンプリングのランダム性による画質変動、反復処理に伴う計算時間の大きさなどの課題がある. ランダム性による 画質変動という課題に対し我々は、CS における画質変動を抑制する方法として信号収集を規則的に行う非ランダムサンプリン グの検討を行ってきた.

本研究では再構成の高速化と再構成像の高品質化を目的とし、非ランダムサンプリングによる CS 再構成に畳み込みニュー ラルネットワークを利用する方法について検討を行った. その結果, 信号間引きによるアーティファクトをほぼ除去したラン ダム間引きに匹敵する良好な再生像を得ることができた. 本研究により深層学習の利用によって圧縮センシングの間引き法に 関して新たな可能性が示された.

OP5-02 CT 画像再構成におけるメタルアーティファクト除去の新手法

○千北 一期, 工藤 博幸, 森 和希, 金 鎔采

筑波大学大学院 システム情報工学研究科

CT 画像再構成における未解決問題としてメタルアーティファクトの除去がある.通常のメタルアーティファクトの除去 は、まず予備的な画像再構成を行い吸収率が大きい金属部分を同定して(第1ステップ)、金属部位を通過する投影データ を補間で埋めて画像再構成を行う(第2ステップ)二段階法が商用 CT 装置では実用されている. 本研究では全く新しい上 記の 1, 2 ステップを統合した新手法を提案する.提案手法は Kudo らが提案いたフォルトトレラント画像再構成法 (SPIE, Optics+Photonics, 2016)に基づいている. 金属部位を通過する投影データをビームハードニングや過度な Poisson 雑音の影響 を受けた異常データとして捉え,異常データの除外に有効な L1 ノルムを評価関数として画像再構成を行う.通常の CT 画像 再構成では,評価関数として最小2 乗誤差が使用されるが,最小2 乗誤差は異常データに敏感で金属部位の影響を受けやすく ストリークアーティファクトが強く発生する. そこで、L1 ノルム誤差を評価関数に使用して金属通過する異常投影データの場 所を同定してデータフィッティングから除外する.更に、除外した投影データの情報をうまく埋める効果(従来手法の補間に 相当)を持たせるためのトータルバリエーション(TV)を正則化項として加えた式を最終的な評価関数として画像再構成を行う. このように,単一の最小化問題を解くだけで従来手法の二段階を一つのステップに統合できる点がキーである.評価関数の最 小化手法としては、上記の評価関数を数学的に厳密に最小化でき更に収束速度が早い Row-Action 型の近接スプリッティング に基づく反復手法を構築して使用した. 歯科用 CT 実画像と腹部 CT 実画像を用いたシミュレーション実験を行った結果(ビー ムハードニングと Poisson 雑音を考慮して計測過程を正しくシミュレーションしたデータを使用),本手法は従来のメタルアー ティファクト除去手法に匹敵する(またはそれ以上の)性能を有することが示され、メタルアーティファクト問題に対する新し い方向性の枠組みであると考える.

OP5-03 2D U-Net の畳み込みネットワークを用いた隣接スライスからの CT 画像再構成

○武 淑ケイ¹, 中尾 恵¹, 今西 勁峰², 中村 光宏³, 松田 哲也¹
 ¹京都大学情報学研究科, ²イーグロース株式会社, ³京都大学大学院医学研究科

Usually, Computed Tomography (CT) image reconstruction refers to a process of creating tomographic images from X-ray projection at various directions. To reduce the radiation dose, many algorithms were proposed to improve the reconstruction process. Generally, they can be divided into two categories: analytical and iterative approaches. Analytical methods are difficult to achieve high accuracy, whereas iterative algorithms suffer from high computation cost. To solve the problem, we apply 2D U-Net convolutional networks to the CT image reconstruction. In contrast to the conventional methods, the proposed approach realizes the reconstruction from the already created CT slices, not the X-ray projection. Using the U-Net, we can create a new middle slice between two adjacent CT slices. This means that we can decrease the number of CT slices to reduce the radiation. We compared the proposed algorithm with interpolation method. Experiment results show that the U-Net based reconstruction totally outperforms the linear interpolation.

OP5-04 TV 正則化と辞書学習を用いた OS-EM 法における PET 画像再構成

○奥村 直裕, 庄野 逸

電気通信大学情報理工学研究科

陽電子放射撮影(Positron Emission Tomography:PET)スキャンは、癌の発見などの病理診断で重要な役割を果たす.PET スキャンでは、トレーサと呼ばれる陽電子を放射する放射性物質を患者に注入し、サイノグラムと呼ばれる観測データが得る. PET 画像は、このサイノグラムから元の空間でのトレーサ濃度を再構成することで得られる。鮮明な PET 画像を得るためには、 S/N 比をあげる必要があるが、被曝量を増加させないことも重要であり、適切なノイズ除去手段の開発は重要である。本研究 ではこの問題に対して、2つのノイズ除去手法を組み合わせた手法を適用した。一つは、サイノグラム表現に対するノイズ除去で、 ここでは辞書学習を用いた手法を適用した。もう一つは、実画像表現に対するノイズ除去で、これには正則化アプローチに基 づいた手法を適用した。このような2種類のノイズ除去手法を組合わせたアプローチは、従来手法と比較して有効であること がわかった。

OP5-05 拡散尖度撮像法のパラメタ推定のための生成型Q空間学習における最適雑音量の自動決定に向けて

○内濱 良介,河野智奈美,佐々木 公,増谷 佳孝 広島市立大学

我々は、深層ニューラルネットワークの学習に合成データのみを用いる生成型Q空間学習による拡散 MRI パラメタ推定の 研究を行っている.これまでに学習用の合成データと推定対象のデータの雑音量が同等の場合、最も頑健な推定が可能である ことが実験により示唆されているが、実画像の雑音量を測定することは容易ではない.そこで本研究では、拡散尖度撮像法 (DKI) のパラメタ推定を例として、与えられた実画像に対して最適な雑音量の学習データを決定するための方法を検討した.具体的 には、学習用の合成データおよび DKI の実画像について、それぞれ様々な雑音量のものを用いて以下の実験を行った.まず、 実画像の生体領域と空気領域の領域分割の後、両者の信号値の統計により雑音量の推定を試みた.また、推定結果の統計につ いて最小二乗法との比較を行った.これらの結果より、与えられた実画像に対する最適な学習データ決定の可能性が示唆された.

OP5-06 カラー腹腔鏡画像診断のためのコントラスト強調と SRCNN 超解像処理の最適条件に関する考察

○河畑 則文¹, 中口 俊哉²

1東京理科大学理工学部、2千葉大学フロンティア医工学センター

医用画像診断におけるコントラスト処理は、各部位の領域を強調させ、異常が無いかを分類・認識することを目的としてい る. これらの処理の多くは、コントラスト強調に加えて、超解像処理を用いて画像解像度を上げてから分類・認識することで 精度が上がるとされる.一方で、医用画像分野における深層学習の普及により、超解像処理においても精度が上がってきたが、 多種多様なパラメータが存在し、それらの調整によっては十分な性能が発揮されるとは限らないことがある.そのため、どの パラメータをどのように調整すればよいかを実験により検証し、実用化する必要がある.そこで、本研究では、カラー腹腔鏡 画像のコントラスト強調と超解像処理の関係について、超解像に特化した深層畳み込みニューラルネットワークである SRCNN に基づいた waifu2x-caffe (UpResNet10)で実験を行い、最終的に PSNR を測定し、どの程度、精度よく画像が生成できている のかを検証した.

座長: 滝沢 穂高(筑波大学)

OP5-07 動作計測による顔の粘弾性シミュレーション

○黒田 嘉宏¹,加藤 弘樹¹,谷川 千尋²³,吉元 俊輔¹,大城 理¹,高田 健治²⁴
¹大阪大学 大学院基礎工学研究科,²大阪大学 国際医工情報センター,³大阪大学 大学院歯学研究科,⁴シンガポール 国立大学

顔の動きは感情を身体的に表出することから、コミュニケーションにおいて重要な役割を担う. 生体組織のもつ粘弾性的な 性質は年齢や傷によって変化し,動きに大きく影響する.しかし,従来は顔の動きの表現に着目した医療支援システムは少ない. 本研究では,加齢や手術による顔の運動様態の変化を表現することを目的として,顔の粘弾性特性の計測を行うとともに粘弾 性モデルに基づく顔の変形シミュレーションを再現するシステムを構築した.実際に計測した運動を元に,顔の運動する様子 を計算して表現することを可能とする.発表では,本研究における粘弾性モデルおよびシミュレーション結果について報告する.

OP5-08 対称性解析に基づく3次元データから顔の対称面検出

○細木 大祐¹,陸 慧敏¹,金 亨燮¹,木村菜美子²,大河内孝子²,野添 悦郎²,中村 典史² ¹九州工業大学,²鹿児島大学

ロ唇裂とは、胎児の顔面が癒合する過程において唇が完全に形成されない場合に生じる先天異常で、日本においては約500 人に1人の割合で発生する.左右対称な外鼻を形成することを目的として治療が行われているが、医師の主観に依存した判断 基準に基づいているため、手術部位の対称度合を定量的に判断する必要がある.本論文では、手術部位の対称性を解析するた めの顔の対称基準となる基準面を検出する手法を提案する.提案法では被験者の顔を撮影した3次元点群データに対し、顔器 官を点として検出したのち、口唇裂による形状変化の影響が顕著とされる上唇から鼻尖点までの領域を除外した鏡像反転点群 との位置合わせを行う.次に、元の点群内の1点と鏡像反転像内の対応点の間を垂直2等分する平面を求めることにより対称 基準面を設定する.提案法を実3次元点群データに適用した結果、良好な精度で対象基準面を検出することができた.

OP5-09 放射光 CT を用いた肺 3 次元ミクロ血管解析

○島谷 崚平¹, 斉藤くるみ¹, 泓田 彰汰¹, 河田 佳樹², 仁木 登², 梅谷 啓二³, 阪井 宏彰⁴, 中野 恭幸⁵, 岡本 俊宏⁶, 伊藤 春海⁷

¹徳島大学大学院先端技術科学教育部システム創生工学専攻,²徳島大学大学院社会産業理工学研究部,³(財)高輝 度光科学研究センター,⁴兵庫県立尼崎総合医療センター,⁵滋賀医科大学,⁶Cleveland Clinic Heart and Vascular Institute,⁷福井大学 高エネルギー医学研究センター

次世代の画像診断に向けてミクロ形態を観察して疾患の極初期段階を診断することは極めて重要な課題である.特に,肺の 正常形態,極早期の疾患病態のミクロレベルでの画像化とその定量的解析の実現は,未知分野である肺ミクロ形態の画像診断 学を拓き,次世代の胸部画像診断への貢献が期待できる.従来,末梢肺野構造をより正確に理解するために,肺小葉の解剖と それに基づいた病態解析が行われてきた.しかし,一断面の画像で解析を行っているため立体構造の把握が困難であるとされ ている.本研究では,高輝度放射光CTで撮影しその画像から気管支系,血管系の微細構造を3次元的に可視化し解析をする.

OP5-10 CT 画像と顎運動情報を用いた VR 咬合器の開発

○伊藤 崇弘, 重本 修伺, 伊藤 光彦, 木原 琢也, 井川 知子, 重田 優子, 小川 匠 鶴見大学歯学部クラウンブリッジ補綴学講座

歯科臨床においては、咬合および咀嚼機能を正しく検査、診断することは非常に重要である.

これらは顎口腔系の一部の形態と機能を単純化して再現する咬合器を用いて評価されることが一般的である.しかし咬合器 は患者の形態や, 顎運動を直線近似的に表現するもので,全ての患者情報を再現するものではない.そこで我々は,患者個々 の形態と機能をより正確に再現できる VR 咬合器(Virtural Reality Articulator)の開発を進めている.VR 咬合器は CT 画像 から得られる形態情報と, 顎運動測定により得られる機能情報を同一座標系にて統合することで,従来は観察する手段のなかっ た患者の実際の顎口腔系の形態と機能を仮想空間上で可視化することができる.

今回, VR 咬合器を用いて顎変形性関節症症例の術前術中の顎位の妥当性や機能評価に応用した結果,高い有用性が認められたので報告する.

OP5-11 グラフ畳み込みニューラルネットワークを用いた腹部動脈血管名自動命名の初期検討

○日比 裕太¹,林 雄一郎¹,北坂 孝幸²,伊東 隼人¹,小田 昌宏¹,三澤 一成³,森 健策^{1,4,5} ¹名古屋大学大学院情報学研究科,²愛知工業大学情報科学部,³愛知県がんセンター,⁴名古屋大学情報基盤センター, ⁵国立情報学研究所 医療ビッグデータ研究センター

本稿では、3次元腹部 CT 像から抽出された腹部動脈領域に対してグラフ畳み込みニューラルネットワークを用いた血管名自動命名についての検討を行ったので報告する。血管は構造が複雑で個人差が大きいため、その構造の把握は困難である。血管 名を自動命名することにより医師が外科手術の際に患者の血管構造を把握する助けとなり、医師の負担を軽減することができ る。そのため、これまで腹部動脈領域に対して機械学習を用いた血管名自動命名を行う手法がいくつか提案されてきた。また、 近年ではグラフ構造に対する機械学習が盛んに行われており、その有用性が示されている。そこで本稿では、血管構造をグラ フ構造と捉え、血管が持つ太さや長さ、腹部臓器との位置関係などを特徴量としてグラフ畳み込みニューラルネットワークを 用いた機械学習による血管名自動命名について検討した。実験の結果、平均 85.3%の精度で命名することができた。

OP5-12 Btrfly型CAEを用いた骨シンチグラムにおける骨格認識処理の改良

○星野 ゆり¹, 斉藤 篤¹, 大崎 洋充², 吉田 敦史³, 東山 滋明³, 河邉 譲治³, 清水 昭伸¹ ¹東京農工大学 大学院 工学研究院, ²群馬県立県民健康科学大学 大学院 診療放射線学研究科, ³大阪市立大学 医学部附属病院核医学科

骨シンチグラム上の骨格認識処理は、骨の SN 比が低いこと、高濃度の異常集積により濃度値が正常と大きく異なる場合 が良くあること、骨の大きさや形状の個人差が大きいなどの問題により、しばしば処理に失敗する.本報告では、Btrfly 型の Convolutional AutoEncoder (CAE)を用いた骨格認識処理の改良について報告する.提案手法では、従来の手法により認識され た前後面の骨格ラベルと確率マップの画像を入力とし、正解ラベルを教師ラベルとして Btrfly 型の CAE の学習を行う.この学 習済みネットワークに未知症例に対する従来の骨格認識ラベル(前後面)を入力することで、ラベルに含まれる誤りを訂正する. 本稿では、提案手法を実際の 246 症例に対する従来手法による骨格認識ラベルに適用し、性能を評価した結果について報告する. 評価値には正解ラベルと改良された認識結果の間の Dice score に加え、正解ラベルと認識結果の連結成分数や穴の数の差を用 いることで、提案手法の有効性や限界について議論する.

OP5-13 Mask R-CNN を用いた小児胸部 X 線画像における肺領域の自動抽出

○魚住 春日¹, 松原 尚輝¹, 寺本 篤司¹, 大森あゆみ², 本元 強², 河野 達夫³, 斎藤 邦明¹, 藤田 広志⁴

¹藤田医科大学大学院 保健学研究科,²茨城県立こども病院,³東京都立小児総合医療センター 診療放射線科,⁴岐阜大学 工学部 電気電子・情報工学科 情報コース

[目的]

診断に高い専門性が必要な小児医療では、小児科医が少ないため、医師にかかる大きな負担や見逃し、誤診が課題となっている。本研究では小児に好発する肺炎などの胸部疾患の診断を支援することを目的に、解析領域である肺野の抽出を行なった結果について報告する。肺野の抽出には人工知能の一種で、物体検出と領域抽出を同時に高い精度で行うことができる Mask RCNN を用いて行う.

[方法]

NIH が公開した 'ChestX-ray8' から小児と成人の胸部 X 線画像を選択し, 肺野領域をラベル付けすることで 1000 枚の学習 データを作成した. Mask RCNN に 1000 ペアの胸部 X 線画像とラベル画像の学習データを用いて学習を行なった. [結果]

学習に用いていない0~15歳の正常8枚, 肺炎と診断された17枚の胸部X線画像を用いて, 画像の類似度を表す Jaccard index, Dice index で評価した結果, 共に90% 以上となった.

OP5-14 深層学習を用いた非造影 CT 画像からの複数臓器領域の抽出に関する検討

〇林 雄一郎¹, 申 1, Roth Holger¹, 小田 昌宏¹, 三澤 一成², 森 健策^{1,3}

¹名古屋大学大学院情報学研究科,²愛知県がんセンター中央病院消化器外科,³国立情報学研究所医療ビッグデータ研究 センター

本稿では深層学習を用いた非造影 CT 画像からの複数臓器領域の抽出について述べる. 医用画像解析において医用画像から 人体の解剖学的構造を自動認識することは重要な処理である. 我々はこれまで深層学習を用いて造影 CT 画像から複数の臓器 領域を自動抽出する研究を行ってきた. 医療現場では, 非造影の CT 画像も数多く使用されているため, 非造影の CT 画像か らも複数臓器領域を自動抽出することができれば非常に有用である. 本研究では, 従来研究と同様に 3D U-net を用いて非造影 CT 画像から複数臓器領域を自動抽出する. 学習の際に, 従来研究において造影 CT 画像を用いて学習したモデルを初期値とし, 非造影 CT 画像を用いてファインチューニングを行う. 実験の結果, ファインチューニングした 3D U-net により非造影 CT 画 像から複数臓器領域を抽出できることを確認した. OP5-15 顎口腔領域の CT 画像における金属アーチファクト低減を用いた筋骨格セグメンテーション - 金属アーチファクトのシミュレーションによる精度検証 -

〇森谷 友香¹, Abdolali Fatemeh², 阪本 充輝¹, 大竹 義人¹, 重田 優子³, 井川 知子³, 三島 章³, 小川 匠³, 佐藤 嘉伸¹

¹奈良先端科学技術大学院大学 先端科学技術研究科,²Department of Radiology and Diagnostic Imaging at University of Alberta,³鶴見大学歯学部

顎口腔機能異常の一つである顎変形症は、複合的な理由により生じる疾患であることや、手術により急な位置変化を生じた 顎骨には術前の状態に戻ろうとする性質があることから正確な診断および手術計画において課題がある.このため、筋骨格構 造の自動セグメンテーションによる診断や手術計画の支援が求められている.しかし、CTの撮影範囲内に金属製の歯科充填物 等が存在する場合、画像上には金属アーチファクトが生じ、筋骨格構造の認識が困難である.我々は、金属アーチファクトの ある CT 画像において、筋骨格セグメンテーションの精度を向上させる研究を進めてきた.しかし、これまではアーチファク ト低減後の画像から作成した正解データを用いて精度評価を行っており、真に正確な評価ができていないことが問題であった. そこで本研究では、金属アーチファクトをシミュレーションして得られた CT 画像によって精度検証実験を行ったため、その 結果を報告する.

「CAD/臨床応用」

座長:野村 行弘(東京大学)

OP5-16 Faster R-CNN による肝臓がん候補領域の抽出法

○古月 夢奇¹,陸 慧敏¹,金 亨燮¹,平野 靖²,木戸 尚治²,田辺 昌寛²
¹九州工業大学,²山口大学

近年, 肝臓がんは男女計で世界第4位の死亡者数となっている. 肝臓がんの治療には、主に手術によるがんとその周囲の肝 臓組織の切除がある.そのため、手術を行うには、事前にがんの個数やその大きさの情報を知る必要がある.その際に利用さ れるのがX線CTをはじめとする画像診断である.これらの診断では、得られたCT像から肝臓の領域やがんの領域を抽出 (セグメンテーション)することにより、最終的に3次元でその形状を復元することができる.本論文では、ダイナミックCT におけるがん領域を効率的に抽出するための画像解析法を構築するための前段階として、画像上に大まかながんの関心領域と しての矩形領域を初期領域として求める手法を提案する.手法としては入力画像に前処理を施した後、Faster R-CNNを用い、 がん領域を含む関心領域を矩形で抽出する.本手法をダイナミックCTの動脈相11症例に適応した結果、Recall:71.72[%], AP:64.60[%]という結果が得られた.

OP5-17 マクロ病理マルチスペクトル画像からの再構成反射率を用いた皮膚組織の二元悪性腫瘍分類

○アルポヤニエレニ¹, 鈴木 裕之², 市村 孝也³, 佐々木 惇³, 柳澤 宏人³, 土田 哲也³, 石川 正弘⁴, 小林 直樹⁴, 小尾 高史²

¹東京工業大学 工学院 情報通信系,²東京工業大学 科学技術創成研究院 未来産業技術研究所,³埼玉医科大学 医学部,⁴埼玉医科大学 保健医療学部

This study investigates whether reconstructed spectral reflectance from macropathology multi-spectral images (macroMSI) can assist binary classification of tissue malignancy to identify excised tissue margin during skin cancer diagnosis.

We captured high resolution 7-channel macroMSI of 10 samples before and after formalin fixing and a pathologist labelled 115 regions of interest. We reconstructed spectral reflectance by adaptive Wiener Estimation. Subsets of reconstructed spectra were input to k-Nearest Neighbors (kNN) and Support Vector Machine (SVM) classifiers and evaluated by average area under curve of stratified 5-fold cross validation.

Results revealed that inclusion of unfixed spectra improved classification results. SVM outperformed kNN classifier.

OP5-18 FDG PET-CT の腫瘍領域教師データを半自動的に作成するアルゴリズムの提案と性能評価

○平田 健司¹, 古家 翔¹, 真鍋 治¹, 孫田 恵一¹, 小林健太郎¹, 渡邊 史郎¹, 豊永 拓哉², 玉木 長良³, 志賀 哲¹

¹北海道大学大学院医学研究院核医学教室、²イェール大学 PET センター,³京都府立医科大学放射線医学教室

FDG PET-CT での悪性病変のセグメンテーションは深層学習に期待される課題であるが,放射線科医に定義された膨大な教師データを必要とする. PET では閾値処理により教師データ作成が比較的容易ではあるが,腫瘍集積と生理的集積が隣接するとき用手的作業を要する. この作業を効率化し再現性を高めるアルゴリズムを考案し,実装および操作者間の再現性を確認したので報告する. このアルゴリズムでは,最初にSUV ≥ 2.5 を満たすボクセルを自動で抽出し,操作者は確実に腫瘍内であるボクセルを指定する. 非腫瘍部分が結合している場合には,確実に腫瘍外であるボクセルを追加で指定する. 次に2点を分離できる最小閾値を探索し,これで解決できない場合は最急降下法および最近傍法を用いる. 頭頸部癌と婦人科癌の計 23 例に対して2人の核医学医師が本法で教師データを作成したところ, Dice similarity coefficient が 0.98 ± 0.03 と高い一致率が得られた. 今後の教師データの作成に有用であると考えられた.

OP5-19 乳腺領域の自動抽出を用いた深層ニューラルネットワークによる乳房超音波画像における腫瘤検出

○楊 凱文, 叶 嘉星, 鈴木 藍雅, 坂無 英徳 産業技術総合研究所

乳房超音波検査における腫瘤の発見率向上のために、機械学習技術を用いた診断支援システムの実現が期待されている.従来の手法では、画像中のノイズと乳腺以外の脂肪や筋肉の影響で、腫瘤の過検出することが多い.そこで本稿では、乳腺領域の自動抽出と腫瘤候補領域の検出を組み合わせ、深層ニューラルネットワークによる腫瘤検出手法を提案する.提案手法では、 画素単位の領域分割を行う深層学習モデルであるU-Netを用いて、乳房超音波画像から腫瘤が発生しうる乳腺領域の抽出を行う.また、畳み込みニューラルネットワークにより画像中の腫瘤像を検出するモデルを作成する.U-Netによる乳腺領域の抽出結果と腫瘤検出モデルの出力を統合し、乳腺以外の腫瘤候補を抑制することで過検出を低減する.実験では、実際の乳腺超音波検査にて取得されたデータセットを用いて、従来手法と比べ検出精度が向上し、過検出が削減されることを確認した.

OP5-20 レディオミクスによる肺がんの再発リスクの予測 - レディオミクス特徴量の比例ハザード性の検証 -

○吉岡 拓弥¹, 内山 良一²

1熊本大学大学院保健学教育部,2熊本大学大学院生命科学研究部

医療は存在診断,鑑別診断,治療の順に行われる.コンピュータ支援診断(CAD)は存在診断や鑑別診断の支援に用いられ てきた.よって,CADは、医療の前半を支援するシステムと考えることができる.一方,Radiomicsは医療の後半を支援する システムであり,再発リスクなどの予後予測に関する研究が行われている.Radiomicsによる再発リスクの予測では、コック ス回帰モデルが用いられることが多い.しかし、病変から取得した高次元画像特徴量は、コックス回帰モデル構築の仮定とな る比例ハザード性を満たしている可能性が低く、推定精度の信頼性に問題がある.そこで本研究では、肺がんの再発リスクの 予測を例に、肺がんから得たRadiomics特徴量の比例ハザード性を検討し、コックス回帰モデルと比例ハザード性を仮定しな い生存時間分析のモデルの予測性能を比較する.

OP5-21 深層学習を用いた胃 X 線検査画像における腫瘍領域自動検出の試み

○市川 梨沙¹,野村 敬清²,彌冨 仁¹,橋本 順²

1法政大学理工学部,2束海大学医学部専門診療学系画像診断学

がんのスクリーニングにおいて、X線検査はCTやMRI、内視鏡検査などの専門的検査方法と比べて容易なため、集団検診 で広く利用され検診者母数が極めて大きい.一方でX線検査における病気の検出感度は専門的検査に比べて低いという問題が ある.機械学習を用いた自動診断支援に関する研究も主に後者の専門的検査結果を対象としたものがほとんどであり、特に検 診者母数の多い胃X線検査に対する近年の成果は極めて数少ない.そこで本研究ではX線検査を診断する医師への診断支援を 目的として胃X線画像を元に、腫瘍領域の自動検出システムを試作した.システムは物体検出と識別を同時に行えるアルゴリ ズムである Single Shot Multibox Detector (SSD)を用い検証を行った.

OP5-22 疾患股関節の CEA の自動計測と大規模データベース解析への有用性の検討

○田中 雄基¹, 日朝 祐太¹, 大竹 義人¹, 高尾 正樹², 上村 圭亮², 菅野 伸彦², 佐藤 嘉伸¹ ¹奈良先端科学技術大学院大学情報科学領域,²大阪大学大学院医学系研究科

大規模医用画像データベースに対する病態解析の必要性が高まっている.そこで我々は股関節変形症に着目し、大規模医用 画像データベースに対する股関節変形症の分類である一次性と二次性の自動分類を目標とする.本研究ではそのための第一歩 として三次元 CT 画像から CNN を用いて解剖学的特徴点を特定し、臨床で用いられている CEA(Center Edge Angle)を自動で 計測する.また診療科を問わず網羅的に収集された約一万症例の CT データベースから股関節変形症の有病率の測定に利用で きるかを検討する.

OP5-23 3D fully convolutional network を用いた腎腫瘍の定量評価における初期検討

〇王 成龍¹, 小田 昌宏², 林 雄一郎², 佐々 直人³, 山本 徳則³, 森 健策²⁴

¹名古屋大学情報科学研究科,²名古屋大学情報学研究科,³名古屋大学医学系研究科,⁴国立情報学研究所医療ビッグ データ研究センター

Partial nephrectomy is a common treatment for kidney tumors. Due to the wide variety of tumor's anatomical structures, relations between tumor's morphology and surgical outcomes have gained a lot of research interests. Quantitative evaluation of kidney tumor can help physicians to have a beter understand of tumor status. Manual segmentation of kidney and tumor is a time-consuming and expensive task. In this work, we used a 3D fully convolutional network to automatically segment kidneys and tumors, and then use traditional statistical analysis methods to quantitatively evaluate the kidney tumor. By using deep-learning based method, kidneys and tumors can be precisely extracted from 3D CT scans. The quantitative analysis can be used for further surgical planning, such as renal clamping strategy. Our segmentation accuracies of kidney and tumor are 93.4% and 42.3%.

OP5-24 網膜動脈硬化症分類のための静脈口径計測

○畑中 裕司¹, 立木 宏和², 川崎 $∂_3^3$, 齋藤 公子⁴, 村松千左子⁵, 藤田 広志⁶

¹ 滋賀県立大学工学部電子システム工学科,² 滋賀県立大学大学院工学研究科電子システム工学専攻,³ 大阪大学大学院 医学系研究科視覚情報制御学,⁴ 篠田総合病院眼科,⁵ 滋賀大学データサイエンス学部,⁶ 岐阜大学工学部電気電子・ 情報工学科

網膜動脈硬化症の代表的な所見である網膜動静脈血管狭窄の診断を支援するために,網膜動脈と網膜静脈のなす交差点(AV 交差)近くの静脈径の測定処理の開発を目的とする.これまでに提案されてきた手法では,交差点付近で蛇行する静脈の誤検 出が多い問題があり,蛇行する静脈径の計測に失敗していた.本研究では,血管骨格をスプライン補間とP型フーリエ記述子 を用いて平滑化した.最後に,血管のセグメンテーション処理で得たエッジを使用することによって静脈直径を測定した.提 案した方法を 95 枚の眼底画像に適用したとき,手動計測した静脈径との平均誤差と標準偏差は 1.39 ± 1.11 画素であった.

第3日 7月26日(金)

メイン会場(レセプションホール1)

シンポジウム2

15:35~16:55 SY2「多元計算解剖学のこれから-さらなる飛躍を目指して」

座長:森 健策(名古屋大学)

清水 昭伸(東京農工大学)

本シンポジウムでは、文科省科研費新学術領域「多元計算解剖学」において行われてきた研究を振り返るとともに、 今後の発展について議論する.多元計算解剖学は、(1)細胞レベルから臓器レベルまでの空間軸、(2)胎児から死亡時 までの時間軸、(3)撮像モダリティ、生理、代謝などの機能軸、(4)正常から疾患までの病理軸といった種々の軸にま たがる医用画像情報に基づき、「生きた人体の総合理解」のための数理的解析基盤を確立し、早期発見や治療困難な 疾患に対する高度に知能化された診断治療法実現のための数理的諸手法を開拓する研究領域として設定された.本シ ンポジウムでは、多元計算解剖学における研究を振り返り、今後の発展に向けてどのように研究を展開するのか議論 する.

SY2-1 多元計算解剖学において生み出されたもの

○橋爪 誠

九州大学

本プロジェクトは2014年文部科学省「新学術領域」として採択されたものです。多種多様な医用画像を動的な生体解剖とし て総合的に理解できるように数理学的理論体系を確立し、革新的診断・治療の創出と健康増進に寄与することを目的としてい ます。時間軸、空間軸、機能軸、病理軸の4つの軸上にある各個人の生体情報と医用画像の統合を目指した多元計算解剖モデ ルを確立し、若手の育成や世界への普及に貢献できましたので報告します。

SY2-2 多元計算解剖学における数理

○本谷 秀堅

名古屋工業大学

多元計算解剖学の目標のひとつは、(1)細胞レベルから臓器レベルまでの空間軸、(2)胎児から死亡時までの時間軸、(3)撮像 モダリティ、生理、代謝などの機能軸、(4)正常から疾患までの病理軸の各軸をまたがる医用画像群を統合し、人体モデルを構 築する方法論を確立することであった.ここでは、撮像からデータの統合とモデル化に至る一連の手続きにおける、問題点の 数理的側面と我々の取り組みならびに今後の課題を述べる.

SY2-3 多元計算解剖学における多元モデリング

○佐藤 嘉伸

奈良先端科学技術大学院大学

多元計算解剖学では、医用画像を中心として、ミクロからマクロまで多重スケールで得られる、様々なモダリティの解剖・ 機能(生理)・病理等の時空間データ、言わば、多元データを統合しモデリングすることにより、人体の総合理解を目指す.本 発表では、このような、人体多元データの統合・モデリングを行う研究開発の枠組み、および、脳、胸部、腹部、筋骨格、ヒ トの一生涯のそれぞれにおいて多元データから構築された多元モデルの具体例の紹介を通して、多元モデリングの達成点と波 及効果について述べる.

SY2-4 多元計算解剖学と人工知能ブーム

○藤田 広志

岐阜大学

本プロジェクトは2014年6月に開始したが、2年程遅れて人工知能(AI)ブームが医用画像領域にも到来している. AIブームを牽引するディープラーニングにより、これまでの画像認識の手法が置き換わるところも多々ある. しかし、ディープラーニングのブラックボックス性の問題や、医用画像のもつ特殊性もあり、多元計算解剖学の枠組みの重要性が否定されるものでは決してない. むしろ、多元計算解剖学に AI(特にディープラーニング技術)が取り込まれることにより、より完成度の高いものになると言えよう.

SY2-5 多元計算解剖学のその先にあるもの

○森 健策

名古屋大学

本講演では、2019年度をもって研究活動を終了した科研費新学術領域研究「多元計算解剖学」を振り返り、この新学術領域 が築き上げた基盤的研究、応用的研究、そして、研究者間の人的ネットワークを振り返りながら、多元計算解剖学のその先に あるものについて論じたい.多元計算解剖学では、空間軸、病理軸、機能軸、時間軸の4つの側面から多元的に人体の構造情 報を捉え、そのモデルを確立することで新しい医用画像解析手法の確立とその臨床的応用を目指してきた.今後は、これらの より深いレベルでの探求や、異分野領域の融合も、その発展の視野に入ってくる.また、研究コミュニティの維持と発展も重 要である.これらの点を踏まえて、本講演では多元計算解剖学のその先にあるものについて議論したい.

SY2-6 パネル討論 多元計算解剖学の今後の発展に向けて

閉会式

16:55 ~ 17:00

以降の予稿は,著者から提出された原稿を査読なしで, そのまま掲載しています.

著者らが自らの内容を MEDICAL IMAGING TECHNOLOGY (MIT) 誌へ投稿する場合,その原稿にこの PDF に類似し た内容が含まれていても,二重投稿とは判断しません.

発行日:2019年7月23日

発行者:佐藤嘉伸

製作所:トーヨー企画株式会社

制約付きアンサンブル学習を用いた事後平均解の近似によ

る MR 画像再構成

久保田 菜々子*1 原田 賢*2 藤本 晃司*3

岡田 知久*3 井上 真郷*1

要旨

MR 画像再構成においては,複数の画像事前分布を組み合わせることで精度が向上することが知られてい るが,最適な重みの組み合わせを交差検証法により求めることは,組み合わせ数が指数的に増加するため 大変であった.以前の我々の研究では制約付きアンサンブル学習を用いることで,複数の画像事前分布の 組み合わせを線形オーダーの計算量で実現した.また推定解に事後平均の近似解という意味づけを行うこ とで,本手法による再構成の精度向上の理論的裏付けを行った.本研究では理論的根拠を洗練させると共 に,更に画像事前分布の数を増やした際にも本手法が有用であることを報告する.

キーワード:アンサンブル学習, MR 画像再構成, 圧縮センシング, 事後平均推定

1. はじめに

Magnetic resonance imaging (MRI) はコイルに より発生させた磁場を用いて患者の体内を撮 像する手法である.健康被害がないことが利点 であるが、データの収集に時間がかかることが 患者の負担となることや、モーションアーチフ ァクトなどが問題となっているため、撮像時間 を短縮することが必要となる.

MRI では複数のコイルを用いて信号を受信 することが一般的であるが,異なるコイルで観 測される信号にはある程度の空間的相関が存 在するため,(周波数空間で)間引き収集された

*1 早稲田大学大学院先進理工学研究科 電気・情報生命専攻

〔〒169-8555 新宿区大久保 3-4-1〕 e-mail: nanako329@fuji.waseda.jp

*2 早稲田大学理工学術院総合研究所 *3 京都大学大学院医学研究科放射線医 学講座

投稿受付: 2019年5月19日

信号から観測対象の信号の実空間分布(=MR 画像)を復元するということが一般的に行われ ている.撮像時間を短縮して測定されたデータ から診断に十分高精度な画像を再構成するに は工夫が必要であり、そのような手法は広く研 究されている.MRIによる観測はFourier 変換 であり、ランダム行列を用いた観測からの信号 復元理論(圧縮センシング)の良い対象となる.

MRIの撮像・再構成手法には観測データの間 引き方やデータの補間方法により GRAPPA[1], SENSE[2,3,4], SAKE[5] など様々な手法 [6,7,8,9,10]が考案されており,その中の一つで ある CS-SENSE 法[11,12]では,画像事前分布と 呼ばれる事前知識を利用し圧縮センシングと いう理論を用いて複数コイルで観測された間 引かれたデータから画像を推定する.画像事前 分布は複数組み合わせて用いることでMR 画像 が持つ複数の特徴を考慮することができるた め精度が向上することが知られている[13,14]. しかし,複数種類の画像事前分布を組み合わせ る場合,それぞれの画像事前分布の重要度を表 す重み係数を決定する必要があるが,これを交

差検証法で決める場合,事前分布の種類数の増

加に伴い計算量が指数的に増加するという欠 点がある.

そこで我々の研究[15]では、アンサンブル学 習を用いることでこの問題を解決した.更にア ンサンブル学習に制約をつけることで、アンサ ンブル学習による精度向上に事後平均 (PM) 解 の近似という理論的な意味づけを行った.

本研究では我々の提案手法に関し,理論的根 拠をより整理すると共に,画像事前分布の数を 大幅に増やした際にも計算量のオーダーを変 化させることなく,更なる精度向上が可能であ ることを示す.

2. 問題設定·既存手法

本節でははじめに MR 画像再構成に関する問 題設定と既存手法である CS-SENSE 法に関して 述べる. なお,本論文では 2 次元の観測データ について述べるが, 3 次元 MR 画像等への拡張 も容易である.

1) 複数コイル MRI

2 次元の真の断面画像をベクトル化したもの を $x = [x_1, x_2, ..., x_N]^{\mathsf{T}} \in \mathbb{C}^N$ (説明の都合で複素ベ クトルとするが, 虚数成分は 0 である), 画素数 をNとし, これを $c \in \{1, ..., C\}$ 番目の MRI コイル により観測した 2 次元 k-space(周波数空間)デー タ を ベ ク ト ル 化 し た も の を $y_c \equiv$ $[y_{c,1}, y_{c,2}, ..., y_{c,M}]^{\mathsf{T}} \in \mathbb{C}^M$, これをC個のコイル全 部について纏めたものを $y \in \mathbb{C}^{CM}$ とする. M = Nの場合全観測, M < Nの場合部分観測と呼ぶ. 2 次元離散 Fourier 変換行列を $\mathbf{F} \in \mathbb{C}^{N \times N}$ (本研究 ではユニタリ行列で定義する), 部分観測にも 対応できる離散 Fourier 変換行列を $\mathbf{F}_{\mathbf{u}} \in \mathbb{C}^{M \times N}$, 加法的 Gauss 観測ノイズを $\epsilon_c \in \mathbb{C}^M$ として, 次式 でモデル化する.

$$\mathbf{y}_c = \mathbf{F}_{\mathrm{u}} \mathbf{S}_c \mathbf{x} + \boldsymbol{\epsilon}_c \tag{1}$$

各々のコイルが持つ信号受信感度(強度および 相対的な位相)の空間分布を感度マップと呼び, 感度マップ $\mathbf{S}_c \equiv \operatorname{diag}(\mathbf{s}_c)$ (但し $\mathbf{s}_c \in \mathbb{C}^N$)は対角 行列で,次式を満たすように調整されているも のとする.

 $\sum_{c=1}^{c} \mathbf{S}_{c}^{*} \mathbf{S}_{c} \equiv \mathbf{I}$ (2) 但し、I は単位行列、*付きの行列は随伴行列を 表す. 複数コイルで間引き観測されたデータから MR 画像を再構成する手法は複数提案されてい る.また,未観測部分を単に0が観測されたも のとして算出した

[\mathbf{x}]_{*i*} $\equiv \sqrt{\sum_{c=1}^{C} |[\mathbf{F}_{u}^{*} \mathbf{y}_{c}]_{i}|^{2}}$ (3) を zerofill 画像と呼び, ベンチマークとする. こ のとき*i*は要素番号を表す. また, 全観測かつ観 測ノイズが無い場合は $\mathbf{x} = \mathbf{x}$ となり, 元画像を正 確に算出できる. ただし本研究では観測ノイズ が含まれた実際の全観測データから式(3)で求 めた画像を正解画像として扱う.

2) CS-SENSE 法

Compressed sensing SENSE (CS-SENSE 法) は 複数コイルでのMR 画像再構成手法の一つであ る.zerofill 画像では感度マップの推定を回避し て元画像を推定したが,この手法は感度マップ を高い空間解像度で正確に求めようとすると, 通常のMRI 撮像と同程度の長い時間を要する が,この感度マップの空間分布は滑らかである という仮定を置くことが可能であるため,MRI 撮像に用いられた観測データ*y*cとローパスフ ィルタQを用いて次式で陽に点推定する[2,3,4].

$$[\mathbf{s}_{c}]_{i} \equiv \frac{[\mathbf{F}_{u}^{*}\mathbf{Q}\mathbf{y}_{c}]_{i}}{\left[\sqrt{\sum_{c=1}^{C}|[\mathbf{F}_{u}^{*}\mathbf{Q}\mathbf{y}_{c}]_{i}|^{2}}\right]_{i}}$$
(4)

更にこの感度マップを用いて次式を解き,

$$\dot{\boldsymbol{x}} \equiv \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{C}^{N}} \left\{ \frac{1}{2\sigma^{2}} \sum_{c=1}^{C} \|\boldsymbol{y}_{c} - \boldsymbol{F}_{u} \boldsymbol{S}_{c} \boldsymbol{x}\|_{2}^{2} + \sum_{k=1}^{K} f_{k}(\boldsymbol{x}) \right\} (5)$$

得られた複素画像 $\mathbf{\hat{x}} \in \mathbb{C}^{N}$ の各要素の絶対値をとることで推定画像 $\mathbf{\hat{x}} \in \mathbb{R}^{N}$ を求める.

$$[\hat{\boldsymbol{x}}]_i \equiv |[\hat{\boldsymbol{x}}_i]| \tag{6}$$

正則化項が複数ある場合の最適化は, FCSA[16]などのアルゴリズムにより可能である.

 $f_k(x)$ は複素画像に対する $k \in \{1, ..., K\}$ 番目の 正則化項である.正則化項には,TV-normの複 素画像版である BV-norm[17]

$$\|\boldsymbol{x}\|_{\rm BV} \equiv \sum_{p} \sum_{q} \sqrt{|x_{p,q} - x_{p+1,q}|^2 + |x_{p,q} - x_{p,q+1}|^2}$$
(7)

(p,qは 2 次元画像の縦横の要素番号を表す)
や, 複素画像の wavelet 係数に対し L1 ノルム をとるものなどがある.

 $\|\boldsymbol{x}\|_{\text{wavelet}} \equiv \|\boldsymbol{\Phi}\boldsymbol{x}\|_1 \tag{8}$

 $\Phi \in \mathbb{R}^{N \times N}$ は各種の wavelet 変換行列を表す.また,通常,観測誤差の係数 $1/(2\sigma^2)$ に対する相対的な重み係数が掛けられ,その正則化項をどの程度重んじるのかを指定する.

正則化項に含まれる重み係数は一般に未知 であるため推定する必要があるが,正則化項の 種類が多い場合,交差検証法等でこれを推定す ることは計算量が指数的に増加するため一般 に困難である.

CS-SENSE 法は確率モデルによる解釈をする と最大事後確率推定(MAP)解の推定している ことと同義である.

3. 提案手法

本節では、初めに確率モデルを示し、その後 本手法が事後平均推定 (PM) 解を推定している ことと同義であることを示す.

1)提案モデルの概要

前節で述べたように,画像事前分布の種類が 増えた際の,正則化項の重み係数の決定は困難 である.そこでアンサンブル学習によりその問 題を解決する.係数を変化させたものや,性質 の異なる画像事前分布を複数用意し,それぞれ 単独の画像事前分布として再構成を行う.その 後,各画像事前分布で再構成した画像の線形和 により画像の推定を行う.

この解は PM 解となるため,既存手法である MAP 解よりも二乗誤差を最小化する手法であ ることを理論的に示すことができる.

2) 確率モデル

同時確率を次式で定義する.

$$p(\mathbf{x}, \mathbf{y}, k; \mathbf{w}) \equiv p(k; \mathbf{w}) p(\mathbf{x}|k) p(\mathbf{y}|\mathbf{x}, k)$$
(9)

p(*k*;*w*)は*K*個の事前分布に対するカテゴリカ ル分布であり,次式で定義する.

$$p(k; \boldsymbol{w}) \equiv w_k \tag{10}$$

 $w \equiv [w_1, ..., w_K]^T$, $w \ge 0$, $\sum_{k=1}^K w_k \equiv 1$ である. k 番目の画像事前分布p(x|k)を正則化項 $f_k(x)$ を 用いて次式で定義する.

$$p(\boldsymbol{x}|k) \equiv \frac{1}{Z_k} \exp\{-f_k(\boldsymbol{x})\}$$
(11)

 Z_k は正規化定数, $f_k(x)$ は重み係数付き正則化 項である.ここでは、アンサンブル学習の用 語に倣って、個々の事前分布p(x|k)を弱事前分 布と呼ぶ.事前分布全体としては弱事前分布 を組み合わせたものになる.

$$p(\mathbf{x}) = \sum_{k=1}^{K} \frac{W_k}{Z_k} \exp\{-f_k(\mathbf{x})\}$$

更に,式(5)では,重み係数が異なるだけの同 種類の正則化項は,一つに纏められてしまう が(例: $f_1(x) \equiv 2||x||_{BV}$, $f_2(x) \equiv 3||x||_{BV}$ の場 合, $5||x||_{BV}$ を一つ指定したものと同じ),この 事前分布は同様に纏めることができないた め,事前分布の表現力が増すと考えられる.

観測モデル*p*(*y*|*x*,*k*)を,加法的白色 Gauss ノ イズを想定し,次式で定義する.

 $p(\mathbf{y}|\mathbf{x},k) \equiv$

$$\frac{1}{(2\pi\sigma^2)^{NC}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{c=1}^C \|\boldsymbol{y}_c - \boldsymbol{F}_{\mathrm{u}} \boldsymbol{S}_c \boldsymbol{x}\|_2^2\right\} \quad (12)$$

3) 推定量

画像xの PM 解を求めることとする.

$$\widetilde{\boldsymbol{x}} \equiv \langle \boldsymbol{x} \rangle_{p(\boldsymbol{x}|\boldsymbol{y})} = \sum_{k=1}^{K} p(k|\boldsymbol{y}) \langle \boldsymbol{x} \rangle_{p(\boldsymbol{x}|\boldsymbol{y},k)} = \boldsymbol{X} \boldsymbol{\omega} \quad (13)$$

但し, $\mathbf{X} \equiv [\langle \mathbf{x} \rangle_{p(\mathbf{x}|\mathbf{y},1)}, ..., \langle \mathbf{x} \rangle_{p(\mathbf{x}|\mathbf{y},K)}] \in \mathbb{C}^{N \times K}$, $\boldsymbol{\omega} \equiv [\omega_1, ..., \omega_K]^T$, $\omega_k \equiv p(k|\mathbf{y})$ である.この式は, 弱事前分布毎に求めた PM 解

 $\langle x \rangle_{p(x|y,k)}$

$$= \frac{\int \boldsymbol{x} \exp\left\{-\frac{1}{2\sigma^2} \sum_{c=1}^{C} \left\|\boldsymbol{y}_c - \boldsymbol{F}_{u} \boldsymbol{S}_c \boldsymbol{x}\right\|_2^2 - f_k(\boldsymbol{x})\right\} d\boldsymbol{x}}{\int \exp\left\{-\frac{1}{2\sigma^2} \sum_{c=1}^{C} \left\|\boldsymbol{y}_c - \boldsymbol{F}_{u} \boldsymbol{S}_c \boldsymbol{x}\right\|_2^2 - f_k(\boldsymbol{x})\right\} d\boldsymbol{x}}$$

の線形結合で全体の PM 解が求まることを示す. また,正規化定数 Z_k を求める必要がないことが分かる.

PM 解は一般に真の解との平均二乗誤差を最小にするため、この意味において Bayes 最適である.

しかしながら, ωを正確に算出することは一 般に困難であるため,本手法では,評価指標で ある二乗誤差を最小化するものを,正解画像を 用いて逆算することとする.予め用意した全観 測データL個の独立同分布標本 $\{y^{(l)}, x^{(l)}\}_{l=1}^{l}$ を用 いることとし,標本番号を $l \in \{1, ..., L\}$ とすると, 同時分布は次式に拡張される.なお, x^{L}, y^{L} は

$$\{\boldsymbol{x}^{(l)}, \boldsymbol{y}^{(l)}\}_{l=1}^{L} を表す.$$

$$p(\boldsymbol{x}^{L}, \boldsymbol{y}^{L}, \boldsymbol{k}; \boldsymbol{w}) \equiv$$

$$p(\boldsymbol{k}; \boldsymbol{w}) \prod_{l=1}^{L} p(\boldsymbol{x}^{(l)} | \boldsymbol{k}) p(\boldsymbol{y}^{(l)} | \boldsymbol{x}^{(l)}, \boldsymbol{k})$$
(14)

これを用いて、ωを次式で近似推定する.

$$\widehat{\boldsymbol{\omega}} \equiv \underset{\boldsymbol{\omega} \ge \mathbf{0}}{\operatorname{argmin}} \sum_{l=1}^{L} \left\| \mathbf{X}^{(l)} \boldsymbol{\omega} - \mathbf{x}^{(l)} \right\|_{2}^{2} \text{ s. t.} \sum_{k=1}^{K} \omega_{k} = 1 (15)$$

 ω は事後確率値の集まりであるので、当然に $\omega \ge 0$ 、 $\sum_{k=1}^{K} \omega_k = 1$ という制約が付く、特に $\omega \ge 0$ により、結果的に**ふ**は疎ベクトルになり、 多くの弱事前分布が不要になると予想される、 尚、ハイパーパラメータwは、**ふ**の推定に暗に含 まれるため、陽に決める必要がなくなる。

以上より求めた $\hat{\boldsymbol{\omega}}$ を用いて,新しい部分観測 データ \boldsymbol{y} から,推定画像 $\hat{\boldsymbol{x}}$ を次式で求めるものと する.

$$\hat{\mathbf{x}} \equiv \mathbf{X} \, \widehat{\boldsymbol{\omega}}, \qquad [\widehat{\mathbf{x}}]_i \equiv |[\widehat{\mathbf{x}}_i]| \tag{16}$$

4. 実験

今回の実験で用いたデータや実験設定,実験 の方法,比較する手法に関して述べる.

1) 実験設定

 $N = 256 \times 256$ サイズのC = 32チャネル複数 コイルデータを用いた. k-space 上の部分観測位 置は、低周波数成分の半径 24 ピクセル相当の 領域は必ず観測することとし、残りは平均が低 周波数領域の中心、標準偏差が縦横 50 ピクセ ル相当の二次元正規乱数に従って、観測率が 20%になるまでランダムに行った (M = 0.2N). 実際に使用したサンプリングマスクを図 1 に、 zerofill 画像 \tilde{x} の例と正解画像xの例を図 2、3 に 示す.

Intel Core i7-6700K 64GB のマシンを用いた.

図1 観測マスク

図2 zerofill 画像

2) 弱事前分布

*K*個の弱事前分布 $p(\mathbf{x}|\mathbf{k})$ については, BV-prior, DCT-prior, 各種 wavelet-prior (Doubechies (長さ 4, 6, 8, 深さ 3, 4, 5), Haar (深さ 3, 4, 5), CDF9/7 (深さ 3, 4, 5))の全 17 種類に, それ ぞれ重み係数を 50 通り設定した, *K* = 850個を 用意した.具体的には, $f_k(\mathbf{x}) \equiv \lambda_k ||\mathbf{x}||_{\text{BV}}$, $f_k(\mathbf{x}) \equiv \lambda_k ||\mathbf{x}||_{\text{wavelet}}$ などの形をとる.DCT-prior についても, wavelet-prior と同様に, 複素画像 に対する DCT 係数に対し L1 ノルムを計算し た.以降, wavelet に関しては Doubechies(長さ, 深さ), Haar(深さ), CDF9/7(深さ)と記載する. 3) 他の設定

ローパスフィルタQには、必ず測定すること とした低周波数成分の半径 24 ピクセル相当の 領域をそのまま採用するだけのものを用いた.

観測ノイズの分散パラメータ σ^2 は1とし,違いは画像事前分布のハイパーパラメータに含めた.

弱事前分布毎の PM 解 $(x)_{p(x|y,k)}$ については, 実際に算出することは困難であったため,弱事 前分布毎の MAP 解(正確にはこれを絶対値を とって実画像に変換したもの,以下も同じ,既 存手法と一致する)で代用した.

$$\dot{\boldsymbol{x}}_{k} \equiv \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{C}^{N}} \left\{ \frac{1}{2\sigma^{2}} \sum_{c=1}^{C} \|\boldsymbol{y}_{c} - \boldsymbol{F}_{u} \boldsymbol{S}_{c} \boldsymbol{x}\|_{2}^{2} + f_{k}(\boldsymbol{x}) \right\}$$

 $[\hat{\boldsymbol{x}}_k]_i \equiv |[\boldsymbol{x}_k]_i| \tag{17}$

最適化には FISTA[18] や, FGP[19]を複素画像 に拡張したものを用いた.また,この MAP 解 についても正規化定数*Z_kを*求める必要はない.

 $\hat{\omega}$ の算出については,式(15)の制約を $\omega_k \ge 0$ のみに緩めた.これは,ここで使われる弱事前分布はノルムベースであり,ノルムの劣加法性により縮小推定されるところを,結果的に $\sum_{k=1}^{K} \hat{\omega}_k > 1$ となることで相殺して,推定精度を上げられると考えたためである.さらに, $\hat{\omega}$ の算出では学習データの関心領域外を0とした. 関心領域とは図4のような画像中で被写体が写っている場所を指す.医師の診断に必要なのは関心領域のみであり,関心領域外のノイズの再現性は重要でないと考えるためである[20].

ŵの算出の際に,行列**X**⁽¹⁾のサイズは**N**×**K**と 非常に大きい.しかし,式(15)の目的関数を変 形すると,定数和を除いて次式であり,

$$\boldsymbol{\omega}^{\mathsf{T}}\left(\sum_{l=1}^{L} \mathbf{X}^{(l)*} \mathbf{X}^{(l)}\right) \boldsymbol{\omega} - 2\boldsymbol{\omega}^{\mathsf{T}} \mathfrak{R}\left(\sum_{l=1}^{L} \mathbf{X}^{(l)*} \boldsymbol{x}^{(l)}\right)$$

K×Kの相関行列,長さKのベクトルを事前に計算しておくことで省メモリ省コストの推定を 行える.

図4関心領域の例

5) 評価

同一の MR 装置で観測された多スライスの水 平断の観測データ4人分各10スライスを用い, 3人分のデータ(つまりL = 30)で PM 近似解 に関しては $\hat{\omega}$ を, MAP 解に関しては全17種類 の弱事前分布毎の最適な重み係数 λ_k と縮小推定 の補正のための定数を学習し,一人分でテスト を行う人物間での4-fold cross validation 法によ り評価した.縮小推定の補正とは,既存手法は 縮小推定されることで指標が悪化するが,これ は本質的ではないため、学習データに対し評価 指標が最もよい定数を掛けることで縮小推定 の影響を緩和させた値で評価するためのもの である.

評価指標には関心領域の相対 RMSE および mSSIM[21]を用いた. 相対 RMSE は, 推定画像 を*x*, 正解画像を*x*としたとき次式で定義した.

$$\frac{\|\hat{x} - x\|_2}{\|x\|_2}$$
(18)

mSSIM は二乗誤差よりもヒトの視覚に近い類 似度を与えるとされる指標である.また,評価 の際,非関心領域の画素値を推定画像,正解画 像,共に強制的に0とし,医師の診断に近い評 価を行った[20].

上記評価指標を用いて提案手法の PM 近似解 と,zerofill 画像,弱事前分布毎の MAP 解(既 存手法)を比較した.

5. 結果·考察

MAP 解の画像 1 枚当たりの再構成時間は 15 秒程度, **ŵ**の計算時間は 15 秒程度であった.

テストデータに対する評価指標の結果を表 1 に示す. mSSIM は分かり易くするため, 1 か ら引いた値で比較する.いずれの指標も値が小 さくゼロに近い方が正解画像に近い.相対 RMSE を比較すると,提案手法がいずれの既存 手法よりも推定画像の精度が良かった.提案手 法は二乗誤差を最小にするよう設計したため, 期待通りである.弱事前分布毎の MAP 解で最 も良かったのは BV-prior であり,wavelet-prior の中で最も良かった CDF9/7(5)が続いた.DCTprior は最も精度が悪かった.

mSSIM を比較すると、こちらも提案手法が一番良い結果となった. これは直接意図した結果ではないが、好ましい特徴である. 弱事前分布毎の MAP 解についても、二乗誤差と同様の順位であった.

		1
手法	相対 RMSE	1 –mSSIM
	$(\times 10^{-2})$	$(\times 10^{-3})$
zerofill	22.10	17.81
Doubechies(4,3)	7.349	2.808
Doubechies(4,4)	7.347	2.807
Doubechies(4,5)	7.347	2.806
Doubechies(6,3)	7.304	2.770
Doubechies(6,4)	7.304	2.768
Doubechies(6,5)	7.304	2.767
Doubechies(8,3)	7.313	2.760
Doubechies(8,4)	7.313	2.758
Doubechies(8,5)	7.313	2.758
Haar(3)	7.589	2.908
Haar(4)	7.583	2.904
Haar(5)	7.582	2.902
CDF9/7(3)	7.231	2.734
CDF9/7(4)	7.231	2.732
CDF9/7(5)	7.231	2.731
BV	6.780	2.616
DCT	8.655	3.520
提案手法	6.568	2.176

表1 評価指標の結果.

学習した $\hat{\omega}$ の例を図 5 に示す. 横軸は弱事前 分布の重み係数 λ_k の対数を取ったもの,縦軸は 学習により算出した $\hat{\omega}_k$ である. 全体の大きな傾 向を見ると, $\hat{\omega}_k$ が非ゼロで生き残った弱事前分 布の割合は約 13%で,期待通り疎な解が得られ た.また,弱事前分布の種類毎に,最良の MAP 解が存在する重み係数10⁻⁴付近に大きなピー クが得られた.加えて,図6のような粗いボケ た画像である10⁰付近にもピークが得られた. 10⁻⁴付近の最も大きなピークは既存手法の精 度が最も良かった BV-prior であり, BV-prior は 10⁰付近にピークがなかった.反対に最も精度 が悪かった DCT-prior は10⁻⁴付近にピークがな く,10⁰付近のみであった.この原因に関しては 引き続き考察を行う.

 $\sum_{k=1}^{K} \hat{\omega}_k$ の値は約 1.15 であり、期待通りに弱 事前分布による縮小推定を補ったものと考える.

図5学習した砂の例

(a) Doube(6,4)
 (b)DCT
 図6ボケた画像の例

推定画像の例を図 7,正解画像との差分画像 を図8に示す.図8をみると,提案手法が既存 手法に比べ平均的に良い推定が行われている.

図7推定画像

図8差分画像

以上の結果から,提案手法は多数の弱画像事 前分布を組み合わせることで,既存手法より精 度の高い推定が可能であると考える.

6. まとめ

アンサンブル学習により,画像事前分布の種 類を増加させた際に計算量のオーダーを変化 させることなく精度の向上が可能であること を示した.今回のように 17 種類もの画像事前 分布を組み合わせた再構成を従来のように交 差検証法でパラメータチューニングを行うこ とは,計算量的に不可能である.しかしアンサ ンブル学習を用いることで,短時間で多数の画 像事前分布を組み合わせた高精度の再構成が 可能となった.さらに従来手法では重み係数が 異なるだけの画像事前分布は組み合わせるこ とに意味がなかったが,提案手法により組み合 わせることが可能となり,画像事前分布として の表現力が向上した.

利益相反の有無

なし

文 献

[1] Griswold MA, Jakob PM, Nittka M et al: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic resonance in medicine **47(6)**: 1202-1210, 2002

- Pruessmann KP, Weiger M, Scheidegger MB et al: Sense: sensitivity encoding for fast MRI. Magnetic resonance in medicine 42(5): 952-962, 1999
- [3] Pruessmann KP, Weiger M, Börnert P et al: Advances in sensitivity encoding with arbitrary k-space trajectories. Magnetic resonance in medicine 46(4): 638-651, 2001
- [4] Ying L, Sheng J: Joint image reconstruction and sensitivity estimation in SENSE (JSENSE). Magnetic resonance in medicine 57(6): 1196-1202, 2007
- [5] Shin PJ, Larson PE, Ohliger MA et al: Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion. Magnetic resonance in medicine 72(4): 959-970, 2014
- [6] Lustig M, Donoho D, Pauly JM: Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic resonance in medicine 58(6): 1182-1195, 2007
- [7] Lustig M, Pauly JM: SPIRiT: Iterative selfconsistent parallel imaging reconstruction from arbitrary k-space. Magnetic resonance in medicine 64(2): 457-471, 2010
- [8] She H, Chen RR, Liang D et al : Sparse BLIP: BLind Iterative Parallel imaging reconstruction using compressed sensing. Magnetic resonance in medicine 71(2): 645-660, 2014
- [9] 笠原勇布,井上真郷, 富樫かおり:アンサ ンブル学習を用いた MR 画像再構成 信学 技報 116(300) IBISML2016-58: 87-91, 2016
- [10] 原田賢,井上真郷,富樫かおり: CS-SENSE 法における感度マップの不確実性 を考慮した事後平均推定近似解 信学技 報 117(211) IBISML2017-21: 75-82, 2017
- [11] Jiang M, Jin J, Liu F et al: Sparsityconstrained SENSE reconstruction: An efficient implementation using a fast composite splitting algorithm. Magnetic resonance

imaging 31(7): 1218-1227, 2013

- [12] Liang D, Liu B, Wang J et al: Accelerating SENSE using compressed sensing. Magnetic resonance imaging 62(6): 1574-1584, 2009
- [13] Liang D, Wang H, Chang Y et al: Sensitivity encoding reconstruction with nonlocal total variation regularization. Magnetic resonance in medicine 65(5): 1384-1392, 2011
- [14] Zhou J, J. Li, J.C. Gombaniro : Combining SENSE and compressed sensing MRI With a fast iterative contourlet thresholding algorithm.
 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD): 1123-1127, 2015
- [15] 久保田菜々子,原田賢,藤本晃司他: MR 画像再構成における複数の画像事前分 布を組み合わせた事後平均近似解 信学技 報 118(284) IBISML2018-47: 23-28, 2018
- [16] Huang J, Zhang S, Metaxas D: Efficient MR image reconstruction for compressed MR imaging. Medical Image Analysis 15(5): 670-679, 2011
- [17] B. Liu, L. Ying, M. Steckner et al: REGULARIZED SENSE RECONSTRUCTION USING ITERATIVELY

REFINED TOTAL VARIATION METHOD. IEEE International Symposium on Biomedical Imaging: From Nano to Macro: 121-124, 2007

- [18] Beck A, Teboulle M: A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM journal on imaging sciences 2(1): 183-202, 2009
- [19] A. Beck, M. Teboulle: Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring problems.
 IEEE Transactions on Image Processing 18(11): 2419-2434, 2009
- [20] T. Akasaka, K. Fujimoto, T. Yamamoto et al: Optimization of Regularization Parameters in Compressed Sensing of Magnetic Resonance Angiography: Can Statistical Image Metrics Mimic Radiologists' Perception? PLoS ONE 13(5): e0197140, 2018
- Z. Wang, A. C. Bovik, H. R. Sheikh et al: Image quality assessment: From error measurement to structural similarity. IEEE Transactions on Image Processing 13(4): 600-612, 2004

MR image reconstruction by approximation of posterior mean

solution using constrained ensemble learning

Nanako KUBOTA*1, Ken HARADA*2, Koji FUJIMOTO*3, Tomohiro OKADA*3, Masato INOUE*1

*1 Waseda University

*2 Waseda Research Institute for Science and Engineering

*3 Kyoto University

In MR image reconstruction, its accuracy is expected to be improved by combining multiple image prior distributions. However, finding the optimal combination of prior weights by cross-validation method is usually intractable in terms of the exponential calculation cost. In our previous study, we introduced a constrained ensemble learning method to realize using such multiple priors with the linear order computational cost. Moreover, we made theoretical justification of the proposed method, which approximates the posterior mean estimate. In this research, we refine the theoretical justification and validate the method with more image priors.

Key words: ensemble learning, MR image reconstruction, compressed sensing, posterior mean estimate

X線CT画像上の雑音分散に対する

検出器モデルの影響

田之上 和矢*1 池田 充*1 梅田 祐司*1

藤井 啓輔*1 川浦 稚代*1 今井 國治*1

要旨

雑音を量子雑音に限定した場合における X 線 CT 画像上の関心領域内の(「空間平均」の意味での) 雑音分 散の(「集団平均」の意味での))期待値について, X 線検出器のモデル(quantum counter と energy integrating detector)の差が与える影響について検討した.両検出器モデルの出力が類似した結果を与える条件下で, CT 画像上の関心領域内の雑音分散の期待値について,解析的に計算した結果と仮想的な撮影系を使用した シミュレーション画像から推定した値について検討した.両モデルにおいて,解析的に計算した期待値は シミュレーション画像から推定した値とよく一致した.また,両モデル間で,雑音分散の値の差は少ない 結果となった.今回の検討結果からは,両モデルの CT 画像上の関心領域内の雑音分散に与える影響は少 なく,同雑音分散に関する検討において簡易な quantum counter モデルでの検討の高い頑健性が示唆された. キーワード: CT, 画質評価, 被ばく線量

1. はじめに

現在, X線 CT (Computed Tomography)検査 は臨床の場において医学診断に大きな貢献を しているが,使用される機会が非常に増加し被 ばく線量が大きな問題となっている.同画像の 画質評価に関する検討もこれまで数多くなさ れているが,均一な CT 値を有することが期待 される画像領域における CT 値の変動の分散で ある X線 CT 画像上の雑音分散は,最も基本的 な指標であるとともに最も多用されているも のの一つである.我々はこれまでに,雑音を量 子雑音に限定した場合における X線 CT 画像上 の関心領域内の(確率過程論での「空間平均」 の意味での)雑音分散の[確率過程論での「集 団(集合)平均」の意味での]期待値について,

*1 名古屋大学大学院医学系研究科

〔〒461-8673 名古屋市東区大幸南一丁目1番 20 号〕

e-mail: tanoue.kazuya@e.mbox.nagoya-u.ac.jp

文献[1,2]と同様な方法を使用して解析的に計 算することについての検討を行い、同方法の精 度がよいことを確認してきた[3]. しかし、これ までの検討において対象とした仮想的な X 線 CT 撮影系の X 線検出器のモデルは、すべて quantum counter としていた. この場合, 被写体 透過後の X 線検出器で検出される X 線光子数 のゆらぎはポアソン分布に従うことになる. 一 方で、現在臨床の場で使用されている X線 CT における X線検出器により近いモデルは energy integrating detector として知られているものであ る. energy integrating detector モデルでは, X線 検出器の出力の X 線量のゆらぎはポアソン分 布とは異なるものとなることもよく知られて いる.今回,雑音を量子雑音に限定した場合に おける X 線 CT 画像上の関心領域内の(「空間 平均」の意味での)雑音分散の(「集団平均」の 意味での)期待値について,仮想的な X 線 CT 撮影系のX線検出器にこれらの2種類の検出器 のモデルを適応した場合に生じる差について 検討したので報告する. 今回は, 両検出器モデ ルの出力が類似した結果を与える条件下で,解 析的に計算した値と仮想的な撮影系を使用し たシミュレーション画像から推定した値につ いての検討を実施した.

2. 方法

2.1. 仮想的な X 線 CT 撮影系

今回使用した仮想的な X 線 CT 撮影装置は, ファンビーム投影方式とし, 各ビームの X 線雑 音に関する性状は常に同一であるものとし, か つ, ビーム間で相関はないものとした. X 線入 射光子数は空気を通過した際に1検出器あたり 10⁶個とし, 管電圧 120 kV, ファン角 27.3°, 検 出器数 720 個, FOV (field of view) は 19.2 cm, X 線焦点-回転中心間距離を 60 cm, 再構成画 像の画素数を 512 × 512 pixels とした.

2.2. X線検出器モデル

quantum counter モデルを使用した際のX線検 出器の出力は X 線検出器に到達した光子数と した.

energy integrating detector モデルを使用した際のX線検出器の出力は、以下のようにモデル化した[4]. エネルギが EのX線光子が検出器に到達した際、同光子数に係数g(E) = GEを掛けたものをX線検出器の出力をとし、エネルギ・ビンごとにこのようにして計算した値の和を最終的な出力とした.ここで、G は変換係数と呼ばれる定数である.今回の検討では、X線のエネルギ・ビンを10 keV として区分化して実施した.また、変換係数Gの値は、X線光子のゆらぎがない場合において、quantum counter モデルの出力と energy integrating detector モデルの出力が検討した範囲内で最も類似したものとなる値とした.

2.3. X 線光子のゆらぎ

X線検出器に到達したX線光子数のゆらぎが ポアソン分布に従うことはよく知られている が,X線検出器がquantum counter モデルの場合, 同検出器の出力のゆらぎは(そのまま)ポアソ ン分布に従うことになる.一方,X線検出器が energy integrating detector モデルの場合は、同検 出器の出力のゆらぎは、単純なポアソン分布で はなく複合ポアソン分布(compound Poisson distribution)に従うことが知られている[4].

2.4. 解析対象画像

今回,水で満たされた直径 15.3 cm の円柱に 相当する数値ファントムを被写体とし,上記の 仮想的な X線 CT 撮影装置で撮影した際の再構 成画像を解析対象画像とした(図1参照).

2.5. 関心領域の設定

今回の検討では、既述の解析対象画像内に、 同再構成画像の中心から等距離(100 pixels)の 4箇所の位置を中心とする、11 × 11 pixels の正 方形の関心領域を設定した(図1参照).そし て、これらの関心領域内における(「空間平均」 の意味での)雑音分散の値について検討した.

図1 解析対象画像と設定した関心領域の位置

2.6. 雑音分散の値の検討方法

X線CT画像上の関心領域内の(「空間平均」 の意味での)雑音分散(不偏分散に相当するも のとする)の値の(「集団平均」の意味での) 期待値は,関心領域内の確率変数としてのCT 値を X_i (i = 1, ..., N), $E(X_i) \delta X_i$ の(「集団平均」 の意味での)期待値, $Var(X_i) \delta X_i$ の(「集団平均」 の意味での)分散, $Cov(X_i, X_j) \delta X_i \delta X_j$ の(「集 団平均」の意味での)共分散, とそれぞれ表記 した際に,式(1)のように与えられる.雑音を量 子雑音に限定した場合の関心領域における (「空間平均」の意味での)雑音分散の値の(「集 団平均」の意味での)期待値を各画素における (「集団平均」の意味での) 雑音分散について, X線検出器に到達したX線光子数のゆらぎが単 純なポアソン分布に従うものとして,既述の数 値ファントムに対して同値の(「集団平均」の 意味での)期待値を与える式(1)から文献[1,2] と同様な方法を使用して計算した.一方,既述 のX線CT画像上の関心領域内の(「空間平均」 の意味での)雑音分散の値の(「集団平均」の 意味での)期待値と各画素における(「集団平 均」の意味での)雑音分散を,既述の数値ファ ントムを2種類のX線検出器モデルを使用して 仮想的なX線CT撮影系で撮影した300枚のシ ミュレーション画像を使用して,bootstrap標本 数を2000とするbootstrap法によって推定した.

3. 結果

3.1. CT 画像上の各画素における「集団平均」 の意味での雑音分散に関する検討結果

X線CT画像上の各画素における(「集団平均」 の意味での) 雑音分散について、X 線検出器に 到達した X 線光子数のゆらぎが単純なポアソ ン分布に従うものとして解析的に計算した値 に対する、2 種類の各検出器モデルを使用した 仮想的なX線CT撮影系によって作成したX線 画像から推定した値との散布図を図2・図3に 示す. また, 図中の線形回帰式は, X線光子数 のゆらぎが単純なポアソン分布に従うものと して解析的に計算した値を独立変数とし, 各検 出器モデルを使用した仮想的な X線 CT 撮影系 によって作成した X 線画像から推定した値を 従属変数としたものである. 各検出器モデルに おいて、両者の間には強い正の線形相関が認め られ、また、回帰式の傾きは1に近い値となっ た.

3.2. 関心領域における「空間平均」の意味での雑音分散に関する検討

既述の関心領域における(「空間平均」の意味 での)雑音分散について,これらの4か所の関 心領域における結果は,2種類のX線検出器モ デルについて,いずれも同様なものとなった. 以下,上部に設定した関心領域に関する結果の みを示す.X線CT画像上の関心領域内の(「空 間平均」の意味での)雑音分散の値の(「集団 平均」の意味での)期待値について,解析的に 計算した値と2種類のX線検出器モデルを使用 してシミュレーションによって作成した X線 CT 画像から bootstrap 法によって推定した値の 平均値を表1に示す.また,図4に,X線CT 画像上の関心領域内の(「空間平均」の意味で の)雑音分散の値の(「集団平均」の意味での) 期待値について,シミュレーション画像からの 個々の推定値のヒストグラムをX線検出器モ デル別に示す.

	Variance
解析的に計算した期待値	57.31
quantum counter モデルによる推定値	57.43
energy integrating detector モデルによる推定値	54.56

表2上部に設定した関心領域内の雑音分散

図 4 X 線 CT 画像上の関心領域内の雑音分散の値の推定値のヒストグラム

4. まとめ

今回の検討結果からは、雑音を量子雑音に限 定した場合の関心領域における(「空間平均」 の意味での)雑音分散の値の(「集団平均」の 意味での)期待値について、X線検出器に到達 した X線光子数のゆらぎが単純なポアソン分 布に従うものとして解析的に計算した値は、 quantum counter モデルのみならず、energy integrating detectorモデルを使用したシミュレー ション画像から推定した値ともよく一致した. また、各画素における(「集団平均」の意味で の)雑音分散についても、同様に解析的に計算 した値は、両モデルを使用したシミュレーショ ン画像から推定した値とよく一致した.以上の

ことから、現在臨床の場で使用されている X 線 CT の検出器により近いモデルである energy integrating detector モデルを使用したシミュレー ションによっても、X線検出器に到達したX線 光子数のゆらぎが単純なポアソン分布に従う ものとして解析的に計算する方法の精度が高 いことが確認された. さらに、今回検討した 2 種類のX線検出器モデル間で, 雑音を量子雑音 に限定した場合における(「空間平均」の意味 での) 雑音分散の値の差は少ない結果となった. 今回の検討結果からは、今回検討した2種類の X線検出器モデル間で CT 画像上の関心領域内 の(「空間平均」の意味での)雑音分散に与え る影響は少なく、同雑音分散に関する検討にお いて簡易な quantum counter モデルは高い頑健 性を有することが示唆される結果となった.

謝辞

本研究は, JSPS 科研費 18K07748 [基盤研究 (C)] の助成を受けた.

利益相反の有無

なし

文 献

- Gore J C, Tofts P S: Statistical limitations in computed tomography. Phys Med Biol 23 (6): 1176-1182, 1978
- Wunderlich A, Noo F: Image covariance and lesion detectability in direct fan-beam x-ray computed tomography. Phys Med Biol 53 (10): 2471-2493, 2008
- [3] 梅田祐司,池田充,西尾俊貴他:X線
 CT 画像上の雑音分散に関する検討.平
 成28年度日本生体医工学会東海支部学
 術大会(予稿集):A3-5,2016
- [4] Whiting BR, Massoumzadeh P, Earl OA, et al. Properties of preprocessed sinogram data in x-ray computed tomography. Med Phys 33 (9): 3290-3303, 2006

Effects of detector models on noise variance

in X-ray computed tomography images

Kazuya Tanoue^{*1}, Mitsuru Ikeda^{*1}, Yuuji Umeda^{*1}

Chiyo Yamauchi-Kawaura^{*1}, Keisuke Fujii^{*1}, Kuniharu Imai^{*1}

*1 Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine

We have studied the effects of two detector models, quantum counter and energy integrating detector models, on the ensemble expectation of spatial noise variance in X-ray computed tomography (CT) images, under the assumption that noise is confined to the statistical fluctuations of X-ray photons. In this study, we compared the estimated values of spatial noise variance from the simulation studies of using the two detector models and its analytically-calculated values, when the two detector models output similar values. For the two detector models, the analytically-calculated ensemble expectations of spatial noise variance were well agreed with their estimated values from the simulation studies of using a virtual X-ray CT system. Further, the difference of spatial noise variance was small between the two detector models. The results of this study show that the effects of the two detector models effects were small on spatial noise variance in X-ray computed tomography images, and that the quantum counter model was suggested to have high robustness in the studies of noise variance.

Key words: Computed tomography, Image quality evaluation, Radiation exposure dose

スパース化空間の類似性を利用した単一画像超解像

竹間 康浩^{*1)},大内 翔平^{*1)},伊藤 聡志^{*1)}

要旨

MR 画像など画素数が少ない画像を観察する場合は,画像を補間拡大することが多い.このとき,単なる 補間ではなく,超解像の効果があれば生体の構造をより認識しやすくなり,画像診断の精度を高めることが 期待できる.eFREBAS 変換によりスパース展開された像は全て同サイズであり,かつ,周波数帯域別に分 離した像は互いに類似性を持っている.そこで,eFREBAS 空間像の類似性を利用し,eFREBAS 空間にて 信号を外挿する画像補間法について検討を行った.結果,学習を必要としない提案法による補間像は,深層 学習を利用した超解像法と同等の補間誤差と鮮鋭さを有することが示された.

キーワード: 超解像, 補間, 多重解像度解析, eFREBAS 変換

1 はじめに

低解像度画像から高解像度画像を生成する超解 像は,光学的な撮像処理により解像度の限界を超 える意味から近年のディジタル信号処理による'ぼ け'を伴わない画像拡大処理までさまざまな意味が ある.ハードウェアの性能限界を超える解像度が得 られる超解像への期待は大きく,高解像度ディスプ レイが普及している現代ではその応用範囲も広い. 超解像を医用画像に応用することができれば,画 像の細部構造の観察がより容易になり,画像診断の 精度向上につながるため,その意義は大きいもの がある.

超解像には使用する画像の数より大別すると,観 測された1枚の画像から超解像画像を生成する単 一画像超解像と複数の低解像度画像を合成して高 解像度画像を生成する再構成型超解像がある.単 一画像超解像では,情報量が増えるわけではない ので,一般的に画像のぼけを抑えつつ補間拡大す る手法となる.

一方,再構成型超解像は,複数の異なる画像を利 用する方法が多く,周波数空間の補間により高解

*1 宇都宮大学 大学院工学研究科 情報システム科学専攻

[〒 321-8585 栃木県宇都宮市陽東 7-1-2] e-mail:itohst@is.utsunomiya-u.ac.jp 像度画像を生成することも可能である [1, 2]. しか しながら,高解像度画像の全画素数を未知数とす る問題を解くので画像生成に多くの時間を要する 問題がある.

2010 年に Yang らは新たな超解像として学習型 超解像 (Sparse coding Super Resolution: ScSR) を提案した. ScSR は、まず、スパースコーディン グにより得られた基底に関して低解像度パッチと高 解像度パッチとの対応関係を学習する.そして,入 力された低解像度画像をパッチに分解し、それぞれ のパッチに対し高解像度パッチを割り当てて高解像 度画像を推定する方法である [3]. 学習型超解像は1 枚の入力画像に対し,高解像度画像を推定するので 単一画像超解像と考えることもできるが、学習され たパッチの対応関係には単一画像を超える情報量が 含まれているので,補間を超えた解像度の画像を生 成できる可能性がある.一般に補間処理により画像 を拡大すると輝度値が大きく変化するエッジは補間 に伴いぼやける傾向がある. それに対し、学習型超 解像ではパッチの対応関係を用いて補間画像を生成 するので,エッジ部に鮮鋭さが保たれる.また,近 年ではニューラルネットワークを使用して超解像を 行う方法が注目されている. Dong らは, 3 層の畳 み込みニューラルネットワーク (Super-Resolution Convolutional Neural Network : SRCNN)[4] を使 用して自然画像の超解像を試み, Yang らの方法を

超える信号対雑音比を持つ画像の生成に成功して いる.Dongらの研究を契機としてさらに多くの層 からなるネットワークを使用した超解像法が提案 されるようになった.Dongらは、ネットワークの 層を増やし、最終層のデコンボリューションにより 画像拡大を行うとともに高速化を図る方法 [5]を、 Shiらは、デコンボリューションで生じることのあ る格子状のアーティファクトを低減する方法 [6]を、 Zhangらは、画像の劣化プロセスを考慮した方法 [7]を提案している.深層学習により超解像は様々 な方法が提案され、その性能は年々改善されたも のとなっている.学習型超解像やニューラルネット ワークを使用した方法は、従来の補間法では得ら れない鮮鋭な画像が得られるが、一方で学習に大 量の画像と膨大な時間を必要とする問題がある.

本研究では, 医用画像でも比較的画素数が少な く補間拡大処理がしばしば行われる磁気共鳴画像 (MR 画像)を対象とし、学習を必要としない単一 画像超解像を提案する. MR 画像では, 従来より sinc 関数を利用した補間処理が利用されている [8]. 本研究では画像に対し一種の多重解像度解析を適 用し, 画像に由来する特徴成分の類似性を利用し, 多重解像度空間で信号を外挿することによる超解 像効果を含んだ画像補間法を提案する. 単一画像超 解像であるが、学習を必要としないため直ちに画 像補間を行うことができる利点がある.これまで, 128 × 128 画素の MR 画像を 2 倍に拡大する処理 について基本的な検討を行ってきたが [11],本研究 では、128×128 画素と256×256 画素の画像を2 倍に拡大する場合について詳細に検討し, そして, 提案法による補間画像を従来法および学習型超解 像と比較することにより提案法を有効性を検証す ることを目的とする.

2 スパース表現を利用した画像補間

2.1 eFREBAS 変換

eFREBAS 変換はアルゴリズムの異なる2通り のフレネル変換が実質的に異なる標本化間隔を持 つ性質を利用し,入力画像を任意のサイズにスケー リングした画像群(サブ画像と称する)に展開す る方法である.入力画像と同サイズの画素数から なり,スケーリング係数は任意の実数を取ること ができる.ここで,簡単化のため,一次元信号を扱 うものとする. 変数 Δx を入力画像の画素サイズ, Nをデータ数, mをフレネル変換された信号の折 り返しの次数を表す整数, Dを画像のスケーリン グ係数とすると, eFREBAS 展開像 I_{scale} は以下の 式により表現することができる [9, 10]. eFREBAS 変換では展開スケール Dとして任意の実数を選択 できる.

$$I_{scale}(x) = \frac{1}{DN\Delta x} \sum_{s=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} I(m, x) \operatorname{comb}\left(\frac{x}{D\Delta x}\right) \\ *\delta(x - sDN\Delta x)$$
(1)

$$I(m, x) = \left\{ I(x - mDN\Delta x) * \operatorname{sinc}\left(\frac{2\pi x}{D\Delta x}\right) e^{-j\left(\frac{2m\pi x}{D\Delta x}\right)} \right\} (2)$$

式 (1) の comb(·) はくし形関数,式 (2) の sinc(·) は sinc 関数を意味する.画像 $I(x - mN\Delta x)$ が 異なる帯域幅を有するバンドパスフィルタ関数 sinc $\{2\pi x/(D\Delta x)\}e^{-j2\pi mx/(D\Delta x)}$ によって畳み込 まれた形となっている. eFREBAS 変換により展開 された像(サブ画像と称する)の位置と周波数空 間の領域には対応関係があり,サブ画像群は一種の フィルタバンクを構成する.

2.2 画像補間アルゴリズム

入力画像を *I*,フーリエ変換とその逆変換を *F*, F^{-1} ,スケーリング係数 *D* による eFREBAS 変換 とその逆変換を Ψ_D , Ψ_D^{-1} ,拡大倍率を *r* とする補 間拡大処理を L_r とする.まず,画像 *I* に対しスケー リング係数を *D* と *D* + 2 とした eFREBAS 変換 $\Psi_D I$ と $\Psi_{D+2}I$ をそれぞれ求める.次に、 $\Psi_{D+2}I$ を (D+2)/D 倍に補間拡大し、 $L_{(D+2)/D}\Psi_{D+2}I_L$ を得る.式(3) により、 $\Psi_{D+2}I$ の最も外側の帯域 像を切り出し、 $\Psi_D I$ の外側に外挿する処理 R_p を 行う.(D+2)/D 倍に拡大された eFREBAS 変換 像をスケーリング係数 *D* + 2 で逆変換すると補間 拡大された像 *I*_L を得る [11].

$$I_L = \Psi_{D+2}^{-1} \left[\Psi_D I + R_p L_{(D+2)/D} \Psi_{D+2} I \right]$$
(3)

図1を使用してD = 3とした場合で式(3)のアルゴ リズムを説明する.(a)に示す入力画像 I をスケー リング係数D = 3で eFREBAS 変換した像が(d) であり, $D \times D$ の数のサブ画像に分離される.

図 1: eFREBAS 変換を利用した画像の補間拡大アルゴ

リズム

-	
Alg	gorithm 1 Image interpolation by CSA
1:	Input $\rho = 1/L, \alpha, \beta, J_0 = I_L$
2:	for $i = 1$ to number of iteration do
3:	$I_g = J^k - \rho F^{-1} (v - EFR^k)$
4:	$I_1 = prox_{\rho}(2\alpha I _{BM3D})(I_g)$
5:	$I_2 = prox_{\rho}(2\beta \Psi I_L _1)(I_g)$
6:	$I^k = (I_1 + I_2)/2$
7:	$J^{k+1} = I^k$
8:	end for

図 (d) の外側のサブ画像を推定できれば、超解像 効果を持った画像拡大が可能となる. サブ画像を 展開像の両端に外挿すると,結果として展開像は $(D+2) \times (D+2)$ のサブ画像から構成されるから, スケーリング係数は D+2となる.本研究では,入 力画像をD+2で eFREBAS 展開した像 (b) の最 外郭のサブ画像は、(e)の最外郭に入るべきサブ画 像の分布に類似している特徴を利用する. すなわ ち, サブ画像のサイズを揃えるために (b) の画像を (D+2)/D倍に拡大し. $L_{(D+2)/D}\Psi_{D+2}I$ を作成す る.次に、緑色の枠で囲んだ最も外側のサブバンド 像を抽出する操作 R_p により $R_p L_{(D+2)/D} \Psi_{D+2} I$ を (e)の eFREBAS 信号の外側に外挿する.そして, (e) の信号をスケーリング係数 D+2 で逆 eFRE-BAS 変換 (Ψ_{D+2}^{-1}) すれば、補間拡大された像を得 ることができる.以後,2種類のスケーリング係 数 $D_1 = D \ge D_2 = D + 2$ を使用した提案法を $eFREB-SR(D_1, D_2)$ と表すことにする.

補間外挿した eFREBAS 信号は, 誤差を含むため, スパース性を利用した誤差の軽減を式 (4) により行 う.スパース性を与える Ψの基底は, アーティファ クト除去の観点から式 (3) で使用したものと異なる

図 2: サイズの異なる入力画像に対する eFREBAS 展 開像の相似性: (a) 256×256 画素の画像, (b) 画像 (a) の eFREBAS 展開像 (D=5), (c) 180×180 画素の画像, (d) 画像 (c) の eFREBAS 展開像 (D=5), (e), (f) それぞれ (b) と (d) の黄線上の信号強度分布

関数がよく,本研究では,スケーリング係数の異なる eFREBAS 変換を使用した.式(3)により得られた像を下記の制約付き最小化問題を適用する.

$$\operatorname{argmin}\left\{\frac{1}{2}||v - EFI_L||_2^2 + \alpha ||\Psi I_L||_1 + \beta ||I_L||_{BM3D}\right\}$$
(4)

ここで、vは MR 信号、 Ψ はスパース化関数、 ||·||_{BM3D} は Block Matching and 3 Dimensional Collabolative filter (BM3D)[12] によるノルム、Eは、フーリエ変換空間の信号のうち原点を中心として元画像と同じデータ数だけ抽出する処理を意味する.. 式(4)は、異なるノルムを含んだ最小化問題となっている. この複合ノルム最小化問題を解く方法として本研究では、CSA(Composit Split Algorithm)[13] を用いた. CSA のアルゴリズムをAlgorithm 1 に示す. Lは、リプシッツ係数、 α 、と β は、L1 ノルムと BM3D ノルムに対する重みである.

3 補間拡大実験

eFREBAS 変換によりスパース化された空間の 類似性をみるために,異なる画像サイズの eFRE-BAS 展開像を比較した. 画素サイズが 256×256 と 180×180 の同種の MR 画像をそれぞれを D=5 で eFREBAS 展開した像を図 2(b),(d) に示す. なお, 180 点は 256 点のおよそ 5/7 に相当する. eFREBAS 展開図の黄線上の強度分布を図示したものが (e) と (f) である. 元画像のサイズは異なるが, eFREBAS 展開したサブ画像は,高信号が現れる位置等で相似 性があることがわかる.これは,式(2)にあるよう にバンドパスフィルタ関数で入力画像を畳み込み 積分した結果が eFREBAS 展開のサブ画像になる ことからわかる.入力画像のサイズが異なっても, 展開像の輪郭を周波数成分別に分離するサブ画像 の分布は相似的な分布になる性質がある.本研究 では、図2(b)の最も外側のサブ画像が未知である という問題設定において,画像サイズが小さいが 同じ展開スケールの eFREBAS 展開像 (d) の最外 郭のサブ画像を利用し, 拡大画像を生成するもの である.

提案手法を使用し,画像中央からの距離に応じて 振幅振動の周波数が大きくなるガボールレンズに似 たチャート画像の補間拡大を行った.図3(a)に示 す 256×256 画素の画像を用意し、そのフーリエ変 換信号のうち,中央128×128点の信号から構成さ れる帯域制限像 (b) を入力の低解像度画像とする画 像の補間拡大を行った. 画像 (b) アルゴリズム1 に 従い eFREBAS 変換の D = 3 で展開した像の外側 に、D = 5で展開し補間拡大した eFREB-SR(3,5) 像を作成した. α と β は, スパース化空間と BM3D 処理のしきい値処理にかかわる値である.入力画 像の最大輝度値を1.0とするとき、しきい値の終値 は $1.96 \times 10^{-3} (= 0.5 \times 1/255)$ とした.式(4)の Ψ には、画像拡大に使用した基底と異なる eFREBAS 変換の D = 4 と 7 の基底を交互に使用した. 展開 スケール D = 3 と 5 を使用した場合に 128×128 画 素の拡大像は、214(≈ 128 × 5/3) 画素となるが、 拡大率を2倍とするために補間像のフーリエ変換空 間においてゼロフィル外挿を行い,256×256 画素の 画像とした.比較のために、MR 信号の外側にゼロ データを外挿し, 逆フーリエ変換することにより得 られる sinc 関数補間,ニューラルネットワークを 使用した超解像法して SRCNN(Super-Resolution Convolutional Neural Network) [4] を, 深層学習 を使用した方法として MS-D-Net(The mixed-scale dense convolutional network)[7] を使用した補間を 実施した.このチャート図は人工的な画像なので

図 3: 評価画像の補間拡大結果: (a) 目標とする高分解能 画像 (256×256 画素), (b) 入力画像として使用した (a) の 低解像度画像 (128×128), (c) SRCNN, (d) SRMD, (e) sinc 関数補間 (zerofill), (f) eFREBAS-SR (3,5), (a) の 赤枠の拡大図と (a) 図の黄線上の振幅分布を示す.

SRCNN と MS-D-Net では MR 画像ではなく, 自 然画像で学習したモデルを使用して拡大を行った. 結果を図 3 に示す.細部の構造を見やすくするた めに,各画像において図 (a)の赤枠部に対応する拡 大図を左上に示す.また,図 (a)の黄線部上の振幅 分布を下部に示す.拡大図の矢印 A の部分をみる と SRCNN は,入力画像 (b) では認識できない細 かい縞模様を復元できているが,入力画像のジャ ギーをそのまま拡大した形となっており縞模様の 輝度値変化が滑らかでない.sinc 関数補間は滑ら かな補間像が得られているが, 縞模様に解像度は 入力画像の (b) と同程度である.(d) の MS-D-Net

表 1 各画像補間法の PSNR と SSIM					
method	128 -	$\rightarrow 256$	$256 \rightarrow 512$		
	PSNR	SSIM	PSNR	SSIM	
Sinc	28.08	0.9535	31.73	0.9488	
Bicubic	26.56	0.9379	30.38	0.9365	
\mathbf{ScSR}	28.38	0.9573	31.77	0.9500	
SRCNN	28.48	0.9549	31.81	0.9516	
MS-D-Net	29.32	0.9621	32.38	0.9523	
eF-SR(1,3)	29.21	0.9614	32.26	0.9527	
eF-SR(3,5)	28.63	0.9556	31.83	0.9500	

eF-SR(1,3) と eF-SR(3,5) は、それぞれ eFREB-SR(1,3) と eFREB-SR(3,5) を示す.

は (c) のようなジャギーは殆どみられず,細かい振動が復元されている. (f) の提案法による像は sinc 関数補間に似て滑らかに補間処理が行われ,かつ sinc 関数補間よりも解像度の高い画像が得られた. 振幅分布の比較では,赤い破線枠の中で SRCNN と MS-D-Net は sinc 関数補間に比べて高い振動成 分の復元精度が高く,(b)を超える振動成分が復元 されている. (f) の eFREB-SR では,赤枠内 B と C の画像端で振動成分の振幅が (d) や (e) の画像よ り大きく,さらに良好な復元が行われていること がわかる.

次に MR 像を対象とした画像拡大実験を行った. 学習と評価に使用した画像はすべて文書により同意 を得たボランティア像である. ScSR と SRCNN で はキャノンメディカル製 1.5T MRI を使用して撮像 された100枚の画像を学習に使用した.評価には学 習に使用していない 10 枚の画像を使用した.比較 法として図3で使用した方法にScSR[3]を加えて画 像補間を行った.実験は 256×256 画素と 512×512 画素の高解像度画像からそれぞれ 128×128 画素と 256×256 画素の低解像度画像を作成し、低解像度画 像を2倍に拡大する処理を行った.評価方法は,高解 像度画像と補間拡大像の平方平均二乗誤差を画素値 の最大値との比を取る PSNR(peak signal-to-noise ratio),および画像が持つ構造的な特徴の保存性を 評価する SSIM (structural similarity index)[14] を 使用した.

$$PSNR = 20 \log_{10} \frac{\max[I_L]}{RMSE}$$
(5)

PSNR と SSIM の評価結果を表 1 に示す. ScSR と SRCNN は, いずれも Bicubic や sinc 関数補間よ り高い PSNR と SSIM 値を示した. MS-D-Net は, 比較した補間法の中で平均的に最も高い PSNR で あり,補間に伴う誤差が少ないことがわかる. 提案 法では, eFREB-SR(1,3) が eFREB-SR(3,5) とも 高い PSNR 値であったが, eFREB-SR(1,3) の方が やや高い PSNR と SSIM 値を示し, MD-D-Net に 近い値が得られた.

4 まとめ

画像のスパース表現として eFREBAS 変換を利 用し,スパース化された空間における分布の相似 性を利用した画像拡大法について検討を行った.分 解能評価用に使用した実験と MR 画像を使用した 実験とから提案法は sinc 関数補間よりも鮮鋭であ り,ディープラーニングを使用する MS-D-Net に 比肩する高い PSNR と分解能を有する画像が得ら れることが示された.今後は,拡大率の変更やさら なる高分解能化について検討を行う予定である.

謝 辞

本研究の一部は,科学研究費助成金 (16K06379, 19K04423) により実施された.また,MR 画像を 提供いただいたキャノンメディカルシステムズに感 謝の意を表します.

利益相反の有無

なし.

文 献

- Tsai R, Huang T: Multiframe Image Restoration and Registration. Adv Comput Vis Image Process, 1: 317–339, 1984
- [2] Stark H, Oskoui P: High-resolution Image Recovery from Image Plane Arrays, using Convex Projections. J Opt Soc Am A, Opt Image Sci, 6: 1715–1726, 1989
- [3] Yang J, Wright J, Huang T et al.: Image Super-resolution via Sparse Representation. IEEE Trans Image Process, 19: 2861–2873, 2010
- [4] Dong C, Loy CC, He K et al. : Image Super-resolution using Deep Convolutional Networks. IEEE Trans on PAMI, 38: 295– 307, 2015
- [5] Dong C, Loy CC, Tang X : Accelerating the Super-Resolution Convolutional Neural Network. European Conference on Computer Vision (ECCV): 391–407, 2016

- [6] Shi W, Caballero J, Hszar F et al. : Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR): 1874–1883, 2016
- [7] K Zhang, W Zuo, L Zhang : Learning a Single Convolutional Super-resolution Network for Multiple Degradations. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR): 3262–3271, 2018
- [8] 高橋哲彦, 瀧澤将宏: MRI 画像再構成のオーバービュー. Medical Imaging Technology 31: 26-31, 2013
- [9] Ito S, Yamada Y: Multiresolution Image analysis using dual Fresnel transform Pairs and Application to Medical Image Denoising. IEEE ICIP2003 Map8.7, Barcelona, Spain, 2003

- [10] 伊藤聡志,山田芳文: 拡張 FREBAS 変換を利 用した雑音画像の多段階鮮鋭化. 信学論 J93-D: 999–1008, 2010
- [11] 竹間康浩, 柴田光貴, 伊藤聡志: スパースコー ディングを利用した単一画像超解像に関する検 討. 第 37 回日本医用画像工学会大会, OP7-3: 262-268, 2018
- [12] Davov K, Foi A, Katkovnik V et al.: Efficient MR image reconstruction for compressed MR imaging. Medical Image Analysis 15: 2080– 2095, 2007
- [13] Huan J, Zhang S, Metaxas D: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans Image Proc 16: 2080–2095, 2007
- [14] Wang Z, Bovik AC, Sheikh HR et al. : Image Quality Assessment :From Error Visibility to Structural Similarity. IEEE Trans. Image Process 13: 600–612, 2004

Single-image Super Resolution using the Similarity of Sparsified Space

Yasuhiro CHIKUMA*1, Shohei OUCHI, Satoshi ITO*1 *1 Graduate School of Engineering, Utsunomiya University

Higher spatial resolution is required in many image processing applications, therefore, super-resolution has attracted attentions in recent years. If super-resolution can be applied to the sectional image of a living tissue, it will improve the accuracy of image diagnosis. In this study, a new image magnification method is proposed and demonstrated, in which the eFREBAS transform is used as sparse coding. Obtained images were compared with learning based super-resolution method (ScSR) in terms of PSNR and SSIM. Experiments showed that obtained images in proposed method showed comparative PSNRs and SSIMs to Deep Learning based method for MR images. In addition, interpolated images have higher resolution and have much more details of the subject than that of Dictionary based method. These studies indicate that proposed method is effective for image magnification of medical images.

微小金属のアーチファクト補正を目的とした

X線トモシンセシス装置の検討

山川 恵介*1 高橋 啓子*2 中村 正*2

要旨

近年,乳房や整形で用いられる X 線トモシンセシスにおいて,代表的なフィルタ補正逆投影法(Filtered Back Projection method:以下,FBP法)[1]では投影データの角度欠損により,金属と軟部組織間等の吸収値差が大きい条件で金属アーチファクトが増加する.これを低減するため,断層画像撮影では画像の金属位置に基づく投影データの補間法が用いられるが,トモシンセシスでは位置毎のアーチファクトのばらつきが大きく画像上の金属抽出が困難であった.報告者は JAMIT2018 にて,全ての投影角度の投影データを仮想 3 次元データとし,3 次元領域拡張法を用いた投影データ金属抽出法を提案したが,ピン等の小さな金属になるほど角度方向の領域拡張の精度が低下する課題があった.そこで小さい金属の抽出精度向上を目的として,投影角度間の金属の相関情報を用いる方法を提案する.整形用固定具を模擬したファントム実験において,周辺領域の画質を維持し高いアーチファクト低減効果が得られたので報告する.

キーワード:トモシンセシス,金属アーチファクト補正

1. はじめに

近年,乳房や整形外科領域において,X線 デジタルトモシンセシス(以下,トモ)装置 が用いられている.DT装置は,X線診断装 置の検出器を固定または移動させながら,被 写体を一部の投影角度から撮影し,X線投影 データから被写体のX線吸収係数を示す断層 像(以下,トモ画像)を得る装置である.DT 装置は近年CTで用いられるFBP法の応用に より,各種診断で臨床応用されている[2].

トモ装置は,180 度以上の方向から撮影する X線 CT と比較して,20 度や40 度の一部

*1 日立製作所 研究開発グループ [〒185-8601 国分寺市東恋ヶ窪 1-280] e-mail: keisuke.yamakawa.fd@hitachi.com *2 日立製作所 ヘルスケアビジネスユ ニット

の投影角度で収集される為、角度欠損により アーチファクトが発生する課題がある.FBP 法によるトモ画像では,特に金属と骨梁間等 の吸収値差が大きい条件で金属アーチファク トが増加する.これを低減する為,X線CT では画像の金属位置に基づく投影データの補 間法[3]が用いられるが、トモ装置では位置毎 の金属アーチファクトのばらつきが大きく画 像上の金属抽出が困難で,境界部の金属アー チファクト低減が不十分な場合がある.これ まで3次元領域拡張法を用いた投影データ金 属抽出法を提案している[4]が、ピン等の小さ な金属になるほど角度方向の領域拡張の精度 が低下する課題があった. そこで小さい金属 の抽出精度向上を目的として、投影角度間の 金属の相関情報を用いる方法を提案する.整 形用固定具を模擬したファントム実験におい て、 周辺領域の画質を維持し高いアーチファ クト低減効果が得られたので報告する.

2. **方法**

従来法[4]では,全ての投影角度θの投影デ $- \beta(\mathbf{x}, \mathbf{y})$ から成る仮想3次元データ($\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}$) 上で、操作者が金属の一部を代表開始点とし て選択し,領域拡張法により金属を抽出する. 次に抽出後の金属に対して,周辺情報との差 が小さくなるよう投影データの値を抑制する. 金属抑制後の投影データに FBP 再構成を実 施後,別途作成した金属画像の位置に基づき, トモ画像上の抑制された金属の値を復元する. これにより FBP 再構成時, 金属と周辺情報の 差が小さくなる為, 金属アーチファクトを低 減できる.一方,ピン等の小さな金属になる ほど隣接する投影角度間の金属が不連続とな ることで,角度方向の領域拡張の精度が低下 する課題があった. そこで抽出精度を向上す るため、投影角度方向に不連続な金属を擬似 的な連続体に変換する.従来法に加えて、零 平均正規化相互相関[5]を用いたパターンマ ッチングにより連続体に変換する角度マッチ ング処理法を提案した.

X線透視診断装置 EXAVISTA(日立製)の トモ機能を用い,X線の照射条件は管電圧 70kV,管電流160mA,撮影時間14msec/投影, 投影角度40度,投影数75とした.画像評価 の為,図1に示すように整形外科用の人工股 関節の装着に必要なスクリューとピンを想定 し,豚の骨に固定したファントムを用いた.

Metal pin Metal cylindrical column

(a) ファントム概観(b)図1 ファントム実験

(b) トモ画像 ム実験

3. 結果

従来の金属抽出法,提案法において,ピン 周辺を拡大したトモ画像を図2に示す.図2 (a)の従来法では,X線源の回転方向に相当 する横方向への負値の金属アーチファクト成 分(矢印2箇所)が大きいが,図2(b)の提 案法により低減でき,金属アーチファクトに 埋もれた組織情報を確認できた.

 図2
 ファントムにおける従来法,提案法の比較

4. まとめ

本報告では従来の領域拡張ベースの金属抽 出法に加えて、相関係数を用いたパターンマ ッチングにより連続体に変換する角度マッチ ング処理法を提案した.本方法により挿入す る金属の大小によらず、高精度な金属アーチ ファクト低減効果を期待できる.

利益相反の有無

山川恵介,高橋啓子,中村正は㈱日立製作 所の社員である.

販売名:汎用 X 線透視診断装置 EXAVISTA 医療機器認証番号: 220ABBZX00236000

文 献

- [1] Feldkamp, L. A., et al: Practical cone-beam algorithm. J. Opt. Soc. Am, A1, pp612-619, 1984
- [2] H. Machida, et al: Whole-Body Clinical Applications of Digital Tomosynthesis. Radiographics, 36(3), pp735-750, 2016
- [3] W. A. Kalender, et al: Reduction of CT Artifacts Caused by Metallic Implants. Radiology, pp576-577, 1987
- [4] 山川恵介他: X線トモシンセシス装置に おける金属アーチファクト補正技術の検 討.第37回日本医用画像工学会大会予稿 集:225-226,2018
- [5]橋本学:テンプレートマッチングの魅力. 第 19 回画像センシングシンポジウムチ ュートリアル講演会,2013

Evaluation of Artifact Correction for Small Metal in X-ray

Tomosynthesis

Keisuke YAMAKAWA^{*1}, Keiko TAKAHASHI^{*2}, Tadashi NAKAMURA^{*2}

*1 Hitachi, Ltd. Research & Development Group *2 Hitachi, Ltd. Healthcare Business Unit

The X-ray digital tomosynthesis (DT) image reconstructed by limited projection angles causes severe metal artifacts compared with CT acquired at over 180 degrees. The region growing (RG) was applied to detect metal in the projection data. The conventional method which we proposed in 2018 needs accurate metal extraction based on 3D region growing. The method cannot extract small metals such as pins, because of discontinuity of the metal in 3D projection data. A novel method is proposed to separate the metal from projection data by combining pattern matching between neighboring projection angle. The proposed method was compared with the conventional method based on 3D region growing. In the phantom, the proposed method reduced the metal artifact close to metals.

Key words: Tomosynthesis, Metal Artifact Correction

敵対的生成ネットワークを利用した MR 圧縮センシング

再構成の基礎検討

大内 翔平*1, 伊藤 聡志*1

要旨

MRIの撮像高速化を目的として圧縮センシングが応用されているが、画像再構成にはL1-L2 ノルム最小化問題を解く ための反復処理が必要であり、極めて多くの時間を要する.また、再構成像に人工的な様相が生じる場合がある. 近年では CNN を利用した圧縮センシング再構成が提案されており、再構成像の品質および、再構成時間の面で従前 の反復処理を伴う解法よりも優れることから、大きな注目を集めている.本研究では、2 つの CNN を敵対的に学習さ せる生成モデルである、敵対的生成ネットワーク(Generative Adversarial Network : GAN)を圧縮センシング再構成に適用 し、既存の反復的再構成法と比較した画質評価を行った.

キーワード: GAN, 圧縮センシング, 再構成, CNN

1. はじめに

MRI(Magnetic Resonance Imaging)では、X線CT と比較して患者への負担を最小限に留めながら、 高品質な画像を得ることが可能である.しかし、 撮像には極めて多くの時間を要する問題がある. これは信号収集に時間を要することに起因して おり、撮像時間を高速化するための数々の手法 が提案されている.なかでも、圧縮センシング (Compressed Sensing: CS)[1][2]をMRIの画像再構 成に応用する手法[3]は、大きな注目を集めてい る.CSによれば、サンプリング定理を満足しな い少数信号からの画像再構成が可能なため撮像 時間が短縮化される.しかし、再構成ではL1-L2 ノルム最小化問題を反復的に解くことから、再 構成処理に極めて多くの時間を要する.

一方で, 近年では CNN(Convolutional Neural

Network)を利用した CS 再構成の研究が進められ ている[4]. CNN による再構成法は、学習に時間 を要することが課題であるが、一度学習を行え ば、反復処理を伴わない高速な再構成が可能で あり、これまでに種々の方式が提案されている [5][6][7][8]. また、CNN による再構成法は、再構 成像の品質と再構成時間の面で、従来の反復的 再構成法よりも優れた性能を示すことが報告さ れており、大きな注目を集めている[9][10].

加えて,近年の一般的な画像処理問題では,敵 対的生成ネットワーク(Generative Adversarial Network:GAN)を利用した研究が盛んである[11]. GAN は元来,ランダムノイズを元に画像を生成 する,生成モデルの一種であるが,拘束条件を与 えることで生成データの制御を可能とした conditional GAN[12]も存在する.conditional GAN の登場により,画像間の変換処理にもGAN が応 用[13]され始め,従来のCNN よりも優れた性能 を発揮することからGANの利用が急速に拡大し

 ^{*1} 宇都宮大学大学院 工学研究科 情報システム科学専攻
 [〒321-8585 栃木県宇都宮市陽東 7-1-2]
 e-mail: mt186504@cc.utsunomiya-u.ac.jp

ている.

そこで、本研究では再構成像の品質を改善す ることを目的として conditional GAN をベースと した、 CS 再構成の基礎検討を行った. 既存の反 復的再構成法および他の CNN による再構成法と の比較検討を通して、本手法の有効性を検討す ることを目的とする.

2. 敵対的生成ネットワーク(GAN)

敵対的生成ネットワーク(GAN)は、Goodfellow ら[11]が提案した、ニューラルネットワーク(NN) を用いた生成モデルであり、generator(生成器) とdiscriminator(識別器)の2つのNNから構成 される.generatorは、与えられた教師データに類 似したデータを生成できるように学習を行う. 一方のdiscriminatorには、generatorが生成したデ ータと教師データが共に与えられ、それらを正 しく識別できるように学習を行う.2つのNNを 敵対的に学習させることで、最終的には discriminatorが教師データと誤認識するような精 度のデータを generator で生成することを目指す.

NN による画像処理問題では, CNN を用いる ことが一般的である. GAN においても, 画像処 理問題に応用するために, ネットワークに CNN を利用する DCGAN(Deep Convolutional GAN)が Radford ら[14]によって提案された.

また,GANのNNにテキストや画像などの情報を拘束条件として与えることで,特定の入力 データに対して所望の処理を施した出力が得ら れるGAN(conditional GAN)がMirzaら[12]によっ

図 1 GAN による再構成ネットワークの概要図

て提案されている.

3. 圧縮センシング再構成への応用

本研究では、Yangら[15]が提案した手法をベー スに, conditional GAN による CS 再構成を行う. 本手法の概要を図1に示す.generatorはU-Net[16] をベースとした全 16 層の CNN である. 前半 8 層が畳み込み、後半8層が逆畳み込みであり、各 層が Batch Normalization と leaky ReLU を持つ構 成である. 一方の discriminator は, 全11 層の CNN であり、各層が畳み込み・Batch Normalization・ leaky ReLU を持つ構成である. 各 CNN の出力層 の活性化関数には, generator に hyperbolic tangent 関数を, discriminator に sigmoid 関数を使用して いる.本手法では, generator にエイリアシングア ーチファクトが重畳されたゼロフィル再構成像 を与え、アーチファクトを除去した再構成像を 生成する. discriminator が、この再構成像を教師 データとして与えたフルデータ像と誤認識する まで学習を行う. conditional GAN をベースとし た本手法の損失関数は以下で与えられる. θ_D, θ_G は CNN のパラメータを, xtはフルデータ像を, xuはゼロフィル再構成像を示している. また, D(x)は discriminator が, xを教師データと識別す る確率を示している. したがって, generator は式 (1)を最小化することを目指し, discriminator は式 (1)を最大化することを目指す.

$$\begin{split} \min_{\theta_G} \max_{\theta_D} \mathcal{L}_{GAN} \left(\theta_D, \theta_G \right) \\ = \mathbb{E}_{x_t \sim p_{train}(x_t)} [\log D_{\theta_D}(x_t)] \end{split}$$

(1)

 $+ \mathbb{E}_{x_u \sim p_G(x_u)} \left[-\log(D_{\theta_D}(G_{\theta_G}(x_u))) \right]$

本手法のgeneratorでは式(1)の右辺第2項に加え, フルデータ像とgeneratorによる再構成像の画像 空間・信号空間での平均二乗誤差とperceptual loss[17]の計4要素の和を損失関数として用いる. perceptual lossの導出には, ImageNetで学習を行 った VGG16[18]を使用した.

4. 画像再構成シミュレーション

4.1 学習・検証および再構成用画像

本研究では GAN の学習・検証および再構成の テストに IXIdataset[19]に含まれる頭部のプロト ン密度強調像を使用した.使用した画像はいず れも Philips 製の 1.5T の MRI を用いて撮像され ており,画像サイズが 256×256 の位相情報を持 たない絶対値画像である.また,学習と検証には 100 名分の計 12,955 枚の画像(学習用に 70%, 検証用に 30%を使用)を,再構成には 1 名分の 計 40 枚の画像を使用した.

学習時のデータセットは、入力データをゼロ フィル再構成像、教師データをフルデータ像と する. ゼロフィル再構成像は、フルデータ像の k 空間に対して図 2 に示す 2 次元ランダム収集お よび 1 次元ランダム収集を適用し、信号の非収 集点にゼロデータを挿入して作成した.いずれ の信号収集点分布も、信号量は40%である.

4.2 既存手法との比較

本研究では、GAN による再構成法との比較と して、既存の反復的再構成法である、反復的ソフ トしきい値法(ISTA)[3]による再構成を行った. 再 構成像の画質評価には PSNR(Peak Signal-to-Noise Ratio)と SSIM(Structural SIMilarity index)[20]を使 用した.

また、本研究では表1に示す環境の計算機を使用しており、GANの学習・再構成にはGPUを使用した.GANの学習には、約8時間を要した.

CPU	Intel Core i7-7700 (3.6GHz)			
RAM	32GB (DDR4-2400)			
GPU	NVIDIA GeForce GTX1080Ti			
	Python 3.5			
Software	Tensorflow 1.10.0			
	CUDA Toolkit 9.0 / cuDNN 7.0.5			

表1 計算機環境

図 2 信号収集点分布: (a)2 次元ランダム収集, (b)1 次元ランダム収集

4.3 画像再構成

2 次元ランダム収集を適用した際の再構成結 果を図3に,1次元ランダム収集を適用した際の 再構成結果を図4に示す.また,再構成像のPSNR, SSIMを表2に示す.

2 次元ランダム収集を適用した場合, ISTA で は被写体構造を概ね復元できたが, 平滑化が目 立っていた. GAN による再構成では, アーチフ ァクトの残留および, 被写体構造の損失が見ら れたが, ISTA よりも再構成像が鮮鋭であった.

1次元ランダム収集を適用した場合, ISTA では 平滑化処理の影響が強く, 脳溝が潰れている箇 所も見られた. GAN による再構成では, アーチ ファクトの残留が僅かに見られるものの, 被写 体構造は良好に描出できていた.

表 2 より, 1 次元ランダム収集では GAN によ る再構成像の PSNR, SSIM が ISTA を上回る結果 となった.

5. 考察

図3および図4の再構成結果より、反復的再構成法である ISTA では、平滑化が目立っていた. 反復的再構成法では、再構成処理の際に Total Variation を行うが、この影響が強く現れたことに 起因する.

GANでは、2次元ランダム収集を適用した場合, 被写体構造の保存性が1次元ランダム収集を適 用した場合より劣っていた.これは、CNNに入 力したゼロフィル再構成像の被写体構造の消失 度合いに依存することが原因である.ゼロフィ ル再構成像に生じるアーチファクトは、2次元ラ ンダム収集ではインコヒーレントであるが、1次 元ランダム収集ではコヒーレントである。生じ るアーチファクトの性質の違いにより、ゼロフ ィル再構成像における被写体構造の保持に関し ては、1次元ランダム収集を適用した方が良好で あり、CNN での再構成処理が2次元ランダム収 集よりも容易であったと考えられる。

6. まとめ

本研究では、敵対的生成ネットワーク(GAN)を 用いた Image Domain Learning による圧縮センシ ング再構成について、基礎検討を行った.シミュ レーションの結果、再構成に成功し、GAN によ る再構成法の有効性を確認できた.今後は画質 の改善に向けた CNN の調整や学習枚数の増加、 様々な信号量での学習等を行う予定である.

謝 辞

本研究の一部は、科学研究費助成(16K06379, 19K04423)により実施された.また、本研究を遂 行する際に利用した IXI Dataset を提供する Information eXtraction from Images プロジェクト に感謝の意を表する.

利益相反の有無

なし

文 献

- [1] Donoho DL: Compressed sensing. IEEE Transactions on Information Theory, **52** : 1289-1306, 2006
- [2] Candès EJ, Wakin MB: An Introduction To Compressive Sampling. IEEE Signal Processing Magazine, 25: 21-30, 2008
- [3] Lustig M, Donoho DL, Pauly JM: Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine, 58 : 1182-1195, 2007
- [4] Wang S, Su Z, Ying L et al: Accelerating magnetic resonance imaging via deep learning. IEEE 13th International Symposium on Biomedical Imaging, Prague, Czech Republic, 2016, pp.514–517

- [5] Han Y, Ye JC : k-Space Deep Learning for Accelerated MRI, arXiv:1805.03779v1
- [6] Lee D, Yoo J, Tak S et al: Deep Residual Learning for Accelerated MRI Using Magnitude and Phase Networks. IEEE Transactions on Biomedical Engineering, 65 : 1985-1995, 2018
- [7] Zhu B, Liu JZ, Cauley SF et al: Image reconstruction by domain-transform manifold learning. Nature, 555: 487-492, 2018
- [8] Akçakaya M, Moeller S, Weingärtner S et al: Scan-specific Robust Artificial-neural-networks for k-space Interpolation (RAKI) reconstruction: Database-free Deep Learning Reconstruction for Fast Imaging. Magnetic Resonance in Medicine, 81: 439-453, 2019
- [9] Han Y, Yoo J, Kim HK et al: Deep Learning with Domain Adaptation for Accelerated Projection-Reconstruction MR. Magnetic Resonance in Medicine, 80: 1189-1205, 2018
- [10] Schlemper J, Caballero J, Hajnal JV et al: A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction. IEEE transactions on Medical Imaging, 37: 491–503, 2018
- [11] Goodfellow IJ, Pouget-Abadie J, Mirza M et al: Generative Adversarial Nets. the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2016, pp.2672-2680
- [12] Mirza M, Osindero S: Conditional Generative Adversarial Nets, arXiv:1411.1784v1
- [13] Isola P, Zhu JY, Zhou T et al: Image-to-Image Translation with Convolutional Adversarial Networks. the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017
- [14] Radford A, Metz L, Chintala S: Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, the 4th International Conference on Learning Representation, San Juan, Puerto Rico, 2016
- [15] Yang G, Yu S, Dong H: DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction, IEEE Transactions on Medical Imaging, 37 : 1310-1321, 2018
- [16] Ronneberger O, Fischer P, Brox T: U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015, pp.234-241

- [17] Johnson J, Alahi A, Fei-Fei L: Perceptual Losses for Real-Time Style Transfer and Super-Resolution, European Conference on Computer Vision 2018, Amsterdam, The Netherlands, 2018
- [18] Simonyan K, Zisserman A: Very deep convolutional networks for large-scale image recognition, the 3th International Conference for Learning Representations, San Diego, USA, 2015
- [19] IXI dataset. https://brain-development.org/ixidataset/
- [20] Wang Z, Bovik AC, Sheikh HR et al : Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13: 600-612, 2004

Pattern	ISTA		GAN		
	PSNR[dB]	SSIM	PSNR[dB]	SSIM	
2D random	33.04	0.9547	30.49	0.9561	
1D random	27.83	0.8972	30.19	0.9530	

表 2 再構成像の PSNR, SSIM

図3 2次元ランダム収集適用時の再構成結果:(a)フルデータ像,(b)ゼロフィル再構成像,(c)ISTAによる 再構成像,(d)GANによる再構成像,注目箇所の拡大図を(a)-(d)の右上に示す

図4 1次元ランダム収集適用時の再構成結果:(a)フルデータ像,(b)ゼロフィル再構成像,(c)ISTA による 再構成像,(d)GAN による再構成像,注目箇所の拡大図を(a)-(d)の右上に示す

MR Compressed Sensing Reconstruction using Generative Adversarial Network

Shohei OUCHI^{*1}, Satoshi ITO^{*1}

*1 Graduate School of Engineering, Utsunomiya University

Compressed Sensing (CS) has been applied to reduce the scan time of MR acquisition. CS image reconstruction requires an iterative process to solve the L1-L2 minimization problem, so it is more computationally intensive than traditional inverse Fourier reconstruction. In addition, the obtained image tends to have artificial appearances.

Recently, CNN-CS (Convolutional Neural Network based CS reconstruction) has been proposed. CNN-CS outperforms traditional CS methods in terms of image quality and reconstruction time.

In this study, we examined CNN-CS using Generative Adversarial Network (GAN) that trains two adversarial CNNs. Reconstruction experiments showed that proposed method outperforms traditional CS methods.

Simulation Study of a Novel Brain PET Scanner Using 100-ps TOF-DOI Sub-millimeter Resolution Detectors

Yingying LI^{*1}, Mitsuo WATANABE^{*2}, Takashi ISOBE^{*2}, Kibo OTE^{*2}, Takahiro MORIYA^{*2}, Aoi TOKUI^{*2}, Tomohide OMURA^{*2}, Huafeng LIU^{*1}

Abstract

A novel brain PET scanner using 100-ps TOF-DOI sub-millimeter resolution detectors is proposed, and a simulation study is performed using the Geant4 application for tomographic emission to estimate the physical properties and the image quality of the scanner. The detector consists of four layers of independent scintillation detectors with an outstanding TOF capability of 100 ps and true first interaction point (FIP) detection ability. The spatial resolution was measured according to NEMA standards. To evaluate the image quality of the scanner, we implemented not only excellent spatial and timing resolution, but also DOI detection with the addition of FIP information. Hot-Derenzo, and NEMA image quality phantom were simulated and analyzed reconstructed images in terms of image quality. Our proposed PET scanner has the potential to open a new field of brain study.

Keywords : brain PET, time-of-flight, depth-of-interaction, first interaction point detection

1. Introduction

Positron emission tomography (PET) is an essential in vivo molecular imaging tool that plays a key role in both research and clinical studies. PET scanners are currently popular in clinical studies, and many efforts have been made to further improve the performance by using various strategies. An ideal PET scanner is expected to have both a high-resolution—less than 0.5 mm full width at half maximum (FWHM) and very close to the limiting spatial resolution—and as high a sensitivity as possible to achieve excellent image quality.

We developed a brain PET scanner, using independent four-layer depth-of-interaction (DOI) detectors [1]. The spatial resolution was approximately 0.9 mm over the whole field of view (FOV). The imaging performance was demonstrated in a study of the human brain and in preclinical studies, and excellent images were obtained. However, there remains room for improvement and for realizing an ideal PET scanner. To further improve the excellent image quality, we propose a novel brain PET scanner using 100-ps time-of-flight depth-of-interaction (TOF-DOI) sub-millimeter resolution detectors with multilayer independent readout structures. This paper describes the proposed concept and the performance evaluation results of the simulation studies.

^{*1} College of Optical Science and Engineering, Zhejiang University

^{[866} Yuhangtang Rd, Hangzhou 310058, P.R. China]

E-mail: liyingying@hpk.co.jp

^{*2} Central Research Laboratory, Hamamatsu Photonics K. K., Japan

2. Materials and Methods

2.1. Brain PET scanner design

A brain PET scanner using 100-ps TOF-DOI sub-millimeter resolution detectors is proposed. The TOF-DOI detector consists of four layers of a LYSO scintillator array coupled with a multi-pixel photon counter (MPPC) array, where the scintillator array has 1.0-mm² crystal segments of 50×50 and the MPPC array has 3.0-mm² chips of 16×16. The scintillator thicknesses of the four layers are designed to be 2.5, 3.0, 4.0, and 6.0 mm, respectively, toward the bottom, to achieve not only a higher DOI resolution, but also a coincidence timing resolution (CTR) capability of less than 100 ps because the photon transfer time spread in the scintillator decreases. The four-layer structure with independent readout also allows us to detect the first interaction point (FIP) by analyzing Compton scatterings across and between the layers. The brain PET scanner has 96 TOF-DOI detectors arranged in a shape with a 400-mm-diameter detector ring and a 206-mm axial FOV. The major characteristics of the brain PET scanner are listed in Table 1.

Detector	
Detector material	LYSO:Ce
Crystal size (mm)	1.0×1.0×2.5, 3, 4,and 6 (50×50 array/unit)
Number of layers	4
Number of crystals	960,000
Photodetector	3.0 mm square MPPC(16×16 array/unit)
Number of MPPCs	98,304
Ring geometry	
Number of detector rings	206
Ring diameter (mm)	400
Ring pitch (mm)	1.0
Number of bank	24 (4 detectors axially)
Transaxial FOV (mm)	300
Axial FOV (mm)	206

Table 1 Major characteristics of a brain PET

2.2. Image reconstruction

The reconstruction method for this study is a list-mode dynamic RAMLA (LM-DRAMA) algorithm. Data corrections, including attenuation and scatter correction, were applied. Images were reconstructed using two iterations and 40 subsets. To evaluate the influence of TOF and FIP on image quality, the reconstruction images were compared in four categories, namely TOF and non-TOF for both winner-takes-all (WTA) and FIP. Moreover, to evaluate the benefit of DOI detection, reconstructed images with and without DOI were also compared. The image matrix size is $120 \times 120 \times 81$ with a voxel size of $2.5 \times 2.5 \times 2.5$ mm³ unless otherwise noted.

2.3. Simulation studies

All phantoms were estimated by means of a Geant4 application for tomographic emission (GATE) simulation toolkit [2]. An energy resolution of 10% FWHM at 511 keV and a coincidence time resolution of 100 ps FWHM were set in the simulation. The energy window and timing window were set to 425-600 keV and 1.5 ns, respectively. As for

data analysis, ASCII-format Hits and Coincidences were collected, as well as delayed data used for random correction. Both the WTA policy as the default mode and true FIP achieved using the Hits and Coincidences data were used for the position of γ -ray detection.

2.3. 1. Reconstructed spatial resolution

Spatial resolution was performed following the NEMA NU2 2018 protocol, but data was reconstructed by LM-DRAMA instead of the FBP method. The image matrix size is 600×600×411 with a voxel size of 0.5×0.5×0.5 mm³. An ¹⁸F point source of 1-MBq activity was placed into each 0.25-mm-diameter water sphere, and the spheres were placed into a cylinder phantom filled with low-activity as a hot background. According to NEMA, approximately 200k coincidences were collected at each sphere. The source was placed in six different positions i.e., at radial offsets of 10, 25, 50, 75, 100, and 125 mm from the center of the FOV, where two axial positions, namely the center and three-eighths of the axial FOV from the center of the FOV, were measured. The FWHM values of the point source images were determined by fitting the radial profile using a Gaussian function.

2.3. 2. Contrast recovery and noise

The required activity of ¹⁸F radioactive water in the NEMA body phantom is approximately 50 MBq to simulate a background concentration of 5.3 Bq/ml. The phantom includes six spherical water lesions with an activity concentration eight times that of the background; it was placed in the center of the FOV. A total of 30M coincidences was collected.

The contrast recovery coefficient (CRC) is defined as:

$$Q_{H,j} = \frac{\binom{C_{H,j}}{c_{B,j}}^{-1}}{\binom{\alpha_{H}}{\alpha_{B}}^{-1}} \times 100\%$$
(1)

where $C_{H,j}$ is the average count in the region of interest (ROI) for each sphere; $C_{B,j}$ the average background ROI count for each sphere; and a_H and a_B the activity concentrations in the hot spheres and background, respectively. Following NEMA, ROIs of the same size as those drawn on the hot spheres were drawn in the background of the phantom on the slices centered on the spheres. Twelve ROIs were drawn in the background of each sphere; thus, sixty ROIs were calculated as the background value. The NEMA body phantom was reconstructed using LM-DRAMA with TOF/non-TOF and WTA/ FIP. The CRC and background variabilities thereof were compared.

2.3. 3. Imaging phantom

A hot-Derenzo phantom was simulated; it was subdivided into six sectors with rod diameters of 1.7, 2.4, 3.5, 4.7, 6.0, and 7.1 mm built into a cylinder phantom with a diameter of 150 mm and height of 37 mm, the source was back-to-back gamma with an energy of 511 keV, and the activity for each rod was 5 kBq. Images were reconstructed using LM-DRAMA with not only TOF/non-TOF and WTA/ FIP, but also DOI/non-DOI.

3. Results

3. 1. Reconstructed spatial resolution

The spatial resolutions reconstructed with the LM-DRAMA for TOF of both WTA and FIP are shown in Fig. 1. Our proposed brain PET system with FIP detection achieved an excellent spatial resolution of the sub-millimeter order in the whole FOV, except for the 125-mm radial distance, especially of less than 0.5 mm FWHM within the 50-mm radial distance.

Fig. 1 Spatial resolution of point sources at different radial and axial positions.

3.2. Contrast recovery and noise

The percentage contrast recovery coefficients for each hot sphere and the percentage background variability values are shown in Table 2. Comparison of the TOF with non-TOF values in both WTA and FIP shows that the TOF reconstruction obviously reduced the background variability by more than half. Moreover, the TOF reconstruction led to a better contrast recovery than non-TOF. In addition, the results show that FIP improved the contrast recovery and background uniformity for both TOF and non-TOF.

Sphere	Contrast (%)			Background variability (%)				
Size	W	/TA		FIP	W	TA	I	FIP
(mm)	TOF	non-TOF	TOF	non-TOF	TOF	non-TOF	TOF	non-TOF
10	28.43	28.43	35.26	33.56	10.68	22.99	8.23	17.34
13	30.30	27.98	42.43	38.88	9.81	17.07	7.54	14.09
17	33.29	32.50	40.12	38.86	10.76	18.02	7.16	14.75
22	37.53	34.76	51.79	43.5	8.49	14.95	7.91	16.09
28	48.06	47.12	57.50	56.75	7.68	14.43	7.99	14.56
37	54.69	49.18	53.60	53.43	5.79	14.15	6.31	13.23

Table 2 Contrast recovery coefficient and background variability for 8:1 sphere-to-background ratio

3.3. Imaging phantom

The TOF, non-TOF, and non-DOI images of the hot-Derenzo phantom centered at the FOV are shown in Fig. 2. The DOI reconstruction significantly improved the image quality, which is easily observed in the smallest diameter rods of 1.7 mm, even in the peripheral region. Compared to non-TOF, TOF provided clear edge information, particularly for rods with a radius of 7.1 mm, as indicated by the arrows in the image. From a visual perspective, images with FIP information have a better image quality such that even the rods with a radius of 1.7 mm are more clearly separated compared to the images with WTA.

Fig. 2 TOF, non-TOF, non-DOI reconstructed images of the hot-Derenzo phantom centered at FOV. Rod diameters are 1.7, 2.4, 3.5, 4.7, 6.0, and 7.1 mm.

4. Discussion and Conclusion

Simulation studies were performed to evaluate the spatial resolution and image quality of our proposed brain PET scanner. The simulation studies confirm that the described system design achieved an excellent spatial resolution of the sub-millimeter order, especially of less than 0.5 mm FWHM within a 50-mm radial distance. Furthermore, the hot-Derenzo phantom was reconstructed and the results show that the system was able to clearly resolve hot rods with radius of 1.7 mm up to a radial distance of 75 mm. For the NEMA body phantom, the TOF reconstruction with 100 ps homogenized the background by more than half, and led to better contrast recovery than that with non-TOF. Additionally, FIP detection improved the contrast recovery and background uniformity compared to that with WTA. In conclusion, the results demonstrate that our proposed brain PET scanner using 100 ps TOF-DOI sub-millimeter resolution detectors has the potential to realize high imaging performance.

Competing interests

The authors declare no competing interests associated with this manuscript.

References

- Watanabe M, Saito A, Isobe T, et al.: Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors. Phys Med Biol 62: 7148-7166, 2017
- [2] Jan S, Santin G, Strul D, et al.: GATE Geant4 Application for Tomographic Emission: a simulation toolkit for PET and SPECT. Phys Med Biol 49: 4543-4561, 2004

サイクル損失を用いた3次元胸部CT像の超解像

河合良亮*1, 斉藤篤*1, 木戸尚治*2, 稲井邦博*3,

木村浩彦*3,清水昭伸*1

要旨

多くの超解像技術では低解像度(Low Resolution; LR)画像とそれに対応した高解像度(High Resolution; HR) 画像を用いている.しかしこの画像組を大量に用意することは困難である.本稿では,深層学習ベースの 超解像処理にサイクル損失を定義し,対応付けのない LR 画像と HR 画像を用いて超解像を実現する方法 について報告する.従来の超解像処理では,ResNet を超解像のための生成器,CNN を偽物と本物の HR を 識別する識別器とし,GAN の枠組みを利用して最適化するが,提案法では LR の再構成損失をサイクル損 失とし,それを含む損失全体の最小化により ResNet を訓練した.この方法を実際の胸部 CT 像に適用して 8 倍の超解像を行い,結果を評価した.本稿では,対応付けのある画像組を用いた超解像との比較も行いな がら,提案法の有効性と限界について議論する.

キーワード:超解像,非対応画像組,サイクル損失,GAN,CT 画像

1. はじめに

3 次元 CT 像は胸部の診断や治療において重要な情報源である[1]. 正確な画像診断のためには,解像度が高いことが望まれるが,撮影装置の制約により十分な解像度が得られるとは限らない.そこで,低解像度(Low-Resolution:LR)画像から高解像度(High-Resolution:HR)画像を復元する超解像技術が注目されている.

超解像技術には辞書ベースの手法[2][3]と深 層学習ベースの手法[4][5]が存在する.一般に深 層学習を用いた手法の性能が高く,例えば,3D-SRGAN[4]は辞書ベースの手法での問題点であ るボケを抑制し,精度を向上させている.しか し,多くの手法では,LR 画像とそれに対応する HR 画像の画像組を必要とし,この画像組を得 るためには,生前に臨床用 CT,死後に摘出標本 のマイクロ CT を撮影する必要があり,容易で はない.

*1 東京農工大学大学院工学研究院

〔〒184-8588 東京都小金井市中町 2-24-

16]

e-mail: s195357s@st.go.tuat.ac.jp

*2 大阪大学大学院医学系研究科

*3 福井大学医学部

本稿では LR と HR の画像組を用いない超解 像処理について述べる. 具体的には, 従来の 3D-SRGAN[4]の生成器である ResNet の損失関数に, 実 LR 画像と生成した LR 画像との差をサイク ル損失[5]として組み込む. また, 実際の CT 像 に適用して性能を評価した結果について報告 する.

2. サイクル損失

提案手法では,式(1),(2)の損失関数を反復的 に最適化する.

$$\max_{\theta_{D}} \left[E_{I^{HR} \sim p_{data}(I^{HR})} [log D_{\theta_{D}}(I^{HR})] + E_{I^{Tri} \sim p_{data}(I^{Tri})} \left[log \left(1 - D_{\theta_{D}} \left(G_{\theta_{G_{SR}}}(I^{Tri}) \right) \right) \right] \right] (1)$$

$$\min_{\theta_{G_{SR}},\theta_{G_{dw}}} \left[E_{I^{Tri} \sim p_{data}(I^{Tri})} \left[log \left(1 - D_{\theta_{D}} \left(G_{\theta_{G_{SR}}}(I^{Tri}) \right) \right) + \lambda_{A} \left\| G_{dw} \left(G_{SR}(I^{Tri}) \right) - I^{Tri} \right\|_{1} \right] \right]$$

$$(2)$$

式中の $\theta_{D_{HR}}$, $\theta_{G_{SR}}$, $\theta_{G_{dw}}$ はそれぞれ識別器, 生成 器のパラメータであり, I^{HR} , I^{Tri} は一辺のサイ ズが 32voxel の実 HR パッチ画像と実 LR パッ チ画像である. ここでパッチ画像とは, 一辺の サイズが 32voxel の部分画像であり, GPU のメ モリの制約などにより用いた. $p_{data}(I^{LR})$ は I^{HR} , I^{Tri} の確率分布であり, D_{θ_D} は実 HR 画像である確率[0,1]である. $G_{\theta_{G_{SP}}}$ は HR 画 像の生成関数で G_{dw} は LR 画像の生成関数, λ_A は 重みである.ここで式(2)の 2 項目がサイクル損 失である. I^{Tri} を入力とし,変換-逆変換を経た 生成 LR パッチ画像と I^{Tri} の L1 ノルム最小化を 目指している.

3. 実験条件及び実験結果

実験には、肺のマイクロ CT 像 (一画素のサ イズ: 0.070×0.066×0.070mm) 使用した. LR 画 像はこの画像を一様平滑化後 (8×8×8voxel), 8 画素おきにサンプリングした. また、学習用 の HR 画像と LR 画像は対応関係を持たないよ うに異なる部位から収集した. テストでは同様 の手順で作成した LR 画像を入力として 8 倍の 超解像を行った. サイクル損失の重み λ_A は 5 と 10 を試行した. 最適化法は Adam[6] (α = 10⁻⁵, β_1 = 0.9, β_2 = 0.999)を用いた.

実験結果を図 1,評価値(PSNR)を表 1 に示す.

	画像組	提案手法	提案手法
		$(\lambda_A=10)$	$(\lambda_A = 5)$
PSNR[dB]	24.9	23.7	23.5

図 1(b)(c)の矢印が示す通り、従来の超解像に 比べて提案手法の超解像はエッジ付近にアー チファクトが発生し、再構成精度が悪いことが わかる.そこで、テスト画像と学習画像の類似 性を評価した.具体的には、まず、図1のテス ト画像の解剖構造を含む局所領域を解剖構造 が約半分になるまで画像上で平行移動させな がら、濃度値の標準偏差と平均の変化を測定し た.次に、その変化の範囲内に含まれる学習画 像の局所領域の割合を求めた.その結果、LR用 の学習画像には 8.3%含まれていたが, HR 用の 学習画像には 0.53%の割合でしか含まれておら ず,図1の様な構造は, HR の学習画像に特に 不十分であることが分かった.このことが,超 解像の精度が悪い理由の一つであると考えら れる.

4. まとめ

本稿では、3DSRGAN にサイクル損失を新たに 組み込むことで、LR と HR の対応する画像組が 不要の超解像処理について述べた.今後は、対 応組がある場合と比較して、不自然なアーチフ ァクトが見られる点や、解剖構造の正確な復元 ができていない点が課題である.そのため、学 習データ数を増やす工夫や LR、HR に同程度の 解剖構造を含むような収集方法の改善、解剖構 造を多く含むパッチ画像に対して重みをつけ て学習をする予定である.

謝辞

日頃から熱心にご討論いただく東京農工大 学 清水昭伸研究室の各位に深謝いたします. 利益相反の有無

無

文 献

- [1] 中村彰太:胸部外科への臨床応用; MicroCTと肺.橋爪誠編:多元計算解剖
 学の基礎と臨床への応用.誠文堂新光
 社,東京,2018,pp228-232
- [2] 石田純也 他: 肺の 3 次元 CT 像からの 光学画像合成に関する研究.東京農工 大学,修士論文,2017
- [3] H. Chang, D.-Y. Yeung, and Y. Xiong: Super-resolution through neighbor embedding, In CVPR, 01:275-282, 2004.
- [4] Tozawa K, et al. :Super resolution of a lung CT volume using a generative adversarial network", in CARS., 2018
- [5] Yuan Yuan et al., :Unsupervised Image Super-Resolution using Cycle-in-Cycle Generative Adversarial Network, CVPR workshop,2018
- [6] D. Kingma and J. Ba, :Adam: A method for stochastic optimization," In ICML, 2015.

Super-Resolution of a thoracic CT volume using cycle loss

Ryosuke KAWAI^{*1}, Atsushi SAITO^{*1}, Shoji KIDO^{*2}, Kunihiro INAI^{*3} Hirohiko KIMURA^{*3}, Akinobu SHIMIZU^{*1}

*1 Institute of Engineering, Tokyo University of Agriculture and Technology*2 Graduate School of Medicine, Osaka University

*3 Faculty of Medical Sciences, University of Fukui

It is difficult to collect a lot of paired images of low resolution (LR) and high resolution (HR) that are commonly used in the most of the existing super resolution techniques. This paper presents a method that employs a cycle loss which does not require paired LR and HR images. Our previously proposed super resolution method used GAN to train ResNet as a generator and CNN as a discriminator. In contrast, the proposed method trains ResNet whose loss function includes the cycle loss that evaluates reconstruction errors of LR image. We applied the proposed method to a thoracic CT volume to achieve eight times super resolution and evaluated the performance. This paper compares the results with those using paired images and discusses the effectiveness and limitations of the proposed method.

Key words: Super-Resolution, unpaired images, Cycle loss, GANs, CT image
Cycle GAN を用いた胸部 CT 画像のドメイン変換と

その識別システムへの応用

三宅 将司*1 間普 真吾*1 木戸 尚治*2

呉本 尭*1 平野 靖*1

要旨

昨今,デジタル医用画像機器の発達により,膨大な量の医用画像が取得できるようになった.大量の医用 画像を用いて機械学習を行い,医療診断のセカンドオピニオンとして利用するコンピュータ支援診断 (Computer-Aided Diagnosis, CAD)の研究も活発に行われている.様々な医療機関で汎用的に使えるコンピュ ータ支援診断システムを構築することは重要であるが,実際には医療機関によって画像の撮影条件が異な るため,診断の精度が変動する可能性がある.したがって,ある医療機関でよい診断性能を示したシステ ムが他の医療機関で同じ性能を示すとは限らない.本研究では,ある医療機関で撮影された胸部 CT 画像 を用いて学習を行った画像診断システムを,他医療機関でも使えるようにするため,他医療機関で撮影さ れた胸部 CT 画像のドメイン変換,すなわち学習済みの診断システムに適した画像に変換することを目的 とする.

キーワード:深層学習,標準化,GAN, 胸部 CT,識別

1. はじめに

近年のデジタル医用画像機器の発達によっ て、膨大な量の医用画像が取得できるようにな った.それに伴い、大量の医用画像を用いて機 械学習を行い、医療診断のセカンドオピニオン として利用するコンピュータ支援診断 (Computer-Aided Diagnosis, CAD)の研究も活発 に行われている.様々な医療機関で汎用的に使

連絡先:

間普真吾,山口大学大学院創成科学研究科
〔〒755-8611 宇部市常盤台 2-16-1〕
Tel/Fax0836-85-9519, mabu@yamaguchi-u.ac.jp
*1 山口大学大学院創成科学研究科電気電子
情報系専攻
*2 大阪大学大学院医学系研究科人工知能画
像診断学共同研究講座

投稿受付:2019年5月15日

えるコンピュータ支援診断システムの開発が 望まれているが、医療機関によって画像の撮影 条件が異なるため診断の精度が変動する可能 性がある.

CAD システムの構築には画像処理や画像認 識の技術が使われているが,近年,画像認識の 研究分野において畳込みニューラルネットワ ークの研究が急速に発展し,CAD システムの構 築にも応用が進んでいる[1].しかし,ニューラ ルネットワークの学習には,大量の教師ラベル 付き医用画像データが必要となる問題がある. また,医療機関によって医用画像の撮影条件は 異なるため,CAD の診断精度が変動する可能性 がある.例えば,CT 装置の違いや設定の違いに よって画素値が異なる.したがって,CAD があ る医療機関でよい診断性能を示したとしても, 他の医療機関で同じ性能を示すとは限らない. その場合,CADの再学習が必要であり,学習の ためには医療機関ごとに大量の訓練データを 作成する必要がある.これでは、様々な医療機 関で広く使いやすいシステムとは言えず、本問 題の解決が必要である.

本研究では、ある医療機関で撮影された胸部 CT 画像を用いて学習を行った画像診断システ ムを、他医療機関でもそのまま使えるようにす るため、Cycle GAN を用いて胸部 CT 画像のド メイン変換を行うことを目的とする.

2. 提案手法

図1に提案手法の概要を示す.本研究では, びまん性肺疾患の陰影分類を例に, Cycle GAN[2]を用いて胸部CT画像のドメイン変換を 行う手法を提案する.具体的には,山口大学医 学部附属病院で撮影された胸部CT画像(以降, ドメインAと呼ぶ)の条件を標準と定義し,大 阪大学医学部附属病院で撮影された胸部CT画 像(以降,ドメインBと呼ぶ)をCycleGANによ ってドメインAの条件に変換(標準化と呼ぶ)す る方式とする.ドメイン変換後の陰影識別器と してResidual Network (ResNet)[3]を用い, ResNet はドメインAの画像データで学習を行う.標準 化の有無によってドメインBの画像の識別精度 に差があるかを検証する.同様に,ドメインB を標準にした場合も検証する.

1) 関心領域画像(ROI 画像)の作成

本研究では、山口大学医学部附属病院で撮影 された胸部 CT 画像 503 枚と、大阪大学医学部 附属病院で撮影された胸部 CT 画像 636 枚を使 用して画像の標準化を行う.それぞれの病院で 撮影された胸部 CT 画像の例を図 2 に示す.

図1 提案手法の概要

図2 胸部 CT 画像の例

ドメイン A, B の胸部 CT 画像には 6 つの陰影 パターン[浸潤影, 粒状影, 肺気腫, すりガラス 陰影, 蜂巣肺, 正常]が含まれている.

ドメイン A, B の胸部 CT 画像を 32×32[pixel] の関心領域 (Region of Interest, ROI)に分割し, これを Cycle GAN の学習に用いる. 各 CT 画 像には,各陰影の箇所を示したマスク画像が用 意されている. なお,マスク画像は3名の放射 線科医の指導のもと作成されている.マスク画 像の左上からストライドさせつつ 32×32[pixel] の領域を調査し,領域中に各陰影を示すマスク 領域が5割以上含まれる場合,対応する胸部 CT 画像から同領域を抽出して ROI 画像とする.

2) Cycle GAN による標準化

Cycle GAN とは、2 つのドメイン間の変換を 行う生成モデルの一種である. Cycle GAN の 構造を図 3 に示す. Cycle GAN は 2 つの Generator と Discriminator から構成される. ここ で,変換に用いるデータ群をそれぞれドメイン A, ドメイン B と呼ぶことにし, ドメイン A か らドメイン B に変換する Generator を G, ドメ インBからドメインAに変換する Generator を F, 本物の A か変換された偽の A かを見分け る Discriminator を D_A,本物の B か変換された 偽の B かを見分ける Discriminator を D_Bと定義 する. Generator は Discriminator に正しく分類さ れないようにデータを生成するよう学習し, Discriminator は本物のデータか偽のデータかを 正しく分類できるように学習していくことで,

図 3 Cycle GAN の構造(Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks より[1])

ドメイン間の変換を学習していく. G, F, D_A, D_Bの学習には,式(1)から式(3)に示す損失関数 を用いる.

 $L_{GAN}(G, D_B, A, B) = E_{b \sim p_{data}(b)}[log D_B(b)]$ + $E_{a \sim p_{data}(a)}[log(1 - D_B(G(a)))]$ $L_{GAN}(F, D_A, B, A) = E_{a \sim p_{data}(a)}[log D_A(a)]$ + $E_{b \sim p_{data}(b)}[log(1 - D_A(G(b)))](1)$

 $L_{cyc} (G, F) = E_{a \sim p_{data}(b)} [\|F(G(a)) - a\|] + E_{b \sim p_{data}(b)} [\|G(F(b)) - b\|] (2)$

$$\begin{split} L_{identity}(G,F) &= E_{b \sim p_{data}(b)}[\|G(b) - b\|] \\ &+ E_{a - p_{data}(a)}[\|F(a) - a\|] \end{split} \tag{3}$$

式(1)の損失関数を最小化することでドメイン 変換の学習を行っていくが、この損失関数だけ ではどのような入力画像に対しても同じ出力 パターンをマッピングするように学習してし まうため、式(2)と式(3)の損失関数を導入する. 式(2)は Cycle Consistency Loss と呼ばれるもの で, Generator が生成したデータを入力として再 構成された生成データと,元のデータが一致す るように制約をかけている.これにより、ドメ イン間に共通する構造をできるだけ保つよう に学習するようになる.式(3)は Identity Mapping Loss と呼ばれるもので, Generator に対象のドメ インでないデータを入れた際に何も変換しな いように制約をかけている.これにより,入力 と出力間の色の情報を維持することができる ようになる.

最終的な損失関数を式(4)に示す.

$$L(G, F, D_A, D_B) = L_{GAN}(G, D_B, A, B)$$

+ $L_{GAN}(F, D_A, B, A)$
+ $\lambda_1 L_{cyc}(G, F)$
+ $\lambda_2 L_{identity}(G, F)$ (4)

ここで、 $\lambda_1 \ge \lambda_2$ はバイアス項であり、本実験で はそれぞれ 10、5 と設定した.G と F は、式(5) で表される目的関数を満たすように学習を行 う.

$$G^*, F^* = \arg\min_{G,F} \max_{D_A D_B} L(G, F, D_A, D_B)$$
(5)

この Cycle GAN にドメイン A とドメイン B の変換を学習させることで標準化を行う. Cycle GAN への入力は作成した ROI 画像である.

3) ResNet による性能評価

Cycle GAN によって標準化された画像を評価 するために, ResNet を用いる. ドメイン A を標 準とする場合, Cycle GAN による標準化の有効 性を確認するために,まず ResNet をドメイン A のデータを用いて学習を行う. そして, Cycle GAN で標準化を行ったドメイン B と標準化を 行っていないドメイン B の画像を, ドメイン A で学習した ResNet を用いて 6 クラス分類を行 い, Accuracy, Precision, Recall, F 値に差があ るかどうかを検証する.また,ResNet に入力す るデータの前処理として, z-score normalization または min-max normalization を行う. z-score normalization とは、データの平均を 0, 標準偏 差を1とする正規化法である. min-max normalization とは、全データの最小値を 0, 最 大値を1とする正規化法である.

3. 実験結果

1) 使用データセット

ROI 画像を生成する際にクラスごとのストラ イド幅を統一してしまうと,ROI 画像の枚数に 大きな偏りが生じてしまう.そのため,本研究 では陰影パターンごとにストライド幅を調整 することで ROI の枚数を各クラス 3000 枚程度 に揃えた.表1に陰影パターンごとに設定した ストライド幅と ROI 画像の枚数を示す.生成し た ROI 画像には陰影パターンの教師ラベルを 付与した.

2) Cycle GAN による標準化

本研究では、Cycle GAN に入力する画像が 32 ×32[pixel]と小さいサイズのため、Generator に おける ResNet の layer 数を 3 とした. また、使

\square	ROI 画作	象数(枚)	ストラ	イド幅	
			(pixel)		
	ドメイン	ドメイン	ドメイン	ドメイン	
	A	В	A	В	
浸潤影	3071	3447	8	11	
粒状影	3023	3311	16	14	
肺気腫	3122	3021	24	27	
すりガラス	3460	3273	12	18	
陰影					
蜂巣肺	3236	3434	13	13	
正常	3117	3035	29	32	

表1 生成したクラスごとの ROI 画像数と, 生成時に設定したストライド幅

表 2 Cycle GAN の学習に用いた訓練データとテ ストデータの枚数

	訓練う	データ	テストデータ		
	ドメイン	ドメイン	ドメイン	ドメイン	
	А	В	A	В	
浸潤影	1022	1027	2049	2420	
粒状影	1018	1020	2005	2291	
肺気腫	1020	962	2102	2059	
すりガラス	989	996	2471	2277	
陰影					
蜂巣肺	1003	1021	2233	2413	
正常	1003	1024	2114	2011	

用するデータはグレースケールのため,入力チ ャネルは1とし,最適化手法には Adam[4]を用 いた.

Cycle GAN の学習に用いたクラス毎の訓練デ ータとテストデータの枚数を表 2 に示す.表 2 に示した訓練データを用いて Cycle GAN を学 習させた.ドメイン変換の学習を行った Cycle GAN による標準化の例を図 4,5 に示す.図 4 はドメイン B をドメイン A に標準化(ドメイン B→ドメイン A) した結果の例であり,図5 は ドメイン A をドメイン B に標準化(ドメイン A →ドメイン B) した結果の例である.

図4 ドメインBの標準化の例

図5 ドメインAの標準化の例

3) ResNet の学習結果

使用した ResNet の構造は,図 6 に示す Residual Block を 5 つ積層し,4 層目の入力の前 に Average Pooling 層を加えたものである.

まず,ドメイン A を用いて ResNet の学習を 行った結果を示す. Resnet の学習には,表1で 示したドメイン A の粒状影の ROI 画像数に合 わせて各クラス 3023 枚の画像を使用した.ま た,そのうち9割を訓練データ,1割をバリデ

図 6 Residual Block の構成

図 7 ドメイン A を用いた ResNet の学習に おいて, min-max normalization を行った時の ResNet の Accuracy の推移

図 8 ドメイン A を用いた ResNet の学習に おいて, z-score normalization を行った時の ResNet の Accuracy の推移

ーションデータとし, epoch は 100 として学習 を行った. ResNet に入力するデータの前処理と して min-max normalization を行ったときの Accuracy の推移を図 7 に示す. epoch100 時の訓 練データに対する accuracy は 0.953, バリデー ションデータに対する Accuracy は 0.894 となっ た. z-score normalization を行ったときの Accuracy の推移を図 8 に示す. epoch100 時の訓 練データに対する Accuracy は 0.969, テストデ ータに対する Accuracy は 0.910 となった.

次に, ドメイン B を用いて ResNet の学習を 行った結果を示す. Resnet の学習には, 表 1 で 示したドメイン B の肺気腫の ROI 画像数に合

図 9 ドメイン B を用いた ResNet の学習に おいて, min-max normalization を行った時の ResNet の Accuracy の推移

図 10 ドメイン B を用いた ResNet の学習に おいて, z-score normalization を行った時の ResNet の Accuracy の推移

わせて各クラス 3021 枚の画像を使用した.ま た,そのうち9割を訓練データ,1割をバリデ ーションデータとし,epochは100として学習 を行った.ResNetに入力するデータの前処理と して min-max normalization を行ったときの Accuracyの推移を図9に示す.epoch100時の訓 練データに対する Accuracyは0.977,バリデー ションデータに対する Accuracyは0.933となっ た.z-score normalization を行ったときの Accuracyの推移を図10に示す.epoch100時の 訓練データに対する Accuracyは0.986,テスト データに対する Accuracyは0.937となった.

4) ResNet による標準化前後の性能評価
 まず、ドメインAを標準として、ドメインB

を Cycle GAN で標準化した場合の評価を行っ た. Cycle GAN で標準化を行っていないドメイ ンBと標準化を行ったドメインBの画像を,ド メイン A で学習を行った ResNet の入力とし, 識別率に差があるかどうか検証した.評価に使 用したデータの枚数は,表 2 に示した Cycle GAN のドメイン B のテストデータに対応して いる.入力データの前処理で min-max normalization を用いた場合の性能評価値を表 3 に示す. 表3より、ドメインBの標準化前と 標準化後を比較すると, すべてのクラスにおい て標準化後のF値が標準化前の値を上回ってい ることがわかる. また, 標準化後の Precision と Recall の値もほとんどが高くなっていることが わかる.標準化前のデータで測定した Accuracy は0.407,標準化後のデータで測定した Accuracy は 0.696 であった.入力データの前処理で zscore normalization を用いた場合の性能評価値 を表4に示す. 表4より,標準化前と標準化 後を比較すると、ほとんどのクラスで標準化後 の F 値が標準化前の値を上回っているが, 肺気 腫におけるF値が低くなっていることがわかる. このことから、ドメインAとドメインB間で肺 気腫の変換規則の獲得が困難であったと考え られる. また, ドメイン B の標準化前のデータ で測定した Accuracy は 0.426, 標準化後のデー タで測定した Accuracy は 0.713 であった.

次に、ドメインBを標準として、ドメインA を Cycle GAN で標準化した場合の評価を行っ た.評価方法はドメインBを Cycle GAN で標 準化した場合と同様である.評価に使用したデ ータの枚数は、表2に示した Cycle GAN のドメ インAのテストデータに対応している.入力 データの前処理で min-max normalization を用い た場合の性能評価値を表5に示す.表5より、 ドメイン A の標準化前と標準化後を比較する と、すべてのクラスで標準化後のF値が標準化 前の値を上回っている.また、標準化前のデー タで測定した Accuracy は0.450、標準化後のデ ータで測定した Accuracy は0.571 であった.以 上より、すべてのクラスにおいて標準化後のデ 表3 ドメインBに対する標準化における, minmax normalization を用いた ResNet によって測 定した性能評価値

$\overline{\ }$	ドメイン	Bの標準	単化前	ドメイン B の標準化後			
	precision	recall	F值	precision	recall	F值	
浸潤影	0.88	0.99	0.93	0. 97	0.97	0.97	
粒状影	0.01	0.00	0.00	0.51	0.81	0.63	
肺気腫	1.00	0.00	0.00	0.56	0.37	0.45	
すりガラ	0.13	0.30	0.18	0.89	0.60	0.72	
ス陰影							
蜂巣肺	0.51	0.99	0.67	0.78	0.83	0.80	
正常	0.01	0.00	0.00	0.53	0.53	0.53	
Average	0.43	0.41	0.32	0.72	0.70	0.69	

表 4 ドメイン B に対する標準化における, zscore normalization を用いた ResNet によって測 定した性能評価値

	ドメイン B の標準化前 ドメイン B の標準			隼化後		
	precision	recall	F值	precision	recall	F值
浸潤影	0.99	0.84	0.91	0.97	0.97	0.97
粒状影	0.41	0.19	0.26	0.54	0.82	0.66
肺気腫	0.60	0.85	0.71	0.64	0.35	0.45
すりガラ	0.53	0.01	0.02	0.91	0.61	0.72
ス陰影						
蜂巣肺	0.21	0.59	0.31	0.79	0.87	0.83
正常	0.12	0.05	0.07	0.52	0.59	0.55
Average	0.49	0.43	0.39	0.74	0.71	0.71

なっているといえる.入力データの前処理で zscore normalization を用いた場合の性能評価値 を表6に示す.ドメインAの標準化前と標準化 後を比較すると,粒状影,蜂巣肺,正常のクラ スでは標準化後のF値が標準化前より高く,浸 潤影,肺気腫,すりガラス陰影のクラスでは標 準化前のF値が標準化後より高くなっている. F値の平均も標準化前と標準化後であまり変化 がない.また,標準化前のデータで測定した Accuracyは0.632であった.以上より,標準 化後のデータによる識別性能が,標準化前と比

表5 ドメインAに対する標準化における, minmax normalization を用いた ResNet によって測 定した性能評価値

\backslash	ドメイン B の標準化前 ドメイン B の標準				書化後	
	precision	recall	F值	precision	recall	F值
浸潤影	1.00	0.75	0.85	0.99	0.84	0.91
粒状影	0.01	0.00	0.00	0.35	0.37	0.36
肺気腫	0.25	0.98	0.40	0.39	0.67	0.49
すりガラ	0.73	0.36	0.49	0.75	0.46	0.57
ス陰影						
蜂巣肺	0.71	0.60	0.65	0.64	0.86	0.74
正常	0.00	0.00	0.00	0.49	0.23	0.32
Average	0.46	0.45	0.41	0.61	0.57	0.57

表 6 ドメイン A に対する標準化における, zscore normalization を用いた ResNet によって測 定した性能評価値

\square	ドメイン B の標準化前 ドメイン B の標準			隼化後		
	precision	recall	F值	precision	recall	F值
浸潤影	0.97	0.99	0.98	0.99	0.88	0.93
粒状影	0.65	0.30	0.41	0.42	0.64	0.51
肺気腫	0.45	0.94	0.61	0.53	0.34	0.42
すりガラ	0.64	0.99	0.77	0.74	0.61	0.67
ス陰影						
蜂巣肺	0.88	0.58	0.70	0.76	0.78	0.77
正常	0.96	0.13	0.22	0.53	0.62	0.57
Average	0.76	0.66	0.62	0.67	0.64	0.65

較して高くなっているとはいえない.本ケース では, min-max normalization による feature scaling と比較して, z-score normalization による feature scaling の効果が大きく Cycle GAN によ る標準化の効果が現れにくかったといえる.

4. まとめ

本研究では、ある医療機関で撮影された CT 画像を用いて学習を行った画像診断システム を、他医療機関でも使えるようにするため、 Cycle GAN を用いて画像の標準化を行う研究を 行った.山口大学医学部附属病院で撮影された 胸部 CT 画像をドメイン A、大阪大学医学部附 属病院で撮影された胸部 CT 画像をドメイン B とし、Cycle GAN を用いてドメイン A をドメイ ン B に標準化した場合と、ドメイン B をドメイ ン A に標準化した場合のシミュレーションを 行った. ResNet を用いて標準化前と標準化後の 識別性能を比較した結果、標準化前の識別性能 が低い場合は Cycle GAN による標準化の有効 性が確認できた.しかし、標準化前である程度 の識別性能を示している場合は、標準化の有用 性が確認できなかった.

今後の課題として、考察で記述したように、 識別性能が Cycle GAN による特徴抽出に依存 するため、識別に有用な特徴を獲得可能な Cycle GAN の構造に改良することが挙げられる. 具体的には、Cycle GAN の学習に、ResNet によ る損失関数の値を考慮させることを予定して いる.

謝辞

本研究は JSPS 科研費新学術領域研究 多元計 算解剖学 SP26108009, JSPS 科研費若手研究 (B)JP16K16116 の助成を受けたものです.

利益相反の有無

なし.

文 献

- [1] Arnaud Arindra Adiyoso Setio, Francesco Ciompi, Geert Litjens, et al: Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks, IEEE Transactions on Medical Imaging, 2016
- Zhu, Jun-Yan and Park, Taesung and Isola, et al: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV, 2017
- [3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun: Deep Residual Learning for Image Recognition. CVPR, 2016
- [4] Diederik P. Kingma, Jimmy Lei Ba: ADAM: A method for stochastic optimization, ICLR, 2015

Domain Transformation of Chest CT Images Using Cycle GAN and Its Application to Classification Systems

Masashi MIYAKE^{*1}, Shingo MABU^{*1}, Shoji KIDO^{*2}, Takashi KUREMOTO^{*1}, Yasushi HIRANO^{*1}

*1 Yamaguchi University *2 Osaka University

Recently, with the development of digital medical imaging devices, it has become possible to acquire an enormous amount of medical images. Therefore, studies on computer-aided diagnosis (CAD) have been actively conducted, where machine learning is applied to build CAD systems using a large amount of medical images. It is important to construct a CAD system that can be used at various medical institutions, however, there are possibilities that the accuracy of diagnosis may fluctuate when the photography conditions of the images are different depending on the medical institutions. Therefore, a CAD system showing good diagnostic performance in a certain medical institution does not always show the same performance in other medical institutions. Therefore, the aim of this research is to perform image-to-image translation of chest CT images so that medical institutions can use the CAD system which is trained at another medical institution.

Key words: Deep Learning, Standardization, GAN, chest CT, Classification

楕円フーリエ記述子を用いた乳房 X 線画像における

石灰化クラスタの解析とデータ拡張への応用

志村 一男*1 安中 奨*2 近藤 啓介*1 縄野 繁*3

要旨

CAD(コンピュータ支援診断)システムの性能向上に重要となる教師データの確保は容易ではなく、デ ータ拡張技術が注目されている.

今回,輪郭情報の定量的評価法のひとつである楕円フーリエ記述子を用い,石灰化クラスタの輪郭を解 析するとともに,データ拡張に応用する手法を検討した.楕円フーリエ記述子とは輪郭等の閉曲線を周波 数分解する手法であり,円形度やアスペクト比といった既存の特徴量と比較し,より詳細な形状の特徴を 表現可能な技術である.

画像データから得た石灰化分布の形状を楕円フーリエ記述子に変換し、主成分分析を行なった後、得ら れた第1主成分と面積を特徴量とすることで、B-RADS の5つの石灰化分布タイプを分類できる可能性を 確認した.

また,各主成分の値を変化させることで,様々な輪郭形状を生成できるため,あらかじめ抽出しておいた石灰化陰影を生成された輪郭形状を持つ石灰化分布に応じ配置し,別の乳房X線画像に埋め込むことにより様々な石灰化分布を有する教師画像を人工的に生成できる事が分かった.

以上の方法を乳房 X 線画像の公開データベースである CBIS-DDSM を用いて確認した結果について報告 する.

キーワード: 楕円フーリエ記述子, データ拡張, 乳房 X 線画像

1. はじめに

近年, CR, DR, CT, MR 等の画像診断装置の進歩 と共に、日々生成される医療画像は年々増え続 けている.コンピュータやネットワークの進歩 は、医師の読影環境を大きく変えたが、放射線 医の読影負荷は増加し続けている.

そんな中,コンピュータにより医師の診断を 支援する CAD (コンピュータ支援診断) システ ムに関する研究が進められ,いくつかの製品が 臨床現場で使われるようになった[1][2].し

*1 駒澤大学医療健康科学部

[〒305-8573 東京都世田谷区駒沢 1-23-1]

e-mail: shimura@komazawa-u.ac.jp

*2 NTT 東日本関東病院

*3 国際医療福祉大学三田病院

かし, CAD の認識性能,解析性能はまだまだ不 十分であり,本格的な普及には至っていないの が実態である.

CAD の性能向上のために重要となるのは,教師となる大量の症例データである.深層学習の登場により,一般写真画像分野の認識技術は急速に向上し,最近では,人間同等の認識性能を達成している研究結果の報告も散見されるようになった.人物や風景などの一般写真画像データは,インターネット等を通じて大量に収集可能であるということも,深層学習による性能向上に大きく寄与している.

医療分野においては、コンピュータの認識性 能は放射線医には遠く及ばない.性能向上のた めには、新たな認識技術の研究開発と同様に、 質が高くバリエーションに富んだ大量の症例 収集が重要となる.しかし、医療分野において は,個人情報保護や倫理的な配慮が必要である ため,症例データの収集は容易ではない.

最近では、米国の NIH に加え、日本国内で もこうした深層学習を想定したデータベース 整備も開始されたが、まだまだ、質、量ともに 圧倒的に不足していると言わざるを得ない.

こうした背景の中,症例データを人工的に生成する研究として,CT 画像やマンモグラフィー画像に,別の症例から腫瘍等の病変を抽出し, 画像上に埋め込むことにより,新たな症例画像を人工的に埋め込む研究がおこなわれている [3].

例えば、日本画像工学会では、縄野らにより、 肝臓腫瘍を埋め込んだ実症例と見分けがつか ない人工 CT 症例画像生成のコンテストが実施 され、関連する研究が複数の研究機関で行われ た[4].

また,GAN (Generative Adversarial Network)や VAE (Variational Autoencoder) ように深層学習 により,教師データに似た新しいデータを生成 する手法が提案され,様々な研究が進められて いる [10].これらの取り組みは,医用画像処理 分野における症例データ不足を補う手法とし て CAD システムの開発への有効性が期待でき る.

本研究では、こうした過去の取り組みと同じ く、人工的な症例を生成する事を目的としてい る.本研究では、過去の様々な研究と異なり、 画像中の形状に着目し、形状を数式で表現する ことにより、数式を表すパラメータを特徴量と して、形状を解析する可能性を示すとともに、 パラメータを変更する事により新たな形状を 生成し、形状を元に、新たな病変を人工的に生 成する検討を行った.

なお、本研究では形状の数式表現手法として Kuhl らによる楕円フーリエ記述子(Elliptic Fourier descriptors)に着目した[5].楕円フーリ エ記述子はこれまで、動物や植物等の生物の形 状の解析や、ボトル等の人工物の形状解析に用 いられているが、画像の生成に利用された例は ない.

本研究では、マンモグラフィー画像中の石灰

化陰影の分布形状を楕円フーリエ記述子に変換し,楕円フーリエ記述子の周波数成分を主成 分分析し,得られた特徴量を用いて,石灰化分 布の形状を解析,分類について検討した.

また,主成分を変化させることによる新たな 石灰化分布形状を生成し,得られた分布形状に 基づく人工石灰化症例画像の生成を検討した.

2. 楕円フーリエ記述子

本研究で用いた形状の数値化手法の一つで ある楕円フーリエ記述子について以下,説明 する.

まず,輪郭を示す曲線上を点が時間 tと共に 移動したと考え,図1に示すように図形の輪 郭をx,y平面に投影する,このときのx座標と y座標は時間 tの関数 x(t),y(t) となり,輪郭 上を移動する点が1周回って元の位置に戻っ てくる時間 Tを周期とする周期関数と考えるこ とができる.

図1 輪郭上を移動する点と y 座標の関数 y(t)

周期関数はフーリエ級数展開が可能である ため, *x(t)*, *y(t)* は以下のように周波数の異な る三角関数の線形結合として表現できる.

$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left(a_n \cos \frac{2n\pi t}{T} + b_n \sin \frac{2n\pi t}{T} \right)$$
(1)

$$y(t) = \frac{c_0}{2} + \sum_{n=1}^{N} \left(c_n \cos \frac{2n\pi t}{T} + d_n \sin \frac{2n\pi t}{T} \right)$$
(2)

このとき、フーリエ級数展開ではNが∞のと き、輪郭は三角関数の線形結合として正確に表 現できる.

しかし,輪郭の形状を大まかに表現するので あれば,Nは有限で構わない.例えば,N=1,2,3,4 とした際に表現される輪郭を図 2 に示すが, N=4 でも元の輪郭を概ね表現できていることが わかる. なお,本研究では N=20 として検討を 行った.

図2N=1~4の楕円フーリエ記述子に対応した形状

次に、図形の輪郭から、楕円フーリエ記述子 を求める具体的な方法について説明する.まず、 輪郭をチェーンコードと呼ばれるコードに変 換する.輪郭上の開始点を決め、開始点に隣接 する輪郭上の点の方向によって図3に示す8方 向を示すチェーンコードラベルを用いて表す. このように隣接する輪郭上の点を次々にチェ ーンコードで表現することにより、1 周分の輪 郭をチェーンコードで表現することができる.

(a) chain code (b)Chain code による形状記述

図3 チェーンコードを用いた形状記述

また,得られたチェーンコードから,時間と ともに変化する輪郭上の点の*x,y*座標の関数 を求めることができ,その関数をフーリエ級数 に展開し,N個までの高調波の各係数を算出す ることにより,楕円フーリエ記述子を得ること ができる.

なお, N=1 の時, 輪郭は楕円として表現され るが, この楕円の半長軸を基準に, サイズ, 輪 郭の向き, 計測開始点を標準化している.

こうして得られたフーリエ記述子は高次元 の特徴量であり,各輪郭は特徴空間の1点に対 応する事になる.また,様々な輪郭から得られ たフーリエ記述子に対し主成分分析を行い,高 次元の情報から低次元の特徴量を得ることに より,輪郭形状の違いを表す主たる特徴量を求 めることができる.

また,主成分の値を変化させることによって, 様々な形状に対応したフーリエ記述子を得る 事ができる.さらに,楕円フーリエ記述子に対 し逆フーリエ変換を行うことにより,様々な形 状の輪郭を生成することができるため,本研究 では,こうして生成された輪郭形状を利用し新 たな石灰化症例を生成する事を試みた.

3. 実験方法

1) 実験方法

(a) 石灰化分布形状の解析

BI-RADS の各石灰化分布タイプを図 4 に示

す. Clustered distribution, Linear distribution, Segmental distribution では悪性の可能性が高く, Diffuse distribution や Regional distribution では良 性の可能性が高いと言われている.

図4 BI-RADS における石灰化分布タイプ

楕円フーリエ記述子の応用として,石灰化 分布のタイプ分類への適用可能性について 検討した.

まず,原画像中の各石灰化の位置を中心と する円形領域を描き,その和集合を取ること により各症例の石灰化分布領域を得る.得ら れた石灰化分布形状を対象に,楕円フーリエ 記述子及び外接四角形の面積を用いて解析 を行った.

なお, Segmental distribution に関しては石灰 化分布領域が複数領域に分離している症例 もあり,その場合は主たる石灰化分布領域の みを対象とした.

また,楕円フーリエ記述子への変換及び関 連する解析は,岩田らにより開発された楕円 フーリエ記述子の解析ソフトウェアである SHAPE 及び SHAPE on R を用いて行った[6] [7].

(b)人工石灰化分布画像の生成

前述した分布形状の解析で,得られた主成 分を利用して石灰化分布画像を人工的に生 成する。

まず、得られた主成分の内,第1第2主成 分を変化させ、様々な形状を示す楕円フーリ 工変換記述子を得る.その後、楕円フーリエ 変換記述子を元に、形状の大きさや、分布の 方向及び分布を埋め込む位置を個別に指定 し、石灰化分布形状を生成する.

続いて,得られた石灰化分布領域内にラン ダムに石灰化点を配置する座標を設定し,あ らかじめ,抽出しておいた石灰化陰影を,埋 め込むことにより新しい石灰化症例画像を 生成した.

2) 実験に用いた臨床データ

本研究ではマンモグラフィー画像の公開デ ータベースである米国の CBIS-DDSM (Curated Breast Imaging Subset of DDSM)の画像データ及 び付随する臨床データを用いて行った [8]. CBIS-DDSM は 1999 年に整備された DDSM (The Digital Database for Screening Mammography)をベ ースとしている [9].

DDSM はスクリーニングマンモグラフィーの デジタルデータベースで,1988 年から 1999 年 までにフィルムスクリーンシステムで 4 方向 (左 CC,左 MLO,右 CC,右 MLO) 撮影された

2620 画像のマンモ画像および付随する臨床情報からなる.マンモグラフィー画像はマサチュ ーセッツ・ゼネラル・ホスピタル,ウェークフ オレスト大学,聖心病院,セントルイスワシン トン大学で撮影されたもので,フィルムデジタ イザーを用いて1画素 42~50micron, 12~16 ビ ットでデジタル化されている.

また、DDSM データベースには画像データだ けでなく, BI-RADS をベースにした乳腺濃度情 報,病変の有無や腫瘤性病変か石灰化病変であ るかの情報,腫瘤の場合は形や境界の情報,石 灰化の場合は石灰化の性状や分布タイプさら には病理検査結果も付加されている.

CBIS-DDSM は DDSM をベースにした 753 例 の石灰化症例と 891 例の腫瘤症例が含まれてい るが, DDSM に含まれている不適切なデータの 削除や情報の修正に加え, セグメンテーション 情報, バウンディングボックス情報の追加, ト レーニング用症例とテスト用症例に分離する など, 最近のコンピュータビジョン分野で主流 となっているデータベースに準じたフォーマ ットに整備されている.

なお、本研究では CBIS-DDSM のトレーニン グ用石灰化症例から、表 1 に示すように、石灰 化分布タイプ毎に石灰化症例数例を選び実験 に用いた.

表1 実験に用いた症例数

Diffuse	Regional	Clustered	Linear	Segmental
2	7	12	6	7

4. 結果

1)石灰化分布の解析

マンモグラフィー画像から得られた Diffuse distribution, Regional distribution, Clustered distribution, Linear distribution, Segmental distribution といった BI-RADS における 5 つの 分布タイプに対応する石灰化分布形状を図 5 に 示す.分布タイプにより,分布の面積や形状が 異なることがわかる.

図5 各タイプの石灰化分布の例

次に,各分布の外接四角形の面積の分布を確認した.分布タイプ毎の面積の分布が正規分布 に基づくと仮定し,平均と分散から算出した分 布を図6に示す.

図 6 から Diffuse distribution, Regional distribution, Segmental distribution とそれ以外 (Linear distribution, Clustered distribution) はお おむね分離できるが, Linear distribution と Clustered distribution の分布は大きく重複し, 面 積だけでは分離できないことがわかる.

続いて、面積分布が比較的近く、分類しにく
 い Segmental distribution, Linear distribution,
 Clustered distribution の3つのタイプの各石灰化
 分布を対象に分類手法を検討した.

まず,前記3タイプの輪郭から楕円フーリエ 記述子を算出し,主成分分析を行った.

表2に寄与率及び累積寄与率を示すが,第1 主成分の寄与率86.6%,第4主成分までの累積 寄与率が95.2%と比較的低次の主成分で分布形 状を概ね表現できることが確認できた.

表	2	各主成	分の特	子与率	【及て	ド累	積	寄	与.	率
---	---	-----	-----	-----	-----	----	---	---	----	---

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8
寄与率(%)	86.6	4.01	2.91	1.72	1.38	0.95	0.65	0.49
累積寄与率(%)	86.6	90.6	93.5	95.2	96.6	97.5	98.2	98.7

また,図7に第1~4 主成分の平均及び平均 ±標準偏差で表される形状を示す.第1主成分 は分布形状の縦横比に概ね対応し,第2主成分 以降は輪郭形状の比較的細かい凹凸に対応し ていることがわかる.

図7 第1~4 主成分に対応した輪郭

続いて,各石灰化分布の特徴量を,面積を 横軸,第1主成分を縦軸に取った座標平面に プロットしたものを図8に示す.

Linear distribution および Clustered distribution の石灰化分布は面積指標では大きくオーバー ラップするが,楕円フーリエ記述子から得ら れた第1主成分軸を導入する事により,分離 できることが確認された.

2)データ拡張への応用

石灰化分布の形状を楕円フーリエ記述子に 変換し主成分分析を行い,得られた第1,第2 主成分からなる特徴量平面に各タイプの分布 形状をプロットしたものを図9に示す.

図9第1,第2主成分と輪郭形状

第1主成分に関しては値が正の方向に増大す るにしたがって概円形でやや縦長の形状とな り,負の方向になるにつれ,横長の形状を示す ことが分かった.また,第2主成分に関しては その絶対値が小さいと形状の凹凸があまりな い滑らかな形状を示し,正負どちらでもその絶 対値が大きくなるにつれ,輪郭形状の凹凸が大 きくなることが分かった.

次に、このことを利用し、第1、第2主成分 を変化させて得られた分布形状から生成され た人工石灰化症例画像を図10に示す.図10 に示すように Clustered distribution, Linear distribution, Segmental distribution の分布を呈 する人工石灰化症例を生成できることが確認 できた.

人工 Clustered 人工 linear 人工 Segmental 図 10 生成された人工石灰化症例の一例

5. 考察

今回,我々は石灰化分布の形状に着目し,形 状解析技術の一つである楕円フーリエ記述子 を適用し石灰化分布の形状特徴を解析し,面積 特徴量と組み合わせる事で,BI-RADSの5つの 分布タイプに分類できる可能性を示した.

楕円フーリエ記述子は従来の形状特徴量で ある円形度やアスペクト比といった単一の特 徴量と比較して,形状に関するより豊富な情報 を表現できていると考えられ,今回用いた第1 主成分だけではなく,より高次の主成分を用い ることにより,形状のより細かい差異を分類で きる可能性がある.

ただし、今回の解析は 34 例の症例に対して 実施したのみであり、より多くの症例画像にて 確認する必要がある.

また,楕円フーリエ記述子といった形状を解 析する技術を用いて新しい画像を生成すると いう今回のアプローチはこれまでにない手法 である.形状という画像のメタ情報に着目した. 新たな形状を生成し,その形状に基づき,画像 を生成するアプローチをとっているため,より 自然な人工症例画像を生成できる可能性があ る.

ただし、今回は、主成分分析に用いたサンプ ル及び生成サンプルの数は限られているため、 今後、より多くの症例を用いた実験により確認 していく必要がある.

6. まとめ

楕円フーリエ記述子を応用し石灰化分布の 形状特徴を解析し,面積特徴量と組み合わせる 事で,BI-RADSの5つの分布タイプに分類でき る可能性を示した.

また,楕円フーリエ記述子からえられた第1 第2主成分を変化させることで様々な形状の石 灰化分布を生成でき,新たに生成された分布形 状に基づき石灰化陰影を配置することにより, 様々な分布形状を持つ人工石灰化症例を生成 できることが分かった.

今後,生成された人工石灰化症例を用いた学 習により,性能向上効果を確認するとともに, 楕円フーリエ記述子のさらなる応用を検討し ていきたい.

利益相反の有無

利益相反なし.

倫理規範の順守

本研究で用いた全ての臨床データは米国の 医療機関で収集された公開データベース CBIS-DDSM (Curated Breast Imaging Subset of DDSM)のデ ータのみである. 必要とされる患者同意は本データ ベースの元となる DDSM (The Digital Database For Screening Mammography)の開発者によって取得 されている.

文 献

- Takeo H, Shimura K, Imamura T, at el.: Detection system of clustered microcalcifications on CR mammogram. IEICE Trans Inf Syst E88-D: 2591-2601, 2005
- [2] 小畑秀文,安藤裕,鴛田栄二,他:医療 機器評価指標ガイドライン画像診断分 野(コンピュータ診断支援装置)開発 WG報告書,平成21年度経済産業省委 託事業,2010
- [3] 安倍和弥,武尾英哉,黒木嘉典,也:乳 がんを対象とした新しい人工石灰化陰 影の作成と実症例を全く用いない CAD 開発手法の有効性検証. Med Imag Tech 35: 268-272, 2017
- [4] 北阪孝幸: 第5回 JAMIT CAD コンテ

スト結果報告. JAMIT News Letter 16:5-11, 2014

- [5] Kuhl FP, Giardina CR: Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18: 236-258, 1982
- [6] Iwata H, Ukai K: SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. Journal of Heredity 93: 384-385, 2002
- [7] Iwata H, Niikura S, Matsuura S, Takano Y, at el.: Interaction between genetic effects and soil type in diallel analysis of root shape and size of Japanese radish (Raphanus sativus L.). Breeding Science 54: 313-318, 2004
- [8] Lee RS, Gimenez F, Hoogi A, at el.: A curated mammography data set for use in computer-aided detection and diagnosis research. Scientific Data 4: 1-9, 2016
- [9] Heath M, Bowyer K, Kopans D, at el.: The Digital Database for Screening Mammography. Proceedings of the Fifth International Workshop on Digital Mammography, 212-218, 2001
- [10] 池田裕亮,小西孝明,道満充恵介,他: 肝臓がん検出器のための 3D-DCGAN を 用いた学習用画像生成.第 37 回医用画 像工学会大会予稿集: 232-234, 2018

Analysis of calcification cluster on mammograms and its application for

data augmentation using Elliptic Fourier Descriptors (EFD)

Kazuo SHIMURA*1, Sho YASUNAKA*2, Keisuke KONDO*1, Shigeru NAWANO*3

*1 Faculty of Health Sciences, Komazawa University

*2 NTT Medical Center Tokyo

*3 International University of Health and Welfare, Mita Hospital

In the medical field, it is not easy to collect enough teaching data for deep learning. Data augmentation is getting more important to improve the performance.

In this study, we analyzed the shapes of calcification distributions in mammograms using Elliptic Fourier Descriptors (EFD), which is one of the quantitative analyzing methods of the shapes, and we also applied EFD to data augmentation of mammograms with calcifications for CAD research.

Elliptic Fourier descriptors (EFD) is frequency analysis method of closed curves such as contours, and more detailed shaped features can be expressed as compared with conventional features such as circularity and aspect ratio.

The shapes of calcification distributions obtained from the mammograms are converted to EFD data, and a new contour shape of a new calcification distribution is generated from the obtained feature space. According to the generated calcification distribution, a new simulated mammogram is generated by embedding the calcification shadows of the calcification database on another normal mammograms.

We report the results of the verification of the proposed method using CBIS-DDSM, which is a public mammography database.

Key words: Elliptic Fourier Descriptors, Data Augmentation, Mammography

単眼腹腔鏡映像からの奥行き推定を利用した

術具セグメンテーション

鈴木 拓矢*1 道満 恵介*1 目加田 慶人*1

三澤 一成*2 森 健策*3

要旨

腹腔鏡下手術の手術支援システムでは手術の安全性向上のために,腹腔鏡映像に映る術具領域の正確な抽 出が必要である.近年ではFCNを用いた術具領域抽出手法が効果を上げている.色情報に加えて奥行き情 報をFCNが学習することで,腹腔鏡映像に映る術具領域の抽出精度が向上すると報告されている.本研究 では,深層学習による単眼腹腔鏡映像からの奥行き推定と,推定した奥行きと色情報を学習することで, 術具領域抽出の精度向上を目指す.MICCAI2017のロボット器具データセットを対象に実験した.1,800枚 の画像に対して4分割交差検証をした結果,平均 IoU が 89%,平均 Dice 係数が 94%となった.推定した奥 行き情報を学習に追加することで,誤抽出の低減と輪郭の抽出精度が向上することを確認した.

キーワード:腹腔鏡下手術, Fully Convolutional Network,奥行き推定,術具セグメンテーション

1. はじめに

腹腔鏡下手術とは,患者にかかる負担が軽い治 療方法である.しかし,医師の視野がモニタに 限定されることや,術具の操作が制限されるた め,医師にかかる負担は重い.このような限定 された環境下では,術具の操作は高難度なため, 術具の誤操作による侵襲が発生してしまう.そ こで,図1のように,術具の異常動作を自動検 出し,医師にフィードバックするシステムがあ

*1 中京大学 大学院工学研究科 [〒470-0397 豊田市貝津町床立 101] e-mail: suzuki.t@md.sist.chukyo-u.ac.jp e-mail: kdoman@sist.chukyo-u.ac.jp e-mail: y-mekada@sist.chukyo-u.ac.jp *2 愛知県がんセンター e-mail: misawakzn@aichi-cc.jp *3 名古屋大学 大学院情報学研究科 e-mail: kensaku@is.nagoya-u.ac.jp

図1 手術支援システムのイメージ

れば、医師は術具の誤操作による侵襲を未然に 防ぐことが可能である.異常動作の自動検出に は、腹腔鏡映像中の術具・臓器を自動で識別す る必要がある.特に、術具によって侵襲が引き 起こされるため、術具の位置を正確に求めなけ ればならない.したがって、術具領域はピクセ ル単位で高精度に抽出する必要がある.近年で は、FCNを用いた術具領域の抽出手法が効果を 挙げている[1].従来手法では、腹腔鏡映像の 色情報から術具領域を学習し、識別していた. 従来手法の術具領域の抽出精度は高いものの、 クリップや血液の領域を誤抽出していた.これ

図2提案するネットワーク構造

らの物体は3次元的な形状が術具と類似してい ないものの,色が術具と類似していることが誤 抽出の原因であった.したがって,術具の領域 を正確に求めるには,色だけでなく,3次元的 な形状を考慮した術具領域の抽出が望まれる. そこで本研究では,色情報と奥行き情報から術 具領域を学習することにより,術具領域の抽出 精度の向上を目指す.また,本研究では,最も 普及した単眼腹腔鏡を用いた手術映像を対象 とする.

2. 提案手法

提案手法は奥行き推定と器具領域の抽出に 分けられる.それぞれの詳細を述べる.

1) 奥行き推定の手法

単眼映像からの奥行き推定では FCRN-DepthPrediction [2] を使用する. FCRN-DepthPrediction は,エンコーダとデコーダをも つネットワーク構造であり,教師あり学習手法 である.エンコーダでは ResNet [3] の構造を使 用する.デコーダは,エンコーダの最終層から 得られる特徴を逆畳み込みする構造である. FCRN-DepthPrediction の推定精度は,従来の奥 行き推定手法 [4] [5] 等の精度よりも高い.

2) 術具領域の抽出手法

術具領域の抽出では U-Net [6] ベースのネットワークを使用する.提案するネットワークの構造を図2に示す.提案するネットワークは色情報から特徴抽出するエンコーダと,奥行き情報から特徴抽出するエンコーダ,デコーダから構成されている.色情報のエンコーダは VGG16 [7] である.また,色情報のエンコーダは VGG16 [7] である.また,色情報のエンコーダは ImageNet [8]を用いて事前学習した重みを使用する.デコーダは,エンコーダの各層から抽出された特徴を逆畳み込みする構造である.損失関数には2値交差エントロピー誤差関数を使用し,最適化関数には Adam [9] を用いる.

3. 実験

実験では、奥行きと術具領域を学習するため のデータセット、奥行き推定の評価、術具領域 の推定評価について詳細を述べる.

1) データセット

奥行き推定では NYU Depth V2 Dataset [10] を用いた.また,術具領域の抽出では MICCAI 2017 Robotic Instrument Segmentation Dataset [11] を用いた. NYU Depth V2 Dataset は RGB 画像に 対応する奥行きを持つ画像群である. データセ ットは RGB-D カメラである Kinect を用いて屋 内を撮影した画像で構成されている. 画像枚数 は 1,449 枚, 画像の解像度は 640×480 であっ た.

MICCAI 2017 Robotic Instrument Segmentation Dataset (以降は MICCAI データセットと呼ぶ) は一匹の豚の処置を RGB ステレオカメラで撮 影したものである. MICCAI データセットの画 像枚数は 1,800 枚あった.また,このデータセ ットは 8 つの手術シーンで構成されており,1 つの手術シーンは 225 枚あった.これらの画像 の解像度は 1,920×1,080 であった.画像中に映 る術具は人の手でラベル付けされた.このデー タセットは術具の種類ごとにラベル付けされ ているが,今回は術具領域と背景領域でラベル 付けされた 2 値の画像を教師データとして用い た.

2) 奥行き推定の評価

奥行き推定の評価では, FCRN-DepthPredictionを用いてNYU Depth V2 Dataset を学習したモデルを使用した.このモデルを使 用しMICCAIデータセットから奥行き推定した 結果の例を図3に示す.また,モデルの精度は 推定値と正解値との二乗平均平方根誤差値を 用いて定量的に評価をした.奥行きの正解値は MICCAIデータセットから Semi Global Block Matching法 [12] と重み付き最小二乗フィルタ [13] によって計算して得た.推定結果と正解 値との二乗平均平方根誤差値は4.2 であった.

3) 術具領域の抽出評価

術具領域の推定ではMICCAIデータセットの 画像の色情報と,FCRN-DepthPredictionを用い て画像から推定した奥行き情報を図1のネット ワークを用いて4分割交差検証をした.また, 我々は提案手法の結果と従来手法[1]の結果を Intersection over Union (IoU)とDice 係数を用い て比較した.実験結果を図4,図5に示す.従 来手法と比較すると提案手法は平均 IoU,平均 Dice 係数共に約1%向上した.色情報だけでな く,奥行き情報を学習に用いることで,すべて

図3 推定した奥行き画像の例

図5Dice係数の評価結果

の画像で提案手法の精度は従来手法の精度よ りも上回った.また,提案手法は画像中にクリ ップや血液が含まれる場合でも誤抽出するこ となく,術具領域を抽出できた.クリップと血 液が含まれる画像から術具を抽出した結果例 を図6に示す.このことから,提案手法の有効 性が確認された.しかし,画像の局所領域の精 度が低下した例が確認された.画像の局所領域 の精度が低下した例を図7に示す.この例の誤 抽出した領域には,臓器が映っていた.

(a) 元画像

(b) ラベル画像

- (c) 従来手法の結果
- (d) 提案手法の結果

```
図6 誤抽出が低減した例
```


(a) 元画像

- (c) 従来手法の結果
 - (d) 提案手法の結果

図7 局所領域の抽出精度が低下した例

4. 考察

提案手法によって得られた, MICCAI データ セットにおける,術具領域の抽出結果について 考察する.

1) 誤抽出を低減できた例

提案手法は色だけでなく、物体の3次元的な形 状を学習したことにより,術具と類似しない形 状を持つ物体,液体を分類できたと考える.特 に, クリップは術具と形状が類似しておらず, 形状変化が起きにくい物体である.したがって, 形状を考慮した領域抽出をする提案手法によ り、クリップの誤抽出は低減できたと考えられ る.また,血液は血液が一か所に集中した場合, 術具と色が類似していた.血液が一か所に集中 する場合は、術具のような棒状の形状をもたな かったため、術具と血液を分類できたと考える. 2) 画像の局所領域の精度が低下した例

誤抽出した臓器の領域は, 色と形状が術具と類 似していることが確認できた.このことから単 一の画像からの術具領域の抽出は困難なパタ ーンがあると考えられる.したがって、術具領 域の抽出では, 単一の画像から得られる情報だ

けでなく,映像から連続する複数の画像を用い て、物体の動作を解析し、術具を特定すること で精度を向上する必要がある.

5. まとめ

本論文では,腹腔鏡下手術支援に向けた単眼 腹腔鏡映像からの術具領域の抽出をした.提案 したネットワークが, 色情報と推定した奥行き から術具領域を学習することにより,術具の抽 出精度が向上した.特に、従来では血液や、ク リップを誤抽出していたが、提案手法では誤抽 出を低減することが出来た.しかし,提案手法 は, 色と形状が類似している臓器に対して誤抽 出した. 今後の課題は, 他のネットワークの利 用や, 単一フレームだけでなく複数のフレーム を用いた術具領域の抽出により,抽出精度を向 上する必要がある.

謝辞

本研究の一部は、日本学術振興会科研費補助 金の援助による.

利益相反の有無

なし

文 献

- Shvets A. A, Rakhlin A, Kalinin A. A, et al..: Automatic Instrument Segmentation in Robot-Assisted Surgery Using Deep Learning. Proc. IEEE International Conference on Machine Learning and Applications (ICMLA), 2018
- Laina I, Rupprecht C, Belagiannis V, et al.: Deeper depth prediction with fully convolutional residual networks. Proc. IEEE International Conference on 3D Vision (3DV), pp. 239-248, 2016
- He K, Zhang X, Ren S, et al.: Deep Residual Learning for Image Recognition. Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 2016
- [4] Eigen D, Puhrsch C, Fergus R.: Depth map prediction from a single image using a multi-scale deep network. Proc. Advances of Neural Information Processing Systems (NIPS), pp. 2366–2374, 2014
- [5] Roy A, Todorovic S.: Monocular depth estimation using neural regression forest.Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016
- [6] Ronneberger O, Fischer P, Brox T.: U-net: Convolutional networks for biomedical image segmentation. Proc. Medical Image Computing and Computer-Assisted

Intervention(MICCAI), pp. 234-241, 2015

- [7] Simonyan K, Zisserman A.: Very deep convolutional networks for large-scale image recognition. Proc. International Conference on Learning Representations (ICLR), 2015
- [8] Deng J, Dong W, Socher R, et al.: ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the IEEE Computer Vision and Pattern Recognition(CVPR), 2009
- [9] Kingma D P, Ba J L.: ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION.
 Proc. International Conference on Learning Representations (ICLR), 2015
- Silberman N, Hoiem D, Kohli P, et al.: Indoor segmentation and support inference from RGBD images. Proc. European Conference on Computer Vision (ECCV), pp. 746-760, 2012
- [11] Allan M, Shvets A, Kurmann T, et al.: 2017 Robotic Instrument Segmentation Challenge. https://arxiv.org/abs/1902.06426/, 2017
- [12] Hirschmuller H.: Stereo processing by semiglobal matching and mutual information. Proc. IEEE Transactions on pattern analysis and machine intelligence (TPAMI), pp. 328-341, 2008
- [13] Min D, Choi S, Lu J, et al.: Fast global image smoothing based on weighted least squares. Proc. IEEE Transactions on Image Processing (TIP), pp. 5638-5653, 2014

Surgical Instrument Segmentation using Estimated Depth from

Monocular Laparoscopic Images

Takuya SUZUKI*1, Keisuke DOMAN*1, Yoshito MEKADA*1, Kazunari MISAWA*2, Kensaku MORI*3

*1 Graduate School of Engineering, Chukyo University
*2 Aichi Cancer Center
*3 Graduate School of Informatics, Nagoya University

It is necessary to extract surgical instruments from laparoscopic images in order to improve the safety of laparoscopic surgery using a surgery support system. It is reported that the segmentation accuracy can be improved by using color and depth information. In this paper, we propose a U-Net based image segmentation network using the estimated depth information as well as color information for improving the accuracy. We conducted experiments using 4-fold cross validation with 1,800 images in the MICCAI challenge dataset, and confirmed that the proposed method achieved the average IoU of 89% and the average Dice coefficient of 94%. The proposed method reduced the excessive extraction and improved the extraction accuracy by using the estimated depth information as well as color information.

Key words: Laparoscopic Surgery, Fully Convolutional Network, Depth Estimation, Surgical Segmentation

テンプレート(全ての原稿の種類に共通) Ver. 2.1 (2019.3.28 改訂)

深層学習を用いた骨密度測定時の X 線画像における

大腿骨セグメンテーション

押川 翔太*1 胡 尓重*1 中矢 知宏*1 髙橋 渉*2

要旨

骨粗鬆症の診断では DXA (dual-energy X-ray absorptiometry) 法を用いた骨密度の測定が重要視されている. DXA 法による骨密度測定では、骨部の正確なセグメンテーションが再現性の高い骨密度の測定に重要である. そこで本研究では、骨密度測定時の大腿骨 X 線画像の骨部を、深層学習を用いて高精度にセグメンテーションする手法を提案する. 骨密度測定時の臨床 X 線画像を用いて学習を行い、学習に使用していない評価用データ 100 枚を用いて性能評価を行った. 結果として骨密度測定に重要な大腿骨頸部を中心とした領域において平均 IoU(Intersection over Union) 96.5%となり、高精度にセグメンテーション可能であることを確認した.

キーワード:骨密度測定,大腿骨 X 線画像,深層学習,セグメンテーション

1. はじめに

骨粗鬆症の診断に用いられるDXA法による骨密 度の測定では,経過観察における再現性向上のた め,骨部の正確なセグメンテーションが重要であ る.また近年では深層学習によるセマンティック・ セグメンテーション(Semantic Segmentation)が注目 されており,様々なタスクで高精度なセグメンテ ーションが可能であることから,医用画像処理へ の応用が進んでいる.

*1 株式会社島津製作所 医用機器事業部 技術部

〔〒604-8511 京都市中京区西ノ京桑原町1〕 e-mail: s-oshi@shimadzu.co.jp

*2 株式会社島津製作所 基盤技術研究所 AI ソリューションユニット そこで本研究では、骨密度測定時に取得した大 腿骨 X 線画像の骨部を、深層学習を用いて高精度 にセグメンテーションする手法を提案する.提案 手法の検証では、学習に使用していない大腿骨 X 線画像に対する性能を確認する.

2. 手法

本研究では U-Net[1]をベースとして深層学習モ デルの設計を行い,対象とする大腿骨 X 線画像に 合わせてパラメータを設定する.大腿骨 X 線画像 を入力し,骨領域ラベル画像を出力するように学 習を行う.

3. 結果

学習・推論ともに骨密度測定時の大腿骨 X 線画 像を使用した.これら臨床画像の骨密度分布はお よそ 0.4~1.2 g/cm² であり,幅広い骨密度分布を持 つデータセットで評価を行った. 評価には画像セグメンテーションで一般的に使用されている IoU (Intersection over Union)を採用した. IoUが大きい程,推論結果の骨領域ラベルが正解ラベルと比較してはみ出しや欠けが少なく,抽出精度が高いことを意味する.なお,性能評価は骨密度測定時に重要となる大腿骨頸部を中心とする領域を対象として評価を行った.

学習に使用していない評価用データ 100 枚を学習済みモデルに入力して性能評価を行った結果,平均 IoU (Intersection over Union) 96.5%となった.

4. 考察

図1にセグメンテーション結果の例を示す.中 央部の正方形の白枠内部が評価対象領域であり, 黄色が推論結果と正解ラベルが重なる領域,赤色 が推論結果のみの領域,緑色が正解ラベルのみの 領域を表す.図1から精度良く大腿骨の骨部領域 が抽出されていることが確認できる.骨密度の計 測部位となる大腿骨頸部においては,大腿骨頸部 のエッジが比較的明瞭であるため,正解ラベルと の一致度が高いと考えられる.一方,評価対象外の 骨盤の領域では正解ラベルとの不一致が散見され た.X線画像の骨部が不明瞭な領域であることから, このような領域では骨部の判定精度が低下すると 考えられる.

図1 評価用データのセグメンテーション結果の 例.中央部の正方形の白枠内部が評価対象領域. (黄:推論結果と正解ラベルが重なる領域.赤:推 論結果のみの領域.緑:正解ラベルのみの領域.)

5. まとめ

本研究では深層学習によるセマンティック・セ グメンテーションを用いた大腿骨 X 線画像の骨部 領域の抽出を試行した.学習に使用していない 100 枚の評価用データに対して評価を行った結果,骨 密度測定に重要な大腿骨頸部を中心とした領域に おいて平均 IoU 96.5%となり,高精度に大腿骨をセ グメンテーション可能であることを確認した.

利益相反の有無なし

文 献

[1] Ronneberger O, Fischer P, Brox T: U-Net convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, LNCS, Vol.9351: 234--241, 2015

Femoral segmentation with deep learning in X-ray images

for bone mineral density measurement.

Shota OSHIKAWA*1, Erzhong HU*1, Tomohiro NAKAYA*1, Wataru TAKAHASHI*2

*1 R&D Department, Medical Systems Division, Shimadzu Corp.*2 AI Solution Unit, Technology Research Laboratory, Shimadzu Corp.

Measurement of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) is commonly used in the diagnosis of osteoporosis. In the DXA method, accurate bone segmentation is important for high reproducibility of BMD measurement. In this study, we propose a method to accurately segment bones in femoral X-ray images using deep learning. We trained the deep learning model by using clinical femoral X-ray images of BMD measurement, and evaluated segmentation accuracy by using 100 data which were not used for training. As a result, mean IoU (Intersection over Union) was 96.5% in the region centered on the femoral neck, and high enough.

Key words: bone mineral density measurement, femoral X-ray images, deep learning, segmentation

金属表面紋様の画像照合による手術器具の個品管理

牧野 賢吾*1 Jesse de Wit*2 石山 塁*1 高橋 徹*1 工藤 佑太*1

要旨

本稿では、画像照合による手術器具の個品管理システムを提案する. 資産や作業履歴の管理のために、一般的にマーキングやタグによる個体識別が行われる. しかしながら、器具によってはマーキングやタグの 付与が不可能であり、個体識別が困難な場合がある. さらに、さらにマーキングやタグ付与にコストが かかる問題がある. そこで、本稿では、物体表面の微細なランダム凹凸パターンをマクロ撮影によって画 像化し、それら画像を照合することで個体識別を行う物体指紋認証技術の適用を提案する. 提案手法は、 器具の表面を撮影するだけでよく、マーキングやタグの付与が困難な器具に対しても、個品管理を低コス トかつ容易に実現できる. 実験では、メス、ピンセット、ハサミの3種類の金属製手術器具各5個体に対 し、特定部位をマクロ撮影した画像を照合することにより、誤りなく個体識別できることを確認した. さ らに、ロボットアームを活用し、手術器具を置く操作のみで個品管理可能な自動撮影システムを試作した.

キーワード:画像照合,個体識別,手術器具,トレーサビリティ

1. はじめに

近年,病院内での資産管理や作業履歴の管理 のために,手術器具の個品管理の必要性が高ま っている. 個品管理の実現により,使用回数を 集計し,頻度の少ない器具の過剰在庫の防止や 交換時期の予測など,効率化も可能となる. 個 品管理のためには,器具1つ1つに UDI(Unique Device ID)を割り当て,付与する必要がある. こ れまで,RFID タグを器具に取り付ける方法[1] や,バーコードや QR コードを直接マーキング する方法[2]が用いられている. しかし,タグの 脱落のリスクや,付与に特別な加工を要し,在 庫器具への適用にはコストが膨大にかかると いった課題がある.

これら課題に対し、本稿では、タグやマーキ ングに代わり、手術器具そのものを撮影して得 られた画像を照合する個体識別手法を提案す る.具体的には、物体表面に存在する個体ごと に異なる微細な表面凹凸を撮影し、その表面凹 凸のパターンを照合して個体識別を行う手法

*1 NEC データサイエンス研究所 e-mail: k-makino@mb.jp.nec.com *2 Delft University of Technology Biomedical Engineering (物体指紋認証技術)[3]を活用する.メス,ピン セット,ハサミの3種類の金属製手術器具(鋼 製器具)各5個体に対し,特定部位をマクロ撮 影した画像を照合することにより,誤りなく個 体識別できることを確認した.さらに,ロボッ トアームを活用した自動撮影システムを試作 し,鋼製器具を置くだけの操作のみで個品管理 を実現できること示す.

2. 提案手法

微細な表面凹凸パターンを可視化させるた めに、文献[4]の撮影法を用い、マクロ撮影する. 物体表面へ適切な角度で投光することで、微細 な表面凹凸が反射光の強度に対応付けられ、明 瞭な物体指紋画像(以降,指紋画像と呼ぶ)が 得られる.個体識別を行うためには、まず、器 具の個体毎に指紋画像を撮影し、UDIと紐づけ てデータベースに登録しておく.次に、器具の UDIを得る際には、再度、同一箇所を撮影し、 データベース中の画像と照合する.一致した画 像に紐づけられた UDIを参照することで器具 の個体識別を実現する.登録画像と照合画像間 には並進・回転・スケールの変動が生じるので、 文献[5]の手法を用い、変動に対して頑健かつ高 速な画像照合を実現する.

3. 実験

画像照合による個体識別精度を検証するた め、メス、ピンセット、ハサミのそれぞれにつ いて物体指紋を撮影する箇所を決め、1 個体に ついて2回ずつ撮影を行った.撮影には図1(a) に示すカメラ、レンズ、照明を一体化した撮影 装置を用いた.図1(b)に各鋼製器具の外観と撮 影箇所を、図1(c)(d)に撮影した指紋画像の例を 示す.各種類5個体分撮影し、1枚目の指紋画 像を登録画像、2枚目の指紋画像を照合画像と した.実利用時を想定し、撮影位置・姿勢が変 化するよう、1枚目の撮影を終えた後、鋼製器 具を置きなおしてから2枚目の撮影を行った.

照合の結果,同一個体間のスコアはすべて0.5 以上,異なる個体間のスコアは0.05 未満であり, 閾値判定により照合精度は100%となった.

4. 自動撮影システム

指紋画像の撮影はマクロ撮影であるため,物 体指紋が視野に映るよう位置を微調整し,焦点 が合うよう高さを微調整する必要がある.この 調整作業は繊細で作業負荷が高いため,この作 業を自動化する,ロボットアームを活用した撮 影システムを試作した(図2).試作撮影システ ムは,アームの先に図1(a)の撮影装置を取り付 けており,置かれた鋼製器具の指紋画像を自動 的に撮影できる.文献[6]と同様,別途設置した 広角カメラの画像を用いて,器具の位置・種類 を認識し,器具の指紋箇所の位置に撮影装置を 動かす.本システムにより,利用者は鋼製器具 を置くだけで,個体識別を行うことができる.

5. まとめ

本稿では、タグ付けやマーキングが不要な、 画像照合による鋼製器具の個体識別手法を提 案した.実験では、メス、ピンセット、ハサミ の3種類の鋼製器具を各5個体用いた照合実験 において、照合精度100%で個体識別が可能で あることを確認した.また、器具を置くだけで 個体識別が行える自動撮影システムを試作し た.本システムにより、撮影作業コストを低減 し、容易に器具の個品管理を実現できる.自動 撮影による照合精度評価、器具の種類・数量を 増やしての検証が今後の課題である.

図 1:(a)指紋画像を撮影するための撮影装置,(b) 鋼製器具の外観と撮影箇所(赤枠),(c)撮影される 指紋画像の例,(d)別の個体の指紋画像の例

図2:試作した自動撮影システム

利益相反の有無

なし

文 献

- S.L. Ting, et al.: Development of an RFIDbased Surgery Management System. J. Healthcare Engineering 3-3: 347-372, 2012
- [2] 佐藤一史他:総合滅菌リアルタイムト レーサビリティシステムの導入と運用. 医療機器学 86,(3): 347-352, 2016
- [3] 石山塁:「物体指紋」を用いた個体識別 と認証. ViEW 2018: OS1, 2018.
- [4] T. Takahashi, R. Ishiyama: FIBAR: Fingerprint imaging by binary angular reflection for individual identification of metal parts. EST-2014: 46–51, 2014
- [5] 牧野賢吾他: Fourier-Mellin 特徴の相関
 による画像照合の高速化と特徴量削減.
 MIRU2018: OS3-L1, 2018.
- [6] K. Makino, et al.: Automated Scanning and Individual Identification System for Parts without Marking or Tagging. ACM ICMR2018: 509-512, 2018

Medical Instruments Identification based on

Image Matching of Metal Surface

Kengo MAKINO^{*1}, Jesse de Wit^{*2}, Rui ISHIYAMA^{*1}, Toru TAKAHASHI^{*1}, Yuta KUDO^{*1}

*1 Data Science Research Labs., NEC Corporation*2 Biomedical Engineering, Delft University of Technology

This paper proposes an individual identification system for medical instruments based on image matching. In general, individual identification using marking or tagging is used to manage assets or work history. However, marking or tagging cannot be applied with special instruments. In addition, they require additional cost. In this paper, we propose "Fingerprint of Things" identification technology for individual identification of medical instruments. The method visualizes micro-scale bumps of the surfaces of medical instruments as unique patterns. Then, it identifies individual instruments by matching them. Because the method only requires image capturing of the instruments, individual management can be easily achieved at low cost, even with special instruments. In our experiments, our method successfully identified five individual medical instruments correctly among three types of metal medical instruments (knives, tweezers, and scissors). In addition, we demonstrated that the individual identification system enables us to capture the unique patterns of the medical instruments automatically using a robot arm.

Key words: Image Matching, Individual Identification, Medical Instruments, Traceability

舌診断支援システムの自動化に向けた

舌検出と領域抽出の検討

唐 啓超*1 ヤン テイショウ*1 吉村 裕一郎*2

森 康久仁*3 須鎗 弘樹*3 並木 隆雄*4 中口 俊哉*2

要旨

我々はこれまで舌撮影装置 TIAS を開発し、舌色診断支援システムを構築してきた.この舌色診断支援シス テムのクリニックや家庭への普及に向けて使用手順の自動化が求められている.そこで本研究ではシステ ム自動化に向けた舌検出と領域抽出の手法を検討した.舌検出について、先行研究の結果では感度と精度 は 0.9 以上に達したが特異度は 0.4 未満と誤検出が多発していた.そこで MobileNets 深層学習モデルを用い た舌検出手法を提案した.TIAS で撮影した舌画像 798 枚を用いてモデルを学習させたところ、舌検出特異 度と精度の大幅な向上を確認した.舌の領域抽出について、SLIC と GrabCut を用いた先行研究の結果では 平均 IoU 値が 0.75 未満と精度に課題があった.そこで本研究では Pix2Pix 深層学習モデルと領域拡張法を 組み合わせた舌領域抽出法を提案した.関連手法との比較評価実験の結果、提案手法の優位性を確認した.

キーワード:舌診,舌検出,領域抽出,深層学習

1. 背景

「舌診」とは東洋医学の診察法の一つであ り、舌の色彩、形状、湿潤、舌苔の状態等の 所見から患者の体調を診断する.しかし、診 断結果は医師の主観や経験に大きく依存する ため、定性的である.この問題を解決するた め、我々は図1に示すような舌撮影装置 TIAS を開発し、舌色診断支援システムを構築した ^{[1][2]}.TIASのクリニックや家庭への普及に向 けて使用手順の自動化が求められている.自 動化にはカメラのプレビュー動画像から挺舌 の状態を検出するためリアルタイム処理が必 要である.さらに、撮影後の静止画像1枚に 対して領域抽出の必要がある.

*1 千葉大学大学院融合理工学府
〔〒263-8522 千葉市稲毛区弥生町 1-33〕
*2 千葉大学フロンティア医工学センター
*3 千葉大学大学院工学研究院
*4 千葉大学大学院医学研究院和漢診療学

舌検出について,先行研究として, Haar-Like 特徴量に基づく機械学習を用いた 舌検出手法がある.その結果では感度と精度 は 0.9 以上に達したが,特異度は 0.4 未満と 誤検出が多発していた^[3].そこで本研究では, MobileNets 深層学習モデルを用いた舌検出手

図1 舌撮影装置 TIAS と舌色診断支援システム

法を提案した.

舌の領域抽出について,SLIC と GrabCut を用いた先行研究の結果では平均 IoU 値が 0.75 未満と精度に課題があった^[3].そこで本 研究では Pix2Pix 深層学習モデルと領域拡張 法を組み合わせた舌領域抽出法を提案した.

2. 提案手法

TIAS のクリニックや家庭への普及に向け て使用手順の自動化が求められている. TIAS 撮影の手順と自動化に必要な措置を図2に示 す.カメラのプレビュー動画像から挺舌の状 態を検出するためリアルタイム処理が求めら れる.一方,撮影後の静止画像1枚に対して 領域抽出の必要がある.そこで本研究ではシ ステム自動化に向けた舌検出と領域抽出の手 法を検討した.

2.1. 舌検出手法

深層学習(Deep Learning)とは,多層のニュ ーラルネットワークによる機械学習手法で, 特徴量抽出を自動化できるという利点がある. 近年,画像を対象とした場合,非深層学習の 手法より高い性能が示唆されている.

深層学習モデルの一種として MobileNets^[4] は Depthwise Separable Convolution を用いる ことで,計算速度が一般的な深層学習モデル より速い,リアルタイムでの物体検出が可能 となる.また2つハイパーパラメータ Width Multiplier と Resolution Multiplier を導入する ことで,処理時間と精度を調節することがで きる.スマートフォンやノートパソコンなど の性能に制限があるデバイスにおいても認識 や分類モデルへの応用が可能となる.本研究 ではリアルタイムの舌検出処理に MobileNets モデルを導入する.図3に本研究での提案手 法による舌検出の例を示す.

TIAS で撮影した RGB 舌画像 798 枚を用い て MobileNets モデルを学習する. ネットワー クに入力する学習画像の解像度は 300×300 で, バッチサイズは 24 である. データ数 798 枚の内 718 枚を訓練データ, 80 枚を検証デー タとして 2000epoch を実行し, loss 値が最も

小さいモデルを出力する.

舌検出における提案手法の有効性を評価す るために TIAS で撮影した 200 枚の舌画像と 33 枚の非舌画像に従来手法と提案手法をそ れぞれ適用し,比較評価実験を行った.

2.2. 舌領域抽出手法

Pix2Pix^[5]モデルは GAN を利用した画像生 成アルゴリズムの一種で,一対の画像から画 像間の関係を学習することで,一方の画像入 力から他方の画像を生成することができる. 長谷川らは Pix2Pix モデルで二値化舌画像を 生成する手法を提案した^[6]. 舌画像とそれに 対応した二値化舌画像のペアを学習データと して Pix2Pix で学習させ,任意の舌画像を入 力した際に対応した二値化舌画像を生成する ことができる.

本研究では学習データとして TIAS で撮影 した 14 人分の被験者の舌画像を用意し,各被 験者につき 10~40 枚の舌画像,合計で 424 枚 の舌画像を用いた.これらの舌画像と対応し た二値化舌画像には,手作業で作成した二値 化画像である.図4は作成した学習データの ペアの一例である.

しかし、Pix2Pixによる生成結果では学習デ ータが不十分なため二値化舌画像の出力結果 は細かいノイズが発生することが多い.長谷 川らは複数枚の出力画像群をピクセルごとに 論理積を計算することでノイズ除去を行って いるが、1枚の二値化舌画像の生成に10分程 度要している.自動化処理を実現するために は、舌領域抽出の処理時間を短縮することは 必要不可欠である.この問題を解決するため に、領域拡張法^[7]を用いて短時間で小領域を 除去することを提案する.図5に本研究での 提案手法によるノイズ除去の例を示す.舌外 部の過抽出ノイズを除去する処理と舌内部の 欠損を埋める処理をそれぞれ領域拡張により 実施した.

しかしながら、テストデータには学習デー タとは撮影条件が異なる画像がふくまれてお り、そのような画像に対しては、精度の良い 二値化舌画像を生成できない可能性が高い. そこで、本研究では元の424枚の舌画像に対 して、左右反転と色変換を行うことで、この 問題に対応するためのデータ拡張を試みた. 舌画像に対して-0.20から+0.20までのランダ ムな輝度調整と1.0から2.0までのランダム なゲイン調整、異なる順番の組み合わせから ランダムに一つを選ぶ、画像入力の1イテレ ーションごとに色変換を行う.さらに、舌検 出された検出ボックスをもとに舌画像と二値

図 4 学習データのペアの例 左側:TIAS で撮影された舌画像(画像を 256×256 にリサ イズした),右側:それに対応した二値化舌画像

図 5 ノイズ除去の例 左側:ノイズ除去前,右側:ノイズ除去後

図 6 訓練画像のペアの例 (a)オリジナル舌画像,(b)左右反転した画像,(c)色変換 した画像,(d)左右反転と色変換した画像

化舌画像のラベルをトリミングすることで, 背景情報による学習精度の低下を防ぐことを 試みた.図6に示すような画像のペアは今回 本研究の学習データとして使用する.

入力画像の解像度は 256×256 で, バッチサ イズは 1 である. データ数 424 ペアの内 382 枚を訓練データ, 42 枚を検証データとして 50epoch を実行し, loss 値が最も小さいモデル を出力する.

舌領域抽出における提案手法の優位性を示 唆するために異なるカメラ条件下で TIAS 撮 影した 165 人分の被験者の舌画像用意し,各 被験者につき 1~2 枚の舌画像,合計で 170 枚 のテスト舌画像に関連手法と提案手法をそれ ぞれ適用し,比較評価実験を行った.

3. 実験

3.1. 舌検出比較評価実験

TIAS で撮影した 200 枚の舌画像と 33 枚の 非舌画像に従来手法の Haar-Like 特徴量を用 いた舌検出と提案手法の MobileNets 深層学習 モデルを用いた舌検出をそれぞれ適用し,比 較評価実験を行った.本研究では評価指標に Andrew G. Howard ら^[4]の評価実験で使用された IoU 係数を用いた.

今回舌検出成功の判定基準を検出ボックスの IoU 値が 0.7 以上と設定した閾値をもとに 233 枚の画像から舌検出の成否を判定し,感度,特異度,精度の評価を行った.

表1に従来手法と提案手法の検出評価結果 を示す. Haar-Like 特徴量を用いた舌検出の結 果は感度と精度は 0.9 以上に達したが特異度 は 0.4 未満と誤検出が多発していた. MobileNets 深層学習モデルを用いた舌検出の 結果のそれぞれ評価指標の平均が1となった ため検出特異度と精度の大幅な向上が確認さ れた.

3.2. 舌領域抽出比較評価実験

学習データと異なるカメラ条件下で TIAS 撮影した 165 人分の被験者の 170 枚テスト舌 画像に関連手法と提案手法をそれぞれ適用し, 比較評価実験を行った.

テスト舌画像の各手法で生成した二値化舌 画像と舌領域抽出画像の結果を図7に示す.1 枚の二値化舌画像の生成に要した時間は約2 秒である.

	Haar-Like特徴量	MobileNets
平均感度	93.5%	100%
平均特異度	36.1%	100%
平均精度	91.3%	100%

表1 舌検出の評価結果

図7 テスト舌画像の各手法で出力結果の例

(a)オリジナル舌画像, (b)舌抽出画像(ラベル), (c)Pix2Pix 手法結果, (d)Pix2Pix+Seeded Region Growing 手 法結果, (e)Data augmentation+Pix2Pix+Seeded Region Growing 手法結果, (f) Data augmentation+Crop+Pix2Pix+Seeded Region Growing 手法結果

Pre-processing	Main method	Post-processing	mloU
Haar-Like + SLIC	GrabCut	-	73.1%
MobileNets + SLIC	GrabCut	-	81.9%
-	Pix2Pix	-	85.9%
-	Pix2Pix	Seeded Region Growing	87.3%
Data augmentation	Pix2Pix	Seeded Region Growing	90.0%
Data augmentation + Crop	Pix2Pix	Seeded Region Growing	94.7%

表2 舌領域抽出の評価結果

実際,提案手法の出力されたモデルのイテ レーション数は43000 である.すなわちイテ レーション数と同じに合計43000 枚舌画像が データ拡張後の入力画像をとして生成された.

表2に関連手法と提案手法の領域分割評価 結果を示す.従来手法のHaar-Like 舌検出に 基づく SLIC と GrabCut を用いた舌領域抽出 の結果が平均 IoU 値は 0.75 未満である.舌検 出手法を MobileNets に変更後,舌検出精度が 向上したため,GrabCut 領域抽出結果の平均 IoU 値が 0.819 に向上することが示された.

一方,先行研究の Pix2Pix 深層学習モデル を用いた舌領域抽出の結果が平均 IoU 値は 0.859 である.領域拡張法を後処理として Pix2Pix モデルと組み合わせた後,小領域ノイ ズを除去することで,領域抽出結果の平均 IoU 値が 0.873 に向上するという改善が確認 された.

さらに、データ拡張と舌領域トリミングの 前処理手法を提案手法へ導入後、舌領域抽出 結果の平均 IoU 値が 0.947 となったため提案 手法の優位性が確認された.

4. まとめ

本研究は舌診断支援システムの自動化に向 けた舌検出と領域抽出の検討を行った. MobileNets 深層学習モデルを用いた舌検出手 法を提案し,従来手法との比較評価実験によ り舌検出特異度と精度の大幅な向上を確認し た. Pix2Pix 深層学習モデルと領域拡張法を組 み合わせて,データ拡張と舌領域トリミング を前処理として追加した舌領域抽出手法を提 案した.関連手法との比較評価実験により提 案手法の優位性を確認した.

利益相反の有無

なし

文 献

- Yamamoto S, Ishikawa Y, Nakaguchi T, et al.: Temporal Changes in Tongue Color as Criterion for Tongue Diagnosis in Kampo Medicine. Forsch Komplementmed 2012: 80-85, 2012
- [2] Nakaguchi T, Takeda K, Ishikawa Y, et al.: Proposal for a new non-contact method for measuring tongue moisture to assist in tongue diagnosis, and development of the Tongue Image Analyzing System, which can separately record the gloss components of the tongue. BioMed Research International 2015: Article ID 249609, 10 pages, 2015
- [3] 平野諒司,中口俊哉,貝沼茂三郎:大 規模画像処理による挺舌中の経時色 変化と医学所見との関連解析.電子情 報通信学会技術報告:vol.115, no.216, IMQ2015-14, 9-14, 2015
- [4] Andrew G. Howard, Menglong Zhu, BoChen, et al.: MobileNets: EfficientConvolutional Neural Networks for

Mobile Vision Applications. arXiv preprint arXiv: 1704.04861, 2017

- Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, et al.: Image-to-image translation with conditional adversarial networks. Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp1125-1134
- [6] Hasegawa Y, Tsunashima K, Mori Y, et

al.: Generation of binarized tongue image using pix2pix for shape unification. Forum on Information Technology, Fukuoka, 2018, pp343-346

[7] Adams R, Bischof L: Seeded region growing. IEEE Transactions on pattern analysis and machine intelligence 16.6: 641-647, 1994

Examination of tongue detection and region extraction for automation of tongue diagnosis support system

Qichao TANG^{*1}, Tingxiao YANG^{*1}, Yuichiro YOSHIMURA^{*2}, Yutaka HASEGAWA^{*1} Yasukuni MORI^{*3}, Hiroki SUYARI^{*3}, Takao NAMIKI^{*4}, Toshiya NAKAGUCHI^{*2}

*1 Graduate School of Science and Engineering, Chiba University
*2 Center for Frontier Medical Engineering, Chiba University
*3 Graduate School of Engineering, Chiba University
*4 Dept. of Japanese-Oriental (Kampo) Medicine,
Graduate School of Medicine, Chiba University

We have developed "Tongue Image Analyzing System (TIAS)" and constructed tongue color diagnosis support system. In order to extend TIAS to clinics and personal homes, the operation of TIAS needs to be automated. In this study, we explored tongue detection and region segmentation extraction methods for system automation. Regarding tongue detection, according to the results of previous researches, sensitivity and accuracy can reach 0.9 or more, however specificity is less than 0.4, and error detection occurred frequently. Therefore, we proposed a tongue detection method using MobileNets deep learning model. The model was trained using 798 tongue images taken with TIAS, and significant improvements in tongue detection specificity and accuracy were confirmed. Regarding region segmentation extraction of tongue, the results of previous researches using SLIC and GrabCut had a problem in accuracy with average IoU value less than 0.75. In this study, we proposed a tongue region segmentation extraction method combining Pix2Pix deep learning model and seeded region growing method. Through a comparative evaluation experiment of related methods, the superiority of proposed method in accuracy was confirmed.

Key words: Tongue diagnosis, Tongue detection, Region segmentation extraction, Deep Learning

少量のラベルデータを用いた学習による イレウス症例CT像における拡張腸管の自動抽出

小田 紘久*1, 西尾 光平*1, 北坂 孝幸*2, 天野 日出*^{3,4}, 千馬 耕亮*4, 内田 広夫*4, 鈴木 耕次郎*⁵, 伊東 隼人*1, 小田 昌宏*1, 森 健策*^{1,6,7}

要旨

本稿では,Fully convolutional network (FCN) を用いたイレウス患者の CT 像における腸管領域の抽出において、手塗りされた教師データが少量であっても精度よく抽出を行う手法を提案する.腸閉塞をはじめとするイレウス症例の緊急診断支援のため,腸管を抽出してその走行を提示するシステムの開発が必要である.一般に FCN の学習を行う場合には大量の学習データが必要であるが、小腸は複雑に入り組んでいるほか非常に長く、手動でのラベル作成は容易でない.本稿では症例ごと 7 枚の Axial スライスのみにラベルが作成された教師データを効率的に使用するためのデータ拡張として、回転・非剛体変形などの一般的な画像処理のほか、事前に教師データごとにラベルを他のスライスへ伝播する処理を行うことで、ラベルが手作業で作成されていないスライスも学習に使用可能とする.ネットワークは 3D U-net をもとに入出力サイズを変更を施した Suppressed 3D U-net を用いた.実験は他のスライスへの伝播処理の有効性を評価するため、伝播処理あり・なしの比較を行った.伝播あり・なしの抽出精度を表す Dice 係数はそれぞれ 0.744, 0.782 であり、伝播処理を行わないほうが高い抽出精度が得られることが知られた.

キーワード: Suppressed 3D U-net, スパースアノテーション, 腸管抽出, 簡易手動抽出

1. はじめに

腸閉塞を含めたイレウス患者の緊急診断にお いては, 医師が CT 像において腸管をたどり, 閉塞点を探す作業が求められる. とりわけ小腸 は腹部において複雑な走行を示すほか全長も長 い. 閉塞点を探す作業は多大な労力と慣れを要 する. そのため,自動で腸管の閉塞点を探す手 法が求められている.

西尾らは、ヘッセ行列に基づく面状構造強調 フィルタを用いて腸管の壁を抽出し、そのフィル タ出力の小さな領域をたどるよう Fast marching algorithm を使用した [1]. この手法では、腸管 の壁の一部が不明瞭である場合にフィルタ出力

- *¹ 名古屋大学大学院情報学研究科 〔〒 464-8601 名古屋市千種区不老町〕 email: hoda@mori.m.is.nagoya-u.ac.jp
- *2 愛知工業大学情報科学部
- *3 東京大学大学院医学系研究科
- *4 名古屋大学大学院医学系研究科
- *5 愛知医科大学放射線医学講座
- *6 名古屋大学情報基盤センター
- *7 国立情報学研究所医療ビッグデータ研究センター

も低下し,抽出に漏れが生じた.

近年, Fully convolutional network (FCN) を含 めた深層学習手法による各種臓器・組織の抽出 が広く行われている.FCN の学習には画像お よび,抽出対象物のラベルが必要となるが,複 雑に入り組んだ腸管を抽出する作業は多大な労 力を要すため現実的でない.そこで我々は,学 習用 CT 像における手作業でのラベル付け対象 を少数の Axial スライスのみに絞り,それらの ラベルのみを用いて学習した場合に正確な抽出 が行われることを目指す.とりわけ本稿では, 本来の学習に先立つデータ拡張として,学習用 CT 像においてラベルを近隣のスライスへ伝播 しておき,多数のスライスを利用することの有 効性について調査する.

2. 腸管抽出手法

1) 概要

本手法は CT 像から腸管領域を抽出するもの である.ネットワークの学習に用いられる CT 像はそれぞれ *n* 枚の Axial スライスをもつとす

図1 パッチの切り出し方.

ると,8番目から (n-9)番目までの Axial スラ イスのうち1枚以上において,腸管のラベルが 与えられている必要がある.

2) ネットワーク構成および誤差関数

3D U-net [2] を改変し,入力・出力サイズを 288×192×16 画素としたもの (Suppressed 3D U-net)を使用する. Z 軸方向は入力サイズが 16 画素であるため,ネットワーク中での Z 軸方向 に対する情報の過度な損失を防ぐよう,13 個の 畳み込み層のうち7 個は XY 平面上のみの処理 としている.

図1に示すように、ラベルをもつ Axial スラ イス付近をパッチとして切り出すが、その際に 16 枚あるパッチ内の XY 平面のうち中央付近 にあたる8枚目に、ラベルをもつ Axial スライ スが来るようにする. 誤差関数は Binary crossentropy を使用し、その算出に用いるのも8枚 目の XY 平面のみとする.

3) データ拡張

並進・回転等 CT 像に並進・回転ならびに非剛体変形をランダムに行った上でパッチを切り出す.またパッチごと 0.95 ~ 1.05 の係数をランダムに生成し,パッチ内の全画素の CT 値 [H.U.] に対して係数値を乗算する.

他スライスへの伝播 杉野ら [3] の手法を参考 に、学習データそれぞれにおいて事前にラベル を伝播しておくことで、多くのスライスを学習 に使用可能とする.

4) 推論

学習されたネットワークはパッチと同サイズ の出力をもち,腸管内確率(0~1の実数で,腸 管内において高い値,それ以外で低い値)を出 力するが,このうち8枚目のXY平面のみが信 頼できるものである. CT 像の各 Axial スライ スについて,その周辺を含め16枚の Axial ス ライスで構成されるパッチを学習時と同様に切 り出し,ネットワークで腸管内確率とする. CT 像全体において確率を得たうえで,確率が0.5 以上の領域を腸管抽出結果とする.

実験および考察

7例の大人のイレウス症例 A~Gを {A, B, C}, {D, E}, {F, G}と分け, 3分割交差検定を行った. 各症例では, 腸管の映る Axial スライスのうち 7枚を,およそ等間隔となるよう手動でラベル を作成し,小児外科医 1 名によるチェック・修 正を受けた. プログラムは Keras により実装し, 学習・テストには Quadro P6000 (NVIDIA) GPU を1基使用して, 10,000 イテレーションの学習 を行った. 事前に抽出結果を他のスライスへ伝 播する処理を行った実験を「伝播あり」,単に 各症例 7枚のラベルを用いて学習を行った実験 を「伝播なし」と記す.

表 1 は交差検定における抽出精度を表し, Dice 係数ならびに接続数で評価している.接 続数とは,手塗りされた複数のラベルにまたが る自動抽出結果の数を表し,腸管の追跡処理へ の応用においてはこのような箇所が少ない方が よい. Dice 係数・接続数ともに,平均では伝播 なしの方が高い精度であった.

図2に結果例を示す. 伝播あり(図2(b))の 結果では伝播なしの場合(図2(c))に比べ,辺 縁まで十分に抽出されていない箇所や,離れた ラベルが接続している箇所がみられた. また伝 播なしでは全体に辺縁まで1.0に近い値がネッ トワークより出力されているのに対し,伝播あ りの場合は腸管内外でなめらかに出力値が変化 している箇所が多い傾向にあった. 伝播ありの 場合では,伝播の結果が正しいか否かを評価す ることなくランダムに学習に使用しているため, 誤ったラベルでの学習が結果に悪影響を与えた 可能性がある. 明らかに誤ったラベルは使用し

(a) Ground-truth

(b) 伝播あり

(c) 伝播なし

図2ネットワーク出力例. (a) Ground-truth. 残渣・液体・空気が色分けされているが,本手法ではこれらを単一クラスとして扱っている. (b) 「伝播あり」の出力. (c) 「伝播なし」の出力.

表1 各症例の抽出精度. 伝播あり・なしを比較.

症例	Dice	係数	接続数/	/スライス
伝播	あり	なし	あり	なし
А	0.675	0.734	0.143	0.000
В	0.732	0.800	1.429	0.714
С	0.805	0.838	0.571	0.571
D	0.861	0.857	0.000	0.143
E	0.871	0.870	0.857	0.714
F	0.400	0.553	0.167	0.333
G	0.865	0.818	0.571	0.000
平均	0.744	0.782	0.534	0.354

ない,手作業で得たスライスと伝播処理で得た スライスの学習バッチ中の制約をつけるなどの 改善が考えられる.

4. まとめ

本稿では FCN による CT 像からの腸管自動 抽出手法を提案し,そのデータ拡張として,ス ライスの伝播処理により学習データ中における 多くのスライスを使用可能となった反面,伝播 処理の正確性を問わずにランダムにスライスを 選定して学習に使用したために精度の低下を引 き起こした.今後,手動作成されたラベルと伝 播結果の,学習におけるバランスについて改善 を図る予定である.

謝辞 本研究の一部は, 堀科学芸術振興財団, MEXT/JSPS 科研費 (17H00867, 17K20099, 26108006, 26560255), JSPS 二国間交流事業ならびに AMED (19lk1010036h0001) によった. 利益相反 なし

文 献

[1] 西尾光平,小田紘久,千馬耕亮他:イレウス 診断支援システムにおける閉塞部位の誤検 出修正及び改善ツールの構築.第27回日本 コンピュータ外科学会大会, **20**(4): 348-349, 2018

- [2] Cicek O, Abdulkadir A, Lienkamp S, et al.: 3D U-Net: Learning dense volumetric segmentation from sparse annotation, MICCAI 2018 LNCS 0091: 424–432, 2016
- [3] Sugino T, Roth H, Oda M, et al.: Automatic segmentation of eyeball structures from micro-CT images based on sparse annotation, SPIE Medical Imaging 2018, **10578**, 2018

Automated Segmentation of Dilated Intestines in Ileus Patients' CT Volumes Using Little Amount of Labeled Training Data

Hirohisa Oda^{*1}, Kohei Nishio^{*1}, Takayuki Kitasaka^{*2}, Hizuru Amano^{*3,4}, Kosuke Chiba^{*4}, Hiroo Uchida^{*4}, Kojiro Suzuki^{*5}, Hayato Itoh^{*1}, Masahiro Oda^{*1}, Kensaku Mori^{*1,6,7}

*1 Graduate School of Informatics, Nagoya University
*2 School of Information Science, Aichi Institute of Technology
*3 Graduate School of Medicine, The University of Tokyo
*4 Nagoya University Graduate School of Medicine
*5 Department of Radiology, Aichi Medical University Hospital
*6 Information Technology Center, Nagoya University
*7 Research Center for Medical Bigdata, National Institute of Informatics

In this paper, we propose an intestine segmentation method from CT volumes of ileus patients, which works well with a small number of manually-traced labels on training of fully convolutional network (FCN) for segmentation. Generally, training FCNs requires much amount of training dataset. However, manual tracing of the intestines is very difficult because the intestines are long and have winding shape. We investigate efficacy of data augmentation, that consists of not only general image processing like rotation or non-rigid registration but also propagation of manually-traced labels to other axial slices. By this approach, use of axial slices have no manually-traced labels for training becomes possible. Our FCN network for segmentation named "suppressed 3D U-net" is a modified version of the 3D U-net, whose input and output size are adjusted for our work. To investigate the efficacy of the propagation, performances of w/ and w/o propagation are compared in the experiments. Dice coefficients of w/ and w/o propagation were 0.744 and 0.782, respectively. We found that propagation process decreases the segmentation accuracy, which uses axial slices including incorrect labels for training.

Keywords: Suppressed 3D U-net, Sparse annotation, Intestine segmentation, Easy manual annotation

高解像度連続切片標本画像による股関節周辺領域における

神経筋骨格構造のモデル化のための

線維トラクトグラフィーの応用

時末 尚悟^{*1} 大竹 義人^{*1} Mazen Soufi^{*1}

福田 紀生*1 高尾 正樹*2 菅野 伸彦*2

Beom Sun Chun^{*3} Jin Seo Park^{*4} 佐藤 嘉伸^{*1}

要旨

整形外科での診断精度向上などの観点から,正確な筋骨格モデルの構築が求められている.しかし,現状のモダリティでの腱・靭帯領域の撮像や解剖での骨格筋の内部構造把握は困難とされており,骨格筋の起始から停止に至る正確な3次元構造のモデル化はなされていない.そこで本研究では,遺体から得られる高解像度の標本画像を用いることで,骨格筋の起始から停止までの正確な3次元構造のモデル化を目指す.先行研究では大臀筋を対象にその周辺の腱・靭帯組織をマニュアルトレースにより抽出し筋腱線維の構造解析を行った.本研究では CNN を用いて,データセット全体から腱・靭帯組織を自動抽出し,そのラベルを用いて線維構造解析を行い,マニュアルトレースとの比較・検討を行う.また,解析した腱・靭帯線維をクラスタリングすることで解剖学的な整合性に基づいた領域分類を行い,周辺の骨や骨格筋とのコネクティビティの検証を行う.

キーワード:筋骨格モデル、トラクトグラフィー、筋腱線維解析

1. はじめに

整形外科での診断精度向上,スポーツ医学で の運動解析などを目指して様々な筋骨格モデ

*1 奈良先端科学技術大学院大学 先端科学 技術研究科 情報科学領域

〔〒630-0192 奈良県生駒市高山 8916-5〕

- e-mail: {otake, yoshi}@is.naist.jp
- *2 大阪大学大学院 医学研究科
- *3 Ajou University School of Medicine
- *4 Dongguk University college of Medicine
- 投稿受付: 2019 年 5 月 22 日

ルが構築されており, OpenSim[1]や Anybody[2] などのシミュレーションシステムが開発され ている.しかしながら,既存の骨格筋を線形ア クチュエータで近似したモデル[3]では,シミュ レーションで不自然な挙動を示すことが問題 とされている[4].

そこで我々のグループでは、骨格筋内部の筋線維走向を解析するため、高解像度の標本画像を用いて、画素勾配から線維の走向を構造テンソルとして取得し、fiber-tracking アルゴリズムを用いることで筋腱線維の走向モデルを構築した[5].本稿では、先行研究に加え、筋骨格モ

デルの構築で重要視されている[6]骨格筋と骨 の付着部である腱および靭帯の線維構造を解 剖学的構造に基づいて分類することで筋骨格 シミュレーションに向けた下肢3次元筋骨格標 本モデルの構築を目指す.実験では,CNNを用 いて自動抽出された腱および靭帯線維領域か ら得られる線維構造をマニュアルトレースに より作成した正解ラベルから得られる線維構 造と比較し,その抽出結果の妥当性を評価する. また,それらの線維構造を周辺の骨・靭帯ラベ ルに基づいて分類することで,より忠実な線維 構造の解析を行う.

2. 手法

2.1. 線維走向推定

先行研究[5]と同様の手法で線維走向を解析 する.実験に用いたデータセットの詳細を表 1 に示す.計算速度向上のため、グレースケール へ変換し画素勾配から構造テンソルを取得す る.得られた構造テンソルにトラクトグラフィ ーを適用し線維構造を取得する.

2.2. 腱・靭帯領域の自動抽出

表1に示す通り、実験に用いた高解像度の連続画像から全ての腱・靭帯組織を手動で抽出するには莫大な時間が必要となる.そこで、CNNを用いて腱・靭帯組織の自動抽出を行う.用いたネットワークはU-Net[6]で、データセットから100枚間隔で抽出した25枚の画像にマニュアルでアノテーションし、その画像からランダムに512×512のパッチを3000枚取り出したものを訓練データとして用いる.予測ラベルは5*5*21のClosing Filterでノイズを軽減する.

2.3. 筋腱線維の解剖学的構造に基づく分類

解析した筋腱線維をより解剖学的構造に忠 実に再現するため,以下の手順で分類する.

- 1. 周辺の骨および腱・靭帯に付着していない無 効な線維の除去
- 2. 骨格筋の付着部による有効な線維の分類
- 3. 不確実な線維の抽出

2.4. 予測ラベルの評価

正解ラベルと予測ラベルの評価を次式で示

表1 データセットの詳細

領域	股関節
Image Size (voxel)	1943*3520*2501
Voxel Size (mm ³ /voxel)	0.1*0.1*0.1
Color	24bit RGB

す Dice 係数および ASD で行う.

$$DC(A,B) = \frac{2|A \cap B|}{|A| + |B|} \quad (2)$$

$$ASD(A,B) = \frac{1}{|A| + |B|} \left(\sum_{x \in A} \min_{y \in B} d(x,y) + \sum_{y \in B} \min_{x \in A} d(y,x) \right) \quad (3)$$

また,予測ラベルによる線維構造の評価を行 うため, fiber distance[7]を用いる. fiber distance は次式(1)で表される.

$$d_{ij} = \frac{1}{n} \sum_{k=1}^{n} d_k \quad (1)$$

ここで、d_kは線維i上の点kと線維j上の最近傍 点との距離であり、線維i上の全ての点でその総 和を取り、点数nで割ることで得られる.評価に は予測ラベルに基づく筋腱線維の全ての線維 について正解ラベルに基づく筋腱線維との fiber distance を求める.

3. 実験

3.1. 大臀筋の筋腱線維解析

実験は股関節周辺領域の骨格筋を対象に行う.本稿では大臀筋を対象に停止部である大腿 骨への腱および腸脛靭帯の線維走向をマニュ アルトレースにより作成したラベルおよび 2.2 の手法で自動抽出されたラベルをもとに解析 し,その結果を比較・検討する.

3.2. 大臀筋の線維走向分類

大臀筋は浅層および深層の2層構造をもち, 浅層の停止部は腸脛靭帯,深層の停止部は大腿 骨とされている[8].この解剖学的知見をもとに 3.1 で解析した線維構造の分類を行う.手法は 2.3 にしたがい,実験は以下のように進めた.なお,線維は全て100点の点群として扱い,サーフェスモデルは全て頂点数8000に補間を行う.

- 仙骨・寛骨・起始部の周辺靱帯・腸脛靱帯 を合わせたサーフェスモデルを作成し,解析 した筋腱線維の端点との最短距離が 15mm 以上の線維をいずれにも付着していない無 効な線維として除去する.
- 線維の端点を k-means 法で起始側と停止 側に分類し,停止側の全ての端点と大腿骨の サーフェスモデルとの最短距離を求め,全体 の線維数の1/4番目の線維の最短距離を閾値 として,その閾値以下の線維を深層と定義す る.
- 2.で定義されなかった線維の停止側の端 点と腸脛靭帯のサーフェスモデルとの最短 距離が3mm以上のものを不確実な線維とし て抽出し、残りの線維を浅層と定義する。

4. 結果

4.1. 大臀筋筋腱構造の比較

図1に大臀筋の筋腱線維構造の解析を示す. 左側にマニュアルトレースにより作成したラ ベルを用いて解析した結果,右側に2.2の手法 により予測したラベルを用いて解析した結果 を示している.それぞれ大臀筋周辺の骨ラベル のサーフェスモデルと合わせて Back および Left からのビューを表示しており,線維上の点 におけるベクトル方向に応じて RGB 値を割り 当てることで線維の走向を色づけしている.

4.2. 大臀筋の筋腱線維の分類

図2に大臀筋の予測ラベルに基づく筋腱線維 の分類結果を示す.(a)は3.2の手順1の結果で あり,有効な線維を緑,無効な線維を赤で色付 けしている.(b)は手順2および3の結果で,浅 層をシアン,深層を朱,不確実な線維を黄で色 付けしている.

4.3. 予想ラベルの評価

予測ラベルの Dice 係数は 0.80, ASD は 0.50(mm)であった.

また,予測ラベルと正解ラベルによる線維の

図1 筋腱線維の解析結果.正解ラベルに基づく (上),予測ラベルに基づく(下)

図1 予測ラベルに基づく線維構造の分類結果. (a)無効な線維の抽出.(b)線維構造の分類.

図3 予測ラベルと正解ラベルに基づく繊 維間の fiber distance

fiber distance の結果を図 3 に示す. 横軸に fiber distance(mm), 縦軸に線維数を示している. fiber distance が 1mm 未満の線維数は全体の約 78%であった.

5. 考察とまとめ

3次元筋骨格標本モデル構築に向けて, CNN を用いて腱・靭帯を自動抽出し,筋腱線維の評 価を行った.得られた筋腱線維を解剖学的知見 に基づき,分類することで,図2のような結果 を得た.図2(a)において,起始および停止と接 続していない線維はラベルの境界部に多く見 られることが分かる.また図2(b)で観察される 不確実な線維の多くは浅層および深層の境界 にあり,テンソル場が両方の領域の影響を受け ていることが原因であると考えられる.

また,図1に示す通り,正解ラベルと予測ラ ベルで顕著な差は見られず,図3から fiber distance もほとんどが2mm以内に収まっている ことが分かる.今後,誤差が2mm以上の線維を 抽出し,原因を追究する.

謝辞

本研究の一部は, KAKENHI 19H01176 および KAKENHI 26108004 の支援による.

利益相反の有無

なし

文 献

- Scott D, Frank A, Allison A, et al.: OpenSim: Open-source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans Bio Eng, 54-11, 1940-1950, 2007.
- [2] Michael D, John R, Søren C, et al.: Analysis of musculoskeletal systems in the AnyBody Modeling System, Simulation Modelling Practice and Theory, 14-8: 1100-1111, 2006
- [3] Apoorva R, Christopher D, Matthew D, et al.: Full-body musculoskeletal model for muscle-driven simulation of human gait.,

IEEE Trans Bio Eng, 63-10: 2068-2079, 2016.

- [4] Enrico P, Morten L, Anantharaman G, et al.: Refining muscle geometry and wrapping in the TLEM 2 model for improved hip contact force prediction, PLoS One, 13-9: 2018.
- [5] 時末尚悟、大竹義人、Soufi M, et al.: 高 精細連続切片画像を用いた線維トラク トグラフィーによる筋腱モデリング、In proceedings of 医用画像研究会(MI), Okinawa, 2019
- [6] Ronneberger, O, Fischer, P, Brox, T: U-Net: Convolutional networks for biomedical image segmentation., MICCAI, Springer, LNCS, 9351: 234-241, 2015.
- [7] Lauren O, Carl-Fredrik W: Automatic Tractography Segmentation Using a High-Dimensional White Matter Atlas, IEEE Trans Med Imag, 26-11, 1562-15752007
- [8] Keith L. Moore, Arthur F. Dalley.: 臨床の ための解剖学, 佐藤 達夫(監訳), 坂井 建雄(監訳), メディカル・サイエンス・イ ンターナショナル, 東京, 2008

An application of fiber tractography for

modeling neuromusculoskeletal structures around the hip joint in

high-resolution cryosectioned images

Shogo TOKISUE^{*1}, Yoshito OTAKE^{*1}, Mazen Soufi^{*1}, Norio FUKUDA^{*1}, Masaki TAKAO^{*2},

Nobuhiko SUGANO^{*2}, Beom Sun CHUN^{*3}, Jin Seo PARK^{*4}, Yoshinobu SATO^{*1}

*1 Graduate School of Information Science, Nara Institute of Science and Technology

*2 Graduate School of Medicine, Osaka University

*3 Ajou University School of Medicine

*4 Dongguk University college of Medicine

High-fidelity musculoskeletal models are necessary for improving the quality of musculoskeletal simulations and the orthopedic surgery planning. However, it is difficult to represent the internal muscle structure in detail by using the current models, that is because the models for the structure from the origin to the insertion has not been accurately developed yet. In our research, we aim to reconstruct the high-fidelity 3D musculoskeletal model containing the origin to the insertion points by using high-resolution cryosectioned specimen images. In our previous study, we analyzed the musculotendinous structure of the gluteus maximus using the label of the manually-extracted ligaments and tendons. In this research, we expand our model by automatically extracting the ligaments and tendons from the whole dataset by using a CNN, and analyze the musculotendinous structures, and verify the connectivity between the bones and the muscles, thus obtaining improved models for the target structures.

Key words: musculoskeletal model, tractography, musculotendinous fiber analysis

画像認識技術によるうつ病診断の定量化

牧 優太*1 和田 昇太*1 安倍 和弥*1 武尾 英哉*1 永井 優一*2

要旨

近年,うつ病等の精神病の診断は主に医師による問診によって行われており,病名は,DSM-5やICD-10 などの診断基準にいくつ症状が当てはまっているかによって付けられている.しかしこの診断方法は,科 学的,客観的な評価による診断ができていないという問題がある.そのため,うつ病の客観的な診断を行 うために,うつ病であるかどうか画像工学技術を利用して,うつ病診断の定量化(重症度の算出)とうつ病で あるかどうかの判定を行うシステムの開発を行った.

定量化には主に視線方向と顔表情に着目した.まずうつ病患者及び健常者の動画像から,視線方向と顔 表情を CNN で検出し,各々の時系列データを得た.次にそれらのデータを SVM や NN(ニューラルネット ワーク)によって定量化し,その重症度に閾値判別を行った.その結果,どちらも平均して約77%の識別精 度が得られた.また,両モデルの出力値にアンサンブル学習を行い,同様に重症度の閾値判別をしたとこ ろ,平均して約83%の識別精度となり,有意な判別性能を得ていると考えられる.

キーワード:うつ病,定量化,視線方向,顔表情,アンサンブル学習

1. はじめに

WHO のうつ病に関するファクトシートによると、3億人を超える全年齢層の人々がうつ病に罹患しているとされている.一方、日本国内では、2013年にうつ病を含む精神疾患が、がん、脳卒中、心筋梗塞、糖尿病の4大疾病に新たに加えられ、「5大疾病」となるなど対策が必要である病とされている[1].

このうつ病等精神病の診断であるが,主とし て医師による問診によって行われており, DSM-5(精神障害の診断と統計マニュアル第5 版)や ICD-10(国際疾病分類第10版)などの診 断基準にいくつ症状が当て嵌まっているかに よって,診断をつけている[2].しかしながら, うつ病の診断は他の病気の診断,例えば悪性腫 瘍の診断で用いられる画像や,糖尿病を診断す

*1 神奈川工科大学大学院 工学研究科 電気 電子工学専攻

- 〔〒243-0292 厚木市下荻野 1030〕
- e-mail: maki2019@ele.kanagawa-it.ac.jp
- *2 国立がん研究センター東病院

る際に用いられる血糖値, HbA1c (ヘモグロビ

ン A1c) などといった客観的な指標[3]を用いた 診断は行えていないという問題がある.

以上を踏まえ、本論文ではうつ病の客観的な 診断を行うために、うつ病であるかどうか画像 工学技術を利用して、うつ病の重症度の算出と うつ病の判別を行うシステムの開発を目的と している.

なお,一般的なうつ病の重症度の意味は,社 会生活に対しうつ病がどのくらい障害をあた えているかを指し,その度合いを QIDS(簡易抑 うつ症状尺度)や HAM-D (ハミルトンうつ病評 価尺)を基に,軽度や中等度,重度等に分類し ている[4].しかしながら,本論文においてうつ 病の重症度は,うつ病の度合いを指す値として 用いており,うつ病患者である確率を正規化し たものと定義している.また,本論文は躁うつ 病,気分変調性障害,大うつ病勢障害等に細分 化される前の「抑うつ症候群」を「うつ病」と 定義している[5].

このうつ病の診断や定量化等の取り組みは 日本のみならず海外でも研究が行われており, 例えば Alhanai ら[6]は日常会話(Text と音声)を 利用した, 宗ら[7]は音声と属性を利用した診断 を行う研究をしている.また,構造 MRI 画像を 用いて Mwangni ら[8]はうつ病の重症度の推定 を, Costafreda ら[9]はうつ病の診断を予想の研 究を行っている.一般画像では, Reece ら[10]が Instagram に投稿された画像からうつ病の診断 をする研究を行っている.

本研究は,静止画像のみを用いるのでな く,時間という情報も利用したうつ病の定量 化と判別を行おうとしているのが,今までの 研究と異なる点である.

本論文では,第2章で収集した動画と指 標,使用するデータについてを,第3章では そのデータを用いた定量化と判別の手法を説 明する.第4章では第3章の手法による結果 を,第5章は第4章の結果からの考察をまと めている.

2. 使用したデータ

2.1 使用動画

本研究に使用する動画は,動画投稿サイト (youtube:https://www.youtube.com/?gl=JP&hl=ja) に投稿されていた動画より,動画内で自身がう つ病だと明言しているうつ病患者の動画を,同 様にうつ病および精神疾患を患っていない健 常者の動画を対象としている.また,条件とし て投稿者がカメラの正面に位置し,カメラに向 かって話しかけている動画のみとしている.上 記の条件を満たしていた動画の中で,うつ病患 者 15 名と健常者 15 名の計 30 名の動画を選定 した.

2.2 データ解析

webや文献からうつ病の身体症状を調査した ところ、「視線が下がる」、「表情が少ない(硬い)」 [5]など、視線や表情等に特徴があることがわか った.そのため、集めた動画の視線方向と顔表 情に着目しそれぞれの時系列変化を秒単位で 調べた.視線方向と顔表情の解析にあたって、 視線方向は図1に示す視線方向モデルのように、 上下左右と斜め方向の計9方向に定義しており、 顔表情は P.エクマンら[11]が定義した基本6表 情と無表情の計7表情として定義している.ま た、再生時間中に視線方向または顔表情が確認 できなかった部分,つまり欠損値は前もしくは 後の非欠損値で補間を行い,欠損値をなくして いる.

図 2, 図 3 に解析の際に得た,健常者とうつ 病患者の視線方向と顔表情の時系列変化の例 をそれぞれ示す.図 2,図 3 を見てわかる通り, うつ病患者は健常者とは相対的に「視線の動き が少ない(正面を見る)傾向にある」,「表情の表 出頻度が少ない(無表情である)傾向にある」こ とが実際に確認できた.よって,上記の差異が 全てのうつ病患者に存在すると仮定し,これを 指標とすればうつ病の重症度算出が可能なの ではないかと考えた.後述する第4章の実験で は,この解析時に得た秒単位の視線方向または 顔表情の変化をプロットしたデータを使用し た.

3. 手法

定量化にあたって,重症度算出モデルの全体図を図4に示す.図4より,視線方向データとSVM, 顔表情データとLRN(層再帰型ニューラルネットワーク)の組み合わせと,定量化データとNN(ニューラルネットワーク),SVM,アンサンブル学習のそれぞれの組み合わせで定量化かつ重症度を得ている.この三つのプロセスを以下に示す.

1) 視線方向データを利用した定量化

- 2) 顔表情データを利用した定量化
- 3) 二つの手法の統合

これらの詳細を本章 3,1, 3.2, 3.3 にて述べる. 3.1 視線方向データを利用した定量化

視線方向データからデータセットを作成,そ のデータセットを 2-class SVM に入力し,出力 されたスコア (うつ病患者である確率)に正規 化を行い,得られた重症度とそれを閾値判別し たときの判別精度を確認する.

学習に用いるデータセットは,視線方向デー タから特徴量を抽出したものである.2章2.2で 得た視線方向データから全視線方向と正面方 向以外の各場合における要約統計量(分散)や平 均情報量,正面方向を見る確率,左方向から正 面方向を見る確率,下方向から正面方向を見る 確率,縦軸が視線方向,x軸が頻度(動画再生時 間内の回数)のグラフの線形近似曲線の傾き,x 軸を動画の再生時間と変えたグラフの線形近

図1 視線方向モデル

(b) 健常者の視線の動きサンプル

(b) 健常者の表情変化サンプル

図3 顔表情の時系列変化

図4 重症度算出モデルの全体図

図2 視線方向の時系列変化

(U曲線の傾き,そのグラフに高速フーリエ 変換(FFT)を行い,習得したパワースペクトル の第一周波数成分,前から 1/4 部分までの成 分の平均,1/4 から 2/4 部分までの成分の平均 と,計 12 個を特徴量としている.

SVM の学習には rbf カーネルと, Leaveone-out 交差検証を使用している.また,初期 乱数による影響を考慮して,5回同じ条件で 実験を行い,各実験で得られたスコアの平均 を正規化する.

3.2 顔表情データを利用した定量化

図5にこの3.2の手法の定量化の簡略図を 示す.図5に示すように、顔表情データから データセット(時系列順の表情データ)を作成, そのデータセットを LRN(層再帰型ニューラ ルネットワーク)に入力し,出力されたスコア に正規化を行い.重症度を得る.そして得ら れた重症度を閾値判別したときの判別精度 を確認する.

LRN とは単純再帰型ニューラルネットワ ークを一般化したニューラルネットワーク であり,図5にこのLRNが2層であるとき のネットワークを示す[12].

本実験に使用する LRN は,図6と同じ2層 構成としており,隠れ層のノード数を10,遅 延は10とし,伝達関数は隠れ層に softmax を, 出力層に purelin(線形伝達関数)を用いている.

学習に用いるデータセットは,2章2.2 で 得た顔表情データに水増しを行い,サンプル を増やしている.水増しにはあるクラスの1 人の対象者のデータから,0秒から180秒ま でを区切り1つのデータに,次に1秒から181 秒までを区切り別の1つのデータに,と始点 と終点をずらして別のデータとして扱う方 法を用いている.本実験では顔表情データは 0秒から254秒までと一律にそろえているた め,前述通り始点を0秒,終点を180秒とす ると,1人あたり74のデータが作成されてい る.

学習は5分割交差検証で、この方法によっ て分けられた学習データを更に7:1:2の割合 で train データと validation データ、test デー タに分け、学習させている.学習回数は 1000Epoch としているが、6回の反復の間に 検証誤差が減少しなくなったときに学習を 終了するようにし、学習関数はベイズ正則化 に設定している.3.1と同様に初期乱数を考 慮して、同じ条件で3回実験を行い、各実験 で得られた1人あたり74個のデータのスコ アの平均を正規化する.

3.3 二つの手法の統合

3.1 と 3.2 で得られた出力値を特徴量とし て扱い,以降定量化データと呼ぶ.この定量 化データで NN(ニューラルネットワーク), SVM, softvoting 型アンサンブル学習(以降 softvoting 型),逐次選択型アンサンブル学習 (以降逐次選択型)に学習を行い,得られたス コアを正規化して,各場合における重症度と 閾値判別による判別精度を確認する.

図 7 にアンサンブル学習(softvoting 型)の全 体図を示す.この構成は逐次選択型も同様で ある.

図7 アンサンブル学習(softvoting型)

図7より、アンサンブル学習に用いる識別 器は、NN、SVM、単純ベイズ、判別分析、k 近傍分析,アンサンブル学習の計 60 個の識 別器で構成している.表1にこれら識別器の 個数と内容をまとめたものを示す. これらの 識別器をひとつひとつ MATLAB R2018-a の 関数を用いて簡単に説明する. NN は feedforwardnet , fitnet , patternnet , cascadeforwardnet, layrecnet を隠れ層は1層で 10 ノード, SVM は 2-class SVM と 1-class SVM の2種類を,それぞれ linear(線形カーネ ν), gaussian(ガウシアンカーネル), polynomial(多項式カーネル)の3 種類に分け て、計6種類としている.なお、1-class SVM の異常値はうつ病のデータとしている.バイ ナリ分類木は分割予測子の選択に使用する アルゴリズム毎に分け, allsplits(標準 CART) と curvature(曲率検定), interaction-curvature(交 互作用検定)の計3種類としている.判別分析 分類器は、線形と2次の2種類を判別タイプ ごとに計6種類としている.単純ベイズ分類 器は、カーネル平滑化のタイプは'normal'(ガ ウス), 'box'{ボックス(一様)}, 'epanechnikov'

(Epanechnikov), 'triangle'(三角形)の計4種類 としている.k最近傍分類器は,最近傍検索 法の'kdtree'(kd木を作成および使用して最近 傍を探索)と'exhaustive'(網羅的探索アルゴリ ズム)の2種類を,検出する最近傍の数を5, 10,15とした3種類の計6種類としている. アンサンブル学習器は弱学習器の決定木,k 最近傍分類器,判別分析分類器の3種類を, 適用できるアンサンブル集約法(AdaBoost, LogitBoost等)毎に組み合わせて,計24種類 となっている.決定木のアンサンブルをバギ ングするモデルを,弱学習器の個数ごとに5 種類作成している.

Softvoting 型は定量化データで学習等を行ったときの,全 60 個の識別器のスコアの平均を最終的なスコアとしている.一方,逐次 選択型は同じ構成でも識別器の中で最も良い判別性能であった識別器を抽出し,他の識別器と組み合わせて,その判別性能が良くなれば,この一連の流れを続け,この過程で判別性能が変わらないもしくは悪化すれば,流れを打ち切り,その組み合わせ前のスコアを最終的なスコアとしている.

この Softvoting 型と逐次選択型のアンサン ブル学習に関して、学習は5分割交差検証で 行う.当然のことながら初期乱数による影響 を考慮し、同条件で5回実験を行い、回毎の 最終的なスコアの平均を正規化する. SVM とNNの学習では、SVMは3.1のデータセッ トを定量化データに変更した以外同じ条件 で学習を行う.NNは3.2のデータセットを 定量化データに、LRN を Cascade-forward

表1 識別器の内容と個数

モデル	内容	数
判別分析	線形および2次判別分析	6
分類木	アルゴリズム別	3
単純ベイズ	カーネル平滑化法別	5
k最近傍	最近傍検索法・最近傍数別	6
SVM	バイナリと1クラス	6
NN	学習モデル別	5
アンサンブル	弱識別器・アンサンブル集約法別	29
合計	-	60

neural network に,実験回数を15回に変更 して,学習を行った.

4. 結果

4.1 視線方向データによる定量化の評価

表2に第3章3.1の手法によって得られた 重症度をまとめたものを示す.本図では閾値を 超えうつ病であると判別されたものを赤く塗 りつぶしている.表2より,うつ病患者の平均 重症度は71.2%,健常者の平均重症度は28.8% となり42.4%の差がみられた.また,閾値以上 をうつ病だと判別する場合,閾値を54%とする と,うつ病患者側のマージンは3.7,健常者側の マージンは2.8,そして判別精度,感度,特異度 はどれも80%という結果となった.

4.2 顔表情データによる定量化の評価

表3に第3章3.2の手法によって得られた重 症度をまとめたものを示す.表3より,うつ病 患者の平均重症度は58.2%,健常者の平均重症 度は46.2%となり12.0%の差がみられた.また, 閾値以上をうつ病だと判別する場合,閾値を 60%とすると,うつ病患者側のマージンは1.3, 健常者側のマージンは2.6,そして判別精度,感 度,特異度は順に77%,86%,66%という結果 となった.

4.3 二つの手法統合の評価

表4に各場合のスコアを正規化した時の,う つ病患者と健常者の平均重症度とその差を示 す.表4より,平均重症度の差は逐次選択型が 最も大きい値をとっている.

表5に各場合の閾値とその閾値に対するマー ジンを示す. 表5より,全体的に4.1,4.2のと きのマージンよりは大きい値となっているこ とがわかる.

表6に各場合の重症度を表3の閾値で判別したときの、判別精度、感度、特異度を示す. 表6より、全体の判別精度は逐次選択型が83%と最も高く、次点のSVMは約80%であった.この2つであるが、感度、特異度ともに80%を越えており、バランスが良いといえる. 一方 NN は感度だけみると逐次選択型と等しい約86%

を記録しているが,特異度は約70%を下回っているため,判別精度は約77%となっている.

表2 手法3.1 による重症度

健常者	うつ病患者
51.2	60.5
17.1	37.9
62.1	11.6
19.8	22.3
41.7	57.7
54.2	63.3
66.6	90.6
46	99.3
6.7	98.8
14.4	91.2
28.3	62.2
10.2	91.3
3	96.3
7.4	87.2
3.9	97.3

表3 手法 3.2 による重症度

健常者	うつ病患者
38.6	63.4
20.8	47.7
57.4	61.3
33.5	64.7
28.3	24.3
37.7	68.7
53.1	68.7
79.2	80.6
42.9	54.3
55.2	70.6
43.3	63.4
42.5	3.8
68.1	79
52	69.3
40.8	52.8

モデル	対象	平均重症度[%]	平均重症度の差[-]
CV/M	うつ病	58.6	17 0
3 1 101	健常者	41.4	17.2
NINI	うつ病	83.3	0.5
ININ	健常者	73.8	9.5
softvoting	うつ病	58.5	21.2
	健常者	37.3	21.2
逐次選択型	うつ病	63.6	20.2
	健常者	33.3	30.3

表4 各場合の平均重症度とその差

表5 各場合の閾値とマージン

モデル	閾値[%]	マージン[-]
SVM	50	2.4
3 1 10	50	5.6
NN	53	4.1
	55	3.9
a after a time of	52	4.1
sortvoting	55	3.9
逐次選択刑	45	3.9
还久进入主	45	4.7

表6 各場合の判別精度,感度,特異度

モデル	判別精度[%]	感度[%]	特異度[%]
SVM	80	80	80
NN	77	86	66
softvoting	77	73	80
逐次選択型	83	86	80

それとは逆に softvoting は感度が約73%と低い ため、判別精度は約77%という結果となった. また、同じアンサンブル学習でも、softvoting す るよりも識別器を選択して組み合わせていく 方が、判別精度は良くなるという結果となった. しかしながら、この中で最も高い判別精度を出 した逐次選択型であるが、5回の学習中全て、 単体で最も高い精度をもつ識別器に他の識別 器を組み合わせても、その判別精度は変わらな い、もしくは下がってしまうという結果となっ てしまった.そのため、逐次選択型は組み合わ せが行われず、事実上識別器単体の判別精度に なってしまった.

5. 考察

4 章 4.3 節の結果より,逐次選択型が最も判 別精度が良く,同じモデルである softvoting と 逐次選択型との間に性能の差が現れたという 結果となった. Softvoting の判別精度が低いの は,判別精度の低いモデルのスコアもとってし まうからだと考えられる.

実験では逐次選択型は全て組み合わされず 識別器は単体のみとなっていたが、識別器の組 み合わせが識別器単体の性能を上回ることが あるのか、更に15回学習してみて、確認した.

表7は、15回逐次選択型の学習を行ったと きの、識別器単体とそれ以外の識別器を組み合 わせたときの判別精度を比較したものを示す. 表7より、単体の判別器の方が最大精度・平均 精度がともに高く、また標準偏差の値も大きい. そのため、高い判別精度の値をとりうるのは識 別器単体の方であるとわかる.よって、識別器 の組み合わせが識別器単体の性能を上回るこ とは少なく、識別器単体の方が良い判別性能を 期待できると考えられる.

逐次選択型が全て組み合わされず識別器単 体の方が良い判別性能なのは,使用するデー タは同じであるため,再び学習したとしても 識別器のスコアは大きく変わらないからであ る.そのため,新しく選択された識別器は前 に取り出した最高精度の識別器と比べて等し いかあるいは低いままである.よって,組合 わしても判別精度が変わらないもしくは下が ってしまうからだと考えられる.

表7 各場合の判別精度,感度,特異度

	平均精度[%]	最大精度[%]	最小精度[%]	標準偏差[%]
単体	82.3	85.8	79.2	2.2
組み合わせ(2個)	81.6	82.5	79.2	1.5

表8 誤判別が多かった対象者

	平均[-]	標準偏差[-]	全体平均[-]	
うつ病患者1	-0.76	0.16	0.06	
うつ病患者2	-0.05	0.17	0.50	
健常者1	1.11	0.04	0.24	
健常者2	1.52	0.01	0.24	

4章4.1から4.3までの重症度において, 閾値 判別によって判別できていなかった共通の被 験者が存在したため,なぜ判別できなかったの か考える.表8にその対象者らの前述の逐次選 択型実験時のスコアを示す.

表8より,うつ病患者1とうつ病患者2の平 均スコアは負の値をとっており,うつ病患者全 体の平均スコアと比べてとても小さい.反対に 健常者1と健常者2の平均スコアは健常者全体 の平均スコアと比べてとても小さい.従って, 判別精度という点で上記の被験者らがうまく 判別されるように閾値を設定することができ ないからだと考えられる.また,データの基で ある被験者らの動画を確認したところ,視線方 向および顔表情が2章2.2で仮定した傾向がみ られないことがわかった.よって,仮定した傾 向と被験者らが合わなかったため,うまく判別 することができていなかったと考えられる.

6. まとめ

うつ病診断の客観的な評価を行うために、う つ病診断の定量化(重症度の算出)とうつ病であ るかどうかの判定を行うシステムの開発を行 った.うつ病患者の視線方向と顔表情の特徴に 着目し、データをとって様々な手法を用い定量 化と判別を行った.最終的には83%の精度を得 ることができる判別方法が確認でき、有意な判 別性能を得ることができた.しかし、本研究で 使用したデータは総数や信頼性が十分とは言 えないため,病院等と連携し,医師の所見や鑑 別済みのうつ病患者のデータ等を得ることが 必要である. 今後は, 前述の信頼性の高いデー タの確保とシステムの全自動化や実装を進め ていく.また、一括りで定義したうつ病を細か く,かつ他の精神障害も判別できるようになる ことも必要だと考えられる.

利益相反の有無

利益相反 なし

倫理規範の順守

なし

文 献

- [1] 片桐健志:うつ病とはどのような病気 でしょうか 早くうつ病と気付くには どうすればよいのでしょうか. 杏林医 会誌 49 巻 1 号, pp.91, 2018
- [2] 大坪天平:うつ病を診る上で注意すべきこと 女性心身医 20 巻 3 号, pp.272,
- [3] 二村隆史:うつ病治療薬開発の難しさ.ファルマシア Vol. 53 No.7, pp.696, 2017
- [4] 坪井貴嗣:うつについて改めて知って みませんか?:うつ病の治療について 杏 林医会誌 49巻1号, pp.87, 2018
- [5] 船津浩二,白川治:めまいとうつ一診療のポイント- Equilibrium Research 73
 巻4号 pp.246-249,2014
- [6] Tuka A, Mohammad G, James G: Detecting Depression with Audio/Text Sequence Modeling of Interviews : Interspeech 2018
- [7] 宗 未来,竹林由武, 関沢洋一 他:"声" だけで、うつ病はどこまで診断可能 か?~音声感情認識技術にアンサンブ ル型機械学習モデルを応用したうつ病 スクリーニング機能に関する精度の検 証 RIETI Discussion Paper Series 16-J-054. 2016
- [8] Benson M, Keith M, J. Douglas S :
 Prediction of illness severity in patients
 with major depression using structural MR
 brain scans Journal of Magnetic
 Resonance Imaging 35(1):64-71 2011
- [9] Sergi G. C, Carlton C, John A, et al. : Prognostic and Diagnostic Potential of the Structural Neuroanatomy of Depression. PLoS One. 2009 ; 4(7): e6353. 2009
- [10] Andrew G R, Christopher M D : Instagram photos reveal predictive markers of depression EPJ Data Science 2017
- [11] Ekman P, Friesen W. V, 工藤力(訳):表情分析入門. 誠信書房, 1987 pp 31-

161

[12] Design Layer-Recurrent Neural Networks <u>https://jp.mathworks.com/help/deeplearnin</u> g/ug/design-layer-recurrent-neural<u>networks.html?lang=en</u> (2019 年 4 月 27 日現在)

Quantification of the diagnosis of depression through

using image recognition technology

Yuta MAKI*1, Syota WADA*1, Kazuya ABE*1, Hideya TAKEO*1, Yuuichi NAGAI*2

*1 Kanagawa Institute of Technology

*2 National Cancer Center Hospital East

In recent years, mental disorders such as depression have been diagnosed mainly by physician-patient interviews, and the disorder named according to how symptoms apply to diagnostic criteria in DSM-5 and ICD-10. However, this diagnostic method has the drawback of not being a scientific or objective evaluation. To address this and perform objective evaluation, using image engineering technology for depression determination, we developed a system that quantifies depression diagnosis (i.e. calculates its severity) to judge whether or not depression is present.

For quantification, we focused mainly on eye direction and facial expression. First, we used a CNN to detect the eye directions and facial expressions of subjects with depression and healthy subjects in video images in order to obtain time-series data for each. Next, we quantified this data using SVM and NN and then performed threshold discrimination to obtain severity. As a result, we obtained on average approximately 77% discrimination accuracy. We also applied ensemble learning to the output values of both models, obtaining on average approximately 83% discrimination accuracy when similar threshold discrimination of severity was performed. This result are thought of significant discrimination performance.

Key words: depression, quantification, eye direction, facial expression, ensemble learning

著者紹介

牧 優太 (まき ゆうた) 2019 年神奈川工科大学工学部電気 電子情報工学科卒.現在同大大学 院工学研究科電気電子工学専攻在 学中.画像工学の研究に従事.本 学会学生会員.

和田 昇太 (わだ しょうた) 2019 年神奈川工科大学工学部電気 電子情報工学科卒.現在同大大学 院工学研究科電気電子工学専攻在 学中.画像工学の研究に従事.本 学会学生会員.

安倍 和弥 (あべ かずや) 2010 年神奈川工科大工学部電気電 子工学科卒,2012 年同大大学院博 士前期課程修了,2015 年同大博士 後期課程修了,2015 年同大日本人 客員研究員.現在同大バイオメデ ィカル研究センターのポスト・ド クター.博士(工学).医用画 像・細胞培養画像などの画像工学 の研究に従事.第6回および第8 回 JAMIT-CAD コンテスト優勝.本 学会,映像情報メディア学会各会 員.

武尾 英哉 (たけお ひでや) 1984年神奈川大工学部卒, 1986 年同大大学院修士課程了. 同年富 士フィルム株式会社に入社. 医用 画像処理システムに関する研究・ 開発に従事. 2005 年東京農工大大 学院博士後期課程了.博士(工 学). 2006年神奈川工科大工学部 助教授.現在同大教授.医用・フ オト・シネマ映像などの画像工学 の研究に従事. 2004 年度本学会論 文賞. 第6回および第8回 JAMIT-CAD コンテスト優勝.本学会,映 像情報メディア学会,画像電子学 会,電子情報通信学会,医用画像 情報学会各会員.

永井 優一 (ながい ゆういち) 1991年中央医療技術専門学校夜間 部卒. 1991 年より国立療養所松戸 病院放射線科, 1992年より国立が んセンター東病院放射線部,2006 年より国立がんセンター中央病院 (現独立行政法人国立がん研究セ ンター中央病院) 放射線診断部消 化器官撮影主任,2015年より東埼 玉病院放射線科副診療放射線技師 長,中央医療技術専門学校非常勤 講師 (画像工学), 全国国立病院 療養所放射線技師会常任理事, 2017年より国立がん研究センター 東病院放射線部放射線診断技術室 副放射線診断技術室長,現在に至 る.診療放射線技師.医用画像解 析の研究に従事. 日本放射線技術 学会会員.

肝細胞癌に対する選択的 TACE 施行時の Angio-CT を用い
た栄養血管同定ナビゲーションソフト(Embolization plan[®])

の初期使用成績と注入造影剤濃度の影響について

葛和 剛^{*1,2} 穴井 洋^{*1,3} 前原 健吾^{*1,2} 新家 睦巳^{*2}

秋山 敬純*2 小西 佳之*2 小屋敷 誠*4

要旨

【背景】肝細胞癌(HCC)の選択的肝動脈化学塞栓術 (sTACE) における, Angio-CT を用いた automated feeder detection である Embolization Plan®の評価, 特に造影剤濃度に着目して初期臨床評価を行った.【対象と方法】 sTACE を施行した HCC36 患者 41 結節. CT hepatic angiography(CTHA)は造影剤濃度 185mgI/ml (L 群:8 結節)又は 278 (H 群:33)で、秒間 1.0-2.0ml で注入し施行した.そのデータを用いた EP による栄養血管を同定した. 選択的 DSA, CTHA と比較し, 完全一致:Excellent(E),ほぼ一致:good(G),臨床上許容可能:fair(F),許容不可能: :poor(P)の4 群で評価し, F 以上の判定を臨床的有効とした.【結果】 E;4(L0,H4) 結節,G;24(4,20),F;8(1,7),P;5(3,2)であった.結果は 36 (5,31)結節, 87.8(62.5,93.9)%で, L 群と比較し H 群の方が臨床的有効割合は有意に高かった(p<0.05).【結語】HCC に対する sTACE における EP による栄養血管同定の有用性が示唆された.

 $\neq - \mathcal{P} - \mathcal{F}$: HCC, automated feeder detection(AFD), Angio-CT(ACT)

1. はじめに

肝細胞癌(Hepatocellular Carcinoma; HCC)に対 する選択的肝動脈化学塞栓術(Transcatheter arterial chemoembolization; TACE)は手術や局所 穿刺治療が困難な症例において局所制御が期 待できる治療方法であるが,慢性肝障害をもつ 患者における栄養血管の同定は難しいことが

*1 奈良県立医科大学大学院 先端画像下治療開発応用学講座
〔〒634-8522 奈良県橿原市四条町 840 番地〕 e-mail: sakishu31220@gmail.com
*2 市立奈良病院 医療技術部放射線室
*3 市立奈良病院 放射線科・IVR研究センター
*4 キャノンメディカルシステムズ株式会社 ある.近年 Cone Beam Computed Tomography (CBCT) 搭載血管造影装置によるボリューム データを活用した automated feeder detection system (AFD) による栄養血管同定技術が開発 され臨床応用が始まっている.本邦では CBCT 以前より Angio-CT (ACT) が汎用され普及して おり,今回我々は ACT のボリュームデータを使 用した AFD として開発されたキヤノンメディ カルシステムズ株式会社製 Embolization plan; EP の臨床使用を評価し,特に使用した造影剤濃 度による影響について検討した.

2. 対象と方法

2018年2月15日より2019年3月30日まで に選択的 TACE を施行した肝細胞癌患者36人 41 結節(平均年齢76.3±9.90歳)を対象とし た.対象患者は男性25人(平均年齢75.5±9.10 歳),女性11人(平均年齢79.1±10.92歳),対象 の平均腫瘍径は 12.3±4.91 (5.0-31.0) mm であ った.注入造影剤濃度別の患者背景を表1に示 す.使用機器は血管撮影装置として INFX-8000C,CT 装置として Aquilion PRIME (いずれ もキヤノンメディカルシステムズ株式会社,栃 木) を使用.造影剤は iopamidol 370mgI/ml を生 理食塩水で希釈して使用し,注入造影剤濃度を 185mgI/ml (L 群) と 278mgI/ml (H 群) に設定 した.EP の臨床使用は L 群で 8 例,H 群で 33 例 施行した.CT hepatic angiography (CTHA)の方 法としてカテーテル先端を主に総肝動脈 (CHA) もしくは固有肝動脈 (PHA) に留置し,注入開始 10 秒後より1相目スキャンを開始,30 秒後に2 相目をスキャンし,造影剤注入速度を 1.0-2.0ml/sec とし,スキャン開始より1相目スキャ ン終了までを注入時間(平均14秒)として造影 剤を注入した .CTHA 撮影時のプロトコールは、 管電圧: 120kV,管電流: Volume-EC SET SD11

(5mm),回転速度:0.5sec,収集スライス厚:
0.5mm×80,ヘリカルピッチ:HP65(pitch-f:0.813),S-FOV:320mm(M)とした.画像再構成に用いた再構成関数は FC11,逐次近似応用再構成法 AIDR3D:Enhanced-Strong,再構成スライス厚:0.5mm,再構成間隔:0.25mm で拡大再構成(220mm~250mm)した.

CTHA1 相目の撮像データを主に用いて作成 した EP により解析した.CTHA2 相目のデータ は腫瘍のより正確な範囲の確認に使用した.腫 瘍は原則としてマージンを 0mm と設定し、検索 開始ポイントを CHA もしくは PHA のカテーテ ル先端からとして栄養血管を表示させた.この とき栄養血管を検索できなかった場合,マージ ンを 1mm ずつ大きくし,栄養血管が検索可能な 大きさまでマージンを大きくした.検索結果を 実際の選択的 DSA (digital subtraction angiography)像と比較を行い,完全一致したもの を Excellent (E),ほぼ一致したものを good(G), 臨床上許容可能な範囲を fair(F),許容不可能な ものを poor (P) とした.F 以上の判定を EP によ る栄養血管同定の臨床的有効とし,臨床的有効 割合を評価した.また注入造影剤濃度の違いに よる臨床的有効割合を比較検討した.なお,マイ クロソフト社製 Excel2016 版を用いて統計学的 解析を行い,P<0.05を有意差ありと判定した.

なお本研究は市立奈良病院倫理委員会で承 認されている.

3. 結果

HCC33 例 41 結節全てにおいて EP による栄 養血管同定を施行した.なお,注入造影剤濃度 L 群と H 群の患者背景に有意差は認めなかった.

栄養血管同定の結果は E;4 結節,G;24 結 節,F;8 結節,P;5 結節で,臨床的有効割合は41 結 節中 36 結節(87.8%)であった.注入造影剤濃 度L群ではE;0 結節,G;4 結節,F;1 結節,P;3 結 節,注入造影剤濃度H群ではE;4 結節,G;20 結 節,F;7 結節,P;2 結節で,臨床的有効割合はL群

表 1	造影剤濃度別の対象患者のす	背景

	造影剤濃度 185mgI/ml	造影剤濃度 278mgI/ml	
患者数	8	28	
年齢 (歳)	78.6±7.57	75.7±10.16	P=0.46
性別 (男/女)	5/3	20/8	
腫瘍個数	8	33	
背景肝(HBV, HCV/other)	4/4	19/9	P=0.651
肝機能(Child-Pugh 分類 A/B, C)	5/3	18/10	P=0.996
腫瘍径	12.88±4.15mm (8.0−18.0)	12.1±5.12mm (5.0−31.0)	P=0.694
腫瘍局在(右葉/左葉)	6/2	25/8	P=0.999

HBV:B型肝炎ウイルス、HCV:C型肝炎ウイルス、CHA:総肝動脈、PHA:固有肝動脈

	total	造影剤濃度 185mgI/ml	造影剤濃度 278mgI/ml	
	N=41	N=8	N=33	
Excellent	4	0	4	
Good	24	4	20	
Fair	8	1	7	
Poor	5	3	2	

表 2 Embolization Plan による評価結果

で8結節中5結節 (62.5%)で,H群で33 結節中 31結節 (93.9%)であった(表2).注入造影剤 濃度の違いによる検討ではL群と比較してH群 で統計学的有意差をもって臨床的有効割合の 評価が高かった (p=0.015).

4. 考察

選択的TACEは手術や穿刺治療が困難なHCC に対して有用性が報告され、本邦を中心に広く 普及している.しかしながら併存する肝疾患や 繰り返す治療などで血管解剖や血行動態は時 に複雑で栄養血管の同定が困難なことがある. 近年,血管造影時のCBCT撮影による3次元デ

ータを利用し,栄養血管の同定を行う自動栄養 血管同定システム (AFD)の報告が散見される. 本邦ではコーンビーム型血管造影装置の普及 より早くから CT と一体となった ACT システ ムが開発,普及している.ACT は通常の CT と同 様の撮影であり,また画像収集時間が非常に短 く時間分解能に優れている.今回キヤノンメデ ィカルシステムズ株式会社製 ACT を用いたボ リュームデータを利用した AFD ソフトウエ ア,Embolization plan®を臨床的に試用し、評価す るとともに,AFD における注入造影剤濃度の影 響を評価した.

従来の CBCT を用いた AFD による腫瘍栄養 血管の同定率は,Miyayama らや Iwazawa らによ ると完全一致率が 87.7-88%と高い結果を報告 している 1,2) が,今回の我々が検討した ACT の ボリュームデータを活用した AFD でも,実臨床 に耐えうる結果評価とした Fair 判定以上の割合 (臨床的有効割合)は87.8%であり、ほぼ同程度 といえる.しかしながら Fair の症例では得られ た結果を実際の3D血管表示や3方向断面像.ま た DSA などを参考に調整が必要となる、いわゆ るマニュアル操作と同じ過程を要することも 多い. その原因の一つとして栄養血管の途中経 路で異なる血管よりスキップして表示される 点が挙げられる.CT でのデータマトリックスが 512*512 と大きいため近接する血管分枝との区 別が解析上困難となったのではないかと考え る. またこのソフトウエアでは連続して造影さ れた血管の CT 値を追従し栄養血管を表示して いるが,近接するする血管の間の肝実質がまだ らに濃染され血管と誤認識している可能性も 考えられる.

一方,今回の検討では造影剤濃度 H 群で造影

剤濃度L群と比較して高い臨床的有効割合が得 られた.肝実質と血管や,肝実質と腫瘍の造影コ ントラストがより際立つことで,より正確に栄 養血管のみならず血管全体の同定抽出が容易 となるためと考えるが,前述したように全体と して高いCT値を呈することで,周辺マトリック ス全体へ影響を及ぼし同定血管のスキップと いった現象を惹起させる可能性もあると考え る.

ACT のデータを用いた AFD は 512x512 のマ トリックスサイズであるが,今後は高精細デー タの収集がさらなる性能向上のポイントにな ると考える.また CBCT のデータを用いた AFD では複数の腫瘍の栄養血管を同時に同定可能 であり,システムの完成度は先行している。しか し ACT のデータを用いた AFD の利点もあ る.ACT におけるデータ収集においては 1 断面 での撮影時間は最速で 0.35 秒以下と CBCT と 比較し時間分解能で凌駕するため,心拍などの 動きによる影響は少ないと考える.加えて造影 タイミングを 1 相ではなく,多相でも容易に評 価が可能であり,発展性が期待される.また今回 は検討していないが CT の方が CBCT より放射 線被ばくは低く,低侵襲であると考える.

今回の検討では,注入造影剤の濃度による臨 床的有効割合を検討したが,具体的な腫瘍,血管 および周辺肝実質の CT 値や差が EP において 至適なのかを検討できておらず,今後課題であ る.また,今回は初期型 EP での評価であり1回の 解析では1個の腫瘍の栄養血管しか同定できず, 今後はより実臨床での使用を踏まえて一度に 複数の腫瘍の解析が行えるようにする必要が ある.

ACT を用いた AFD システムは,HCC におけ る選択的 TACE において十分臨床に対応し,有 用となると考えるが,より精度の高いシステム の開発は不可欠であり,加えて使用する造影剤 濃度を中心とする造影プロトコールの確立が 必要であり,空間分解能の向上といった因子の 改善,そして解析アルゴリズムの改善が必要で あると考える.

利益相反の有無

利益相反なし.

文 献

- [1] Miyayama S, Yamashiro M, Hashimoto M, et al. Identification of small hepatocellular carcinoma and tumor-feeding branches with cone-beam CT guidance technology during transcatheter arterial chemoembolization. J Vasc Interv Radiol. 24(4):501-8; 2013.
- [2] Iwazawa J, Ohue S, Hashimoto N, et al. Clinical utility and limitations of tumorfeeder detection software for liver cancer embolization. Eur J Radiol 82(10):1665-71; 2013

An initial experience of automated feeder detection system (Embolization plan®) using Angio-CT data in the selective embolization of hepatocellular carcinoma, especially on the influence of concentration of contrast material

Takeshi KUZUWA^{*1,2}, Hiroshi ANAI^{*3}, Kengo MAEHARA^{*1,2}, Mutsumi SHINYA^{*2} Takazumi AKIYAMA^{*2}, Yoshiyuki KONISHI^{*2}, Makoto KOYASHIKI^{*4}

*1 Laboratory of Advanced Technology for Interventional Radiology,

Nara Medical University Affiliated Graduate School Program

*2 Radiation department of the medical engineering department, Nara City Hospital

*3 Department of Radiology & IVR Research Center, Nara City Hospital

*4 Canon Medical Systems Corporation

[Purpose] To evaluate the utility of the automated tumor feeder detection system(AFD) by angio-CT (ACT) during selective transcatheter arterial chemoembolization (sTACE) for hepatocellular carcinoma (HCC), especially the effect of the concentration of the contrast media.

[Materials and Methods] Thirty six patient with HCC were treated with sTACE. CT hepatic arteriography (CTHA) with contrast material (L; 185mgI/ml or H; 278mgI/ml) was performed. The feeder arteries were identified by Embolization plan® (Canon, Tochigi) of AFD by CTHA and compared with the actual feeder arteries in selective DSA. We divided the results into the following 4 categories; Excellent(E), good(G), fair(F), poor(P). The clinical utility was defined when the results showed F or higher.

[Result] Forty one nodules were evaluated. The results showed 4(L0, H4) nodules in E, 24(4,20) nodules in G, 8(1,7) nodules in F, 5(3,2) nodules in P, respectively. The overall clinical utility was obtained in 87.8% (36/41). The clinical utility of L and H were obtained in 62.5% (5/8) and 93.9% (31/33), respectively.

[Conclusion] It was suggested that AFD by Embolization Plan® using ACT was useful during sTACE for HCC. However, the further innovation of this software is still needed.

Key words: HCC, automated feeder detection (AFD), Angio-CT(ACT)

敵対的生成ネットワークを用いた

硬性白斑画像の生成と検証

藤田 真穂*1 畑中 裕司*2 砂山 渡*2

村松 千左子*3 藤田 広志*4

要旨

糖尿病網膜症は中途失明の原因となる病であるが、早期発見と治療によって失明を防ぐことができる病で もある.近年は眼底画像からの初期病変の検出に、畳み込みニューラルネットワーク (CNN:Convolutional Neural Network)が成果を挙げている.一方で CNN を用いる際には、病変データ数と非病変データ数との 不均衡が課題となる.現在は敵対的生成ネットワーク (GAN:Generative Adversarial Nets)を用いて病変デー タ数を増加させ、上記の課題の解決を図る研究が行われている.これらを踏まえて本研究では、糖尿病網 膜症の初期病変の一つである硬性白斑の画像を生成した.白斑には硬性白斑と軟性白斑があるが、硬性白 斑は糖尿病網膜症の初期段階にあらわれる境界が明瞭な白斑である.また生成データと実データ間との分 布の差異について、複数の指標を用いて検証を行った.さらに生成データを用いて病変データ数と非病変 データ数との不均衡を改善することが、CNNを用いた硬性白斑の検出精度の向上に貢献するかを検証した.

キーワード:糖尿病網膜症,畳み込みニューラルネットワーク,敵対的生成ネットワーク,不均衡データ, 硬性白斑検出

1. はじめに

糖尿病網膜症は中途失明の原因となる病で あるが、早期発見と治療によって失明を防ぐこ とができる病でもある.眼底画像からの糖尿網 膜症の初期症状の検出と治療は、失明のリスク の低減に貢献する[1].

近年は機械学習の一種である畳み込みニュ ーラルネットワーク(CNN:Convolutional Neural Network) が, 眼底画像からの糖尿病網膜症の初

*1 滋賀県立大学大学院工学研究科電子 システム工学専攻

〔〒522-0033 滋賀県彦根市八坂町 2500〕

e-mail: oi23mfujita@ec.usp.ac.jp

*2 滋賀県立大学工学部電子システム工 学科

*3 滋賀大学データサイエンス学部

*4 岐阜大学工学部電気電子·情報工学科

期症状の検出に成果を挙げている [2]. しかし 機械学習で病変の検出を行うにあたって,得ら れる病変データ数と非病変データ数とが不均 衡であることが大きな障害となっている.これ は不均衡なデータの場合,一般的に少数派に所 属する病変データの検出率が低くなる傾向に あるためである.

不均衡データを扱うための対応策の一つと して、オーバーサンプリングと呼ばれる手法が ある.オーバーサンプリングにおいては、少数 派のデータを用いてデータオーギュメンテー ションを行うことで多数派とデータ数の均衡 をとる.現在は新たなデータオーギュメンテー ションの手法として、敵対的生成ネットワーク (GAN:Generative Adversarial Nets) [3]が注目さ れている.

GAN は眼底画像の生成にも成功している[4] [5]. 先行研究においては,一枚の眼底画像全 体を生成している.本研究においては GAN に よる生成画像を用いて,眼底画像から病変部分 の検出を行う CNN の性能の向上を目指す.そ のため,本研究では GAN を用いて CNN に入力 する病変画像の生成を行った.対象とした病変 は,糖尿病網膜症の初期病変の一つである硬性 白斑である.硬性白斑は糖尿病網膜症の初期段 階にあらわれる,境界が明瞭な白斑である.

本研究では生成データと実データ間の分布 の差異について、複数の指標を用いて検証を行 った.また生成データを用いてデータ数におけ る不均衡を改善することが、硬性白斑を検出す る CNN の精度向上に貢献するかについても検 証を行った.

2. 実験方法

1) データベース,前処理と学習データの作成 本研究では硬性白斑の所見を含む眼底画像 のデータベースとして, Indian Diabetic Retinopathy Image Dataset (IDRiD) [6]を用いた. IDRiD は 81 枚の眼底画像と,画像ごとに糖尿 病網膜症の初期病変である血管瘤,硬性白斑, 軟性白斑と出血それぞれを画素単位でラベル 付けした画像データを提供している.眼底画像 の解像度は 2,848×4,288 画素であり,jpg 形式で 提供されている.

本研究では,前処理として 81 枚の眼底画像 に対して画像ごとに明るさの正規化を行った. その後,前処理後の画像を用いて 32×32 画素の 画像を学習データとして切り出した.作成した 画像は硬性白斑と非硬性白斑ともに,30,000 枚 である.また検証データとして,硬性白斑と非 硬性白斑をそれぞれ 6,000 枚ずつ作成した.同 様に評価データも 6,000 枚ずつ作成した.

2) GAN の構造と学習方法

硬性白斑における自動検出の研究として, RGB の3 チャネルを用いたもの[2]と Green の1 チャネルのみを用いる手法[7]がある.そ こで本研究では GAN を用いて, RGB と Green チャネルそれぞれの硬性白斑を生成した. 構築 した GAN の構造を図1に示す. Convolution1 は ストライド1, パディング1, 3×3 フィルタを適 用する畳み込み層である. また Convolution2 は

図 1 GAN の構造. C は RGB の 3 チャネルを, G は Green チャネルのみを用いた際の構造である.

ストライド 2, パディング 1, 4×4 フィルタを適 用する畳み込み層である. 活性化関数は Generator と Discriminator の出力層を除いた全 層に Leaky Relu を用いた. Generator の出力層の 活性化関数には, Sigmoid を用いた.

図1に示した GAN の学習には、作成した硬 性白斑データのうち 3,000 枚を用いた.また損 失関数として、WGAN-GP [8]における損失関 数を用いた.最適化手法および更新方法も、[8] と同様のものを用いた.

3) 実データ分布と生成データ分布との比較

学習させた GAN を用いて生成した 27,000 枚 の画像データと, GAN の学習に用いた画像デー タを合わせたものを以後,生成データと呼称す る.また学習データとして作成した硬性白斑 30,000 枚を,実データと呼称する.実データと 生成データにおいて,それぞれ t-SNE [9] を用 いて分布図を描いた.また画像ごとに画素内の 最大画素値,最小画素値とその差分を求め,各 分布の差異を求めた.

さらに画像ごとに画素値が [(画像内の最大 画素値-5),画像内の最大画素値] の値をとる 位置を記録し,それらの分布を求めた.

4) CNN の構造と学習方法

生成データが CNN に与える影響を検証する ため、[2]を参考として硬性白斑と非硬性白斑 の識別を行う CNN を構築した.構築した CNN の構造を、図 2 に示す. Convolution1 はストラ イド 1、パディング 1、3×3 フィルタを適用する 畳み込み層である.活性化関数は出力層を除い た全層に Leaky Relu を、出力層には Softmax を 用いた.最適化手法には学習率を 0.01 とした Stochastic Gradient Descent を適用し、学習回数 は 60epoch とした.損失関数にはクロスエント ロピーを用いた.

CNN を学習するための硬性白斑データとし て表1に示す5種類を用意し,GAN による生 成データが CNN に与える影響を調べた.従来 のデータオーギュメンテーション手法である 回転,複製を用いて,3,000枚の硬性白斑データ から27,000枚のデータを作成した.また多数派 のデータを削減することで,少数派との均衡を とるアンダーサンプリングも比較として用意 した.また非硬性白斑の学習データはアンダー サンプリングを除いて,眼底画像から切り出し て作成した実データ30,000枚である.各手法に

表1 各学習データの硬性白斑データの内訳.

データの種類	実データ	各手法による データ
実データ	30,000	0
生成データ	3,000	27,000
回転データ	3,000	27,000
複製データ	3,000	27,000
アンダー サンプリング	3,000	0

図 2 CNN の構造. C は RGB の 3 チャネルを, G は Green チャネルのみを用いた際の構造である.

図3GANの学習データと生成データ.

より得た硬性白斑データを学習データに加え て、データ数の不均衡を改善したことによる CNN の性能の変化を調べた.

3. 実験結果と考察

1) 生成データ

GAN の学習に用いたデータの一部を,図3に 示す.また 50,000epoch 学習させたモデルを用 いて生成したデータの一部も図3に示す. 実データ分布と生成データ分布との比較
 図4にGreen チャネルのみを用いた実データと、GANによる生成データにt-SNEを適用して
 得た分布図を示す.図4よりt-SNEによる分布
 図では、実データと生成データ間に大きな差異
 は見受けられない.RGBの3チャネルを用いた
 場合も同様に、実データと生成データ間に大き
 な差異は見られなかった.

図5にGreen チャネルのみを用いた各データ において画像ごとに求めた,画素内の最大画素 値と最小画素値の差分の分布図を示す.図5か ら実データと生成データ間に大きな差異は見 受けられない.また最大画素値と最小画素値に ついても,分布図からは大きな差異は見受けら れなかった.硬性白斑は周囲より明るいことか ら,最大画素値は硬性白斑の色合いを表してい ると捉える.また最小画素値は,硬性白斑の周 辺部の色合いを表していると捉える.最大画素

(b) 生成データ図 4 t-SNE による分布図.

日の日におりる、西京の主力他の方市内、

値,最小画素値との差分において実データと生 成データ間に大きな差異が見受けられないこ とから,生成データは硬性白斑とその周辺部分 の色合いについては再現できていると考える. また RGB の 3 チャネル用いた場合にも,同様 の傾向が見られた.

図6にGreen チャネルのみを用いた各データ において画像ごとに求めた,画素値が [(画像 内の最大画素値-5),画像内の最大画素値] の 値をとる位置の分布を示す.図6より実データ と生成データ間に,差異が見受けられる.硬性 白斑部分は,画像内で大きな画素値をとる.こ のことから生成データは,硬性白斑の現れる位 置について実データを再現できていないと考 える.原因として GAN の学習に用いたデータ が,実データの位置に関する情報を表現するに は情報が不足していることが考えられる.また 他の原因として, GAN の表現力や学習の不足が 考えられる.

3) CNN に与える影響

図7にGreen チャネルのみを用いた各学習デ ータによってCNNを学習させた際のSensitivity, Specificity と Average Accuracy の各指標値を示 す.図7に示した値は、各条件において10回 ずつ試行を行った際の平均値である。図7から 実データ、生成データ、回転データ、複製デー タとアンダーサンプリングの全てにおいて、実 データの硬性白斑3,000枚と非硬性白斑30,000 枚による不均衡データを用いた場合よりも Sensitivity と Average Accuracy の値が向上して いることがわかる。またこれら2つの値はアン ダーサンプリングを除いた各データにおいて、 データ数の不均衡が改善されるほど、大きくな る傾向にあることがわかる。また RGBの3チ

(b) 生成データ

図 6 画像内において、大きな画素値となる位置の分 布図.

図7各指標値と硬性白斑の学習データ数との関係.

ャネルを用いたデータにおいても,同様の傾向 が見られた.

図7よりGANによる生成データは、不均衡 データと比較してSensitivityとAverage Accuracyの値を向上させた.一方で回転や複製、 アンダーサンプリングと比較して、Sensitivity とAverage Accuracyの伸びは小さなものとなっ た.これは上述したように、生成データは実デ ータにおける硬性白斑の位置分布を再現でき ていないためだと考えられる.実データと異な る位置分布について学習したため、傾向の異な る評価データに対する汎化性能が低くなった と推測する.

4. まとめ

本研究においては、GAN を用いて硬性白斑画 像の生成を行った.複数の指標を用いて,生成 データ分布と実データ分布間の差異を求めた. 今後は硬性白斑の位置分布をより忠実に再現 できるよう、GAN の構造や学習方法を見直す必 要がある.またデータオーギュメンテーション として GAN を用いた場合,硬性白斑の検出を 行う CNN における Sensitivity と Average Accuracy の向上が見られた.今後は生成データ がより CNN に寄与できるように、生成データ の質を高めていく必要がある.

謝辞

研究遂行にあたり貴重なご助言を賜りました 滋賀県立大学工学部の小郷原一智氏に深謝いたし ます.本研究の一部は JSPS 科研費 16K01415 お よび 26108005 の助成を受けたものです.

利益相反の有無

なし

文 献

- Tapp RJ, Mccarty DJ, Shaw JE, et al.: The Prevalence and Factors Associates With Diabetic Retinopathy in the Australian Population. Diabetes Care 26: 1731-1737, 2003
- [2] Tan JH, Fujita H, Sivaprasad S, et al.: Automated Segmentation of Exudates, Haemorrhages, Microaneurysms

using Single Convolutional Neural Network. Information Sciences **420**: 66-76, 2017

- [3] Goodfellow IJ, Pouget-Abadie J, Mehdi Mirza, et al.: Generative Adversarial Nets. arXiv: 1406.2661v1, 2014
- [4] Zheng R, Liu L, Zhang S, et al.: Detection of exudates in fundus photographs with imbalanced learning using conditional generative adversarial networks. Biomed Opt Express 9: 4863-4878, 2018
- [5] Guibas JT, Virdi TS, Li PS: Synthetic Medical Images from Dual Generative Adversariak Networks. arXiv: 1709.01872v3, 2018
- Porwal P, Pachade S, Kamble R, et al.:
 Indian Diabetic Retinopathy Image
 Datasets (IDRiD): A Database for Diabetic
 Retinopathy Screening Research. data, 2018
- [7] Chudzik P, Majumdar S, Caliva F, et al.:
 Exudate Segmentation using Fully Convolutional Neural Networks and Inception Modules, Medical imaging. Image Processing, 2018
- [8] Gulrajani I, Ahmed F, Arjovsky M, et al.: Improved Training of Wasserstain GANs. arXiv:1704.00028v3, 2017
- [9] Matten L, Hinton G: Visualizing Data using t-SNE. J Mach Learn Res 1: 1-48, 2008

Generating Hard Exudates Image by Using Generative Adversarial Nets

and Analyzing Them

Maho FUJITA*1, Yuji HATANAKA*2, Wataru SUNAYAMA*2, Chisako MURAMATSU*3, Hiroshi FUJITA*4

*1 Division of Electronic Systems Engineering, Graduate School of Engineering, the University of Shiga Prefecture

*2 Department of Electronic Systems Engineering, School of Engineering, the University of Shiga Prefecture

*3 Faculty of Data Science, Shiga University

*4 Department of Electrical, Electronic & Computer Engineering, Faculty of Engineering, Gifu University

Early detection and treatment of diabetic retinopathy (DR) contribute to prevent blindness, although this disease is a main factor of blindness. Convolutional neural network (CNN) has been applied for early DR lesion detection with good results. However, it has the challenge that number of normal data is much than abnormal ones. Generative adversarial nets (GAN) has been applied to solve the challenge. Hard exudates is a one of the typical pathological features in early DR and its border is clear. In this study, we augment hard exudates images using GAN. We then investigate difference between generated and real data. This paper discuss about a potentialities that the improvement of imbalanced data based on generated images contributes the performance of the hard exudates detection using CNN.

Key words: Diabetic Retinopathy, Convolutional Neural Network, Generative Adversarial Nets, Imbalanced Data, Hard Exudates detection

液状細胞診画像と患者情報の併用による

肺癌組織型自動分類の基礎的検討

山田 あゆみ*1,2 寺本 篤司*1 桐山 諭和*3 塚本 徹哉*3

今泉 和良*3 星 雅人*1 齋藤 邦明*1,2 藤田 広志*4

要旨

病理診断において、肺癌の組織型を正確に把握することは、治療方針を決定するために重要である.病理 医は画像のみでなく、患者の臨床的背景を理解して診断を行なっている.そこで本研究では、液状細胞診 (LBC)画像と患者臨床情報を用いた肺癌組織型分類手法を開発し、基礎評価を行った.はじめに、深層畳み 込みニューラルネットワークを用いて、LBC 画像から肺癌組織型に関する画像特徴量を抽出した.次に、 電子カルテより患者臨床情報(喫煙情報等)を収集し、主成分分析により次元圧縮を行った.得られた画像特 徴量とその画像に対応する患者臨床情報の主成分を識別器に入力し、3 種類の肺癌組織型の分類結果を得 た.149 症例の臨床データを用いて、3-fold 交差検証にて評価を行ったところ、LBC 画像単体での分類精度 は、82.9%であった.画像特徴に喫煙情報・腫瘍マーカー値を加えて、SVM で識別を行ったところ、それ ぞれ総合識別率は向上した.これらの結果から、提案手法の有用性が示唆された.

キーワード:肺癌,液状細胞診,組織型分類,電子カルテ

1. はじめに

現在, 肺癌は世界的に癌死亡の主な原因の ひとつである[1]. 近年の化学療法の進歩に伴 い, 肺癌の組織型を正確に把握することは, 治療方針を決定するために非常に重要となっ ている[2]. 肺癌の組織型は, 小細胞癌および 非小細胞癌に大別され, 後者はさらに腺癌と 扁平上皮癌に分類される.

肺癌の組織型を把握するために,病理診断 が行われる.病理診断とは,病変部から採取 された組織や細胞を顕微鏡で観察し形態学的 診断を行うものである. 肺癌の病理診断方法として液状化検体細胞 診(Liquid-based cytology: LBC)があるが,形態 学的に非小細胞癌を識別することは病理専門 医でも困難な場合がある.そこで細胞の誤分 類を避け病理医の診断を支援するためのツー ルとして,細胞診画像を用いた肺癌組織型自 動分類手法が提案されている[3].しかし,そ の分類精度は約70%にとどまっており,さら なる精度向上が課題となっている.

ここで本研究では、医師が診断時に参照す る患者臨床データに注目する.病理医は通常、 ガラス標本だけでなく、病理診断依頼書や電 子カルテを参照し、患者個人の臨床的背景を 理解した上で診断を行っている. さらに、肺 癌の組織型は喫煙状態や腫瘍マーカーと関連 性があることが知られており[4-7]、これらの 情報を画像解析に追加することで予測精度の 向上が期待できる.

^{*1} 藤田医科大学医療科学部〔〒470-1192 愛知県豊明市沓掛町田楽ヶ窪 1-98〕 e-mail: ayumi926@fujita-hu.ac.jp *2 藤田医科大学大学院保健学研究科 *3 藤田医科大学医学部 *4 岐阜大学工学部電気電子・情報工学科 〔〒501-1193 岐阜県岐阜市柳戸 1-1〕 投稿受付: 2019 年 5 月**日

そこで本研究では,液状細胞診画像と患者 臨床情報を用いた肺癌組織型分類手法を開発 することを目的とし,基礎評価を行った.

2. 使用データ

藤田医科大学病院にて気管支鏡生検が施行 された 149 症例(腺癌: 50 症例, 扁平上皮癌: 51 症例, 小細胞癌: 48 症例)の肺癌患者の液 状細胞診画像および患者臨床情報を収集した. また, すべての症例において, 組織学的病理 診断および免疫組織化学的診断による最終診 断の情報がある.

なお、本研究は施設内倫理審査委員会により承認を得ている(HM18-352).

1) 液状細胞診画像

本研究で使用した細胞は,気管支鏡生検時 に収集され,Sure Path法[8]を用いて LBC 標 本を作製した.その後,Papanicolaou 法にて染 色を行った.40 倍の対物レンズを有する顕微 鏡(BX51,Olympus)に取り付けられたデジタ ルスチルカメラ(DP70,Olympus)を使用し,腺 癌 167 枚,扁平上皮癌 168 枚,小細胞癌 168 枚の画像を JPEG 形式にて収集した.初期マ トリクスサイズは,2040 x 1536 pixel であり, すべての画像を 768 x 768 pixel に切り出した のち 256 x 256 pixel にリサイズした(図 1).

図1 収集した液状細胞診画像の例.

その後、交差検証を行うため、データをラ ンダムに3分割した.また、過学習を防ぐた めにデータ増量として、フィルタ処理(鮮鋭化、 平滑化)、反転、回転(90度)、および color offset 補正を行い、各セットを 5000 枚ずつに統一し た. 2) 患者臨床情報

電子カルテより,液状細胞診画像に対応す る患者の患者臨床データ(年齢,性別,喫煙歴, 血液検査結果等)を収集した.血液検査および 腫瘍マーカーは,細胞診での細胞採取日と最 も近い検査日のデータを収集した.収集項目 を表1に示す.

表1 患者臨床データの収集項目.

収集情報	収集項目
患者	年齢,年代,性別,喫煙状況,ブリン
基本	クマン係数,喫煙開始年齢,喫煙年
情報	数,喫煙量(本/日),飲酒状況
血液検査	WBC,RBC,Hb,Hct,PLT,MCV,
	MCH,MCHC,好中球絶対数,白血
	球像, PT, PT比, PT(INR), PT秒,
	APTT, フィブリノーゲン, HBs 抗
	原, HBs 抗体, HCV 抗体, HBc 抗
	体, TP 抗体,検体性状(乳び,溶血),
	TP,Alb,CRP,T-Bil,AST,ALT,
	LD(LDH),ALP,AMY,TG,T-C,BUN,
	UA,CRE,eGFRcreat,Na,K,Cl, Ca
腫瘍	NSE, ProGRP, IL-2R, CYFRA,
マーカー	CEA, SCC, SLX, KL-6, CA19-9

3. 方法

はじめに,深層畳み込みニューラルネット ワーク (Deep convolutional neural network: DCNN)を用いて,細胞診画像から肺癌組織型 に関する画像特徴量を抽出する.その後,得 られた画像特徴量とその画像に対応する患者 情報を統合して識別器に入力し,肺癌の組織 型分類を行う.

1) 画像特徵量抽出

優れた画像認識性能を有することが知られ ている DCNN を用いて,液状細胞診画像から 各組織型の確信度を得る.

DCNN モデルとして, ImageNet のデータセットで事前学習した VGG-16[9]を使用した. 使用した DCNN の構造を図 2 に示す.

VGG-16 は, Visual Geometry Group の Simonyan らにより提案されたネットワーク であり, 16 層の畳み込み層およびプーリング

図2 画像特徴量抽出のための DCNN の構造.

層と、3層の全結合層からなる.3層の全結合 層のそれぞれのノード数を1024-256-3とし、 最終層の活性化関数にsoftmax 関数を使用し、 出力として3種類の組織型(腺癌、扁平上皮癌、 小細胞癌)の確信度を得られるようにした.

次に、事前学習した DCNN を用いて fine-tuning を行った. 256 x 256pixel の液状細 胞診画像を入力画像とし、全結合層の部分の 重みを再学習した. その時の学習は SGD (Stochastic gradient descent: 確率的勾配降下 法)にて最適化を行い、学習率は 10⁻⁵、学習回 数は 100 回とした. 学習のフレームワークに は Keras + Tensorflow を使用し、演算には、 NVIDIA 社製の GEFORCE GTX 1080(メモリ: 8GB)を使用した.

最後に,対象の液状細胞診画像を入力した 際にDCNNから得られる3つの組織型の確信 度を画像特徴量とした.

2) 患者臨床データの前処理

2.2)にて収集した患者臨床データに対し, 前処理として欠落データの平均値補間を行っ た.連続変数に対して,平均を 0,分散を 1 とする正規化処理を行い,カテゴリ変数に対 してダミー変数化を行った.

3) 主成分分析による次元削減

患者臨床データを特徴量として扱うとき, 画像特徴量と比較して特徴数が多いことが問 題となる.そこで,主成分分析(principal component analysis: PCA)により次元削減を行 う.PCAとは,多くの変数により記述された 量的データの変数間の相関を排除し,できる だけ少ない情報の損失で,少数の変数に縮約 する解析手法である[10].本手法では,第6 主成分までを取り出し識別器へ入力した.

4) 機械学習による識別処理

3.1)で得られた画像特徴量および,その画 像に対応する患者臨床情報を識別器に入力し, 腺癌,扁平上皮癌,小細胞癌の3つの組織型 に分類する.識別器として,サポートベクタ マシン(Support vector machine: SVM)を使用し, 識別性能を評価した.識別処理には,Python 用のオープンソース機械学習ライブラリであ る scikit-learn を使用した.

4. 結果

1) 細胞診画像のみを用いた識別結果

はじめに,液状細胞診画像のみを用いて VGG-16 により分類を行った結果を示す.分 類結果の混同行列を表2に示す.表2より, 液状細胞診画像単体での組織型分類の総合識 別率は82.9%であった.

表2 VGG-16 による画像単体の分類結果.

		Predicted			
		Adeno	SCC	Small	
Actual	Adeno	140	24	3	83.8%
	SCC	30	126	12	75.0%
	Small	7	10	151	89.9%

2) 患者情報の併用による識別結果

次に,画像特徴量と次元削減を行った患者 臨床データを入力とした際の分類結果を表 3 に示す.液状細胞診画像特徴量に,年齢や喫 煙状況などを含む患者基本情報を併用したと き,総合識別率が最も向上した.このときの 分類結果の混同行列を表4に示す.

表 3 画像特徴量に患者臨床データを併用したときの分類結果.

入力特徴	総合 識別率	画像単体 との差
画像のみ	82.9%	-
画像+患者基本情報	86.3%	3.4%
画像+血液検査	84.5%	1.6%
画像+腫瘍マーカー	83.1%	0.2%

表4画像特徴量に喫煙データを次元削減し

た情報を併用した場合の分類の混同行列.

		Predicted			
		Adeno	SCC	Small	
Actual	Adeno	151	15	1	90.4%
	SCC	27	131	10	78.0%
	Small	7	9	152	90.5%

5. 考察

本手法の有効性を評価するために,画像単 体および画像特徴量と患者臨床情報を併用し た際の分類精度を比較評価した.

149 症例の臨床データに対して本手法を適 用したところ,画像単体と比較して,患者基 本情報(年齢,性別,喫煙情報等を含む)を併 用したとき,総合識別率が3.4%向上した.ま た,このとき,組織型別にみると腺癌で6.6% と最も識別率が向上した.

結果より,画像単体での分類より,患者臨 床データを考慮した提案手法の方が,識別精 度が改善することが確認され,基礎検討とし ては良好な結果が得られた.

6. まとめ

本報告では,細胞診画像および患者臨床デー タを併用した,肺癌組織型の自動分類手法を 提案した.

今後の課題として, さらなる症例の追加に よる有効性の評価や, 分類精度の低い扁平上 皮癌の精度向上の検討を行う必要がある.

利益相反の有無

なし

文 献

- [1] American Cancer Society, Cancer Facts and Figure, 2018.
- [2] The Japan Lung Cancer Society 編: Guidelines for Diagnosis and Treatment of the Lung Cancer 2018, 金原出版株式会社, 東京, 2018, pp6
- [3] Teramoto A, Tsukamoto T, Kiriyama Y, etal.: Automated Classification of LungCancer Types from Cytological Images

Using Deep Convolutional Neural Network. BioMed Research International, Vol. 2017, Article ID 4067832, 1-6, 2017

- [4] Wakai K, Inoue M, Mizuno T, et al.: Tobacco Smoking and Lung Cancer Risk: An Evaluation Based on a Systematic Review of Epidemiological Evidence Among the Japanese Population, Jpn J Clin Oncol. 36(5), pp309-324, 2006
- [5] Salgia R, Harpole D, Herndon JE 2nd, et al.: Role of serum tumor markers CA 125 and CEA in non-small cell lung cancer, Anticancer Res., 21(2B), pp1241-1246, 2001
- [6] Rastel D, Ramaioli A, Cornillie F, et al.: CYFRA 21-1, a sensitive and specific new tumour marker for squamous cell lung cancer. Report of the first European multicentre evaluation. CYFRA 21-1 Multicentre Study Group, Eur J Cancer., 30A(5), pp601-606, 1994
- [7] Stieber P, Dienemann H, Schalhorn A, et al.: Pro-gastrin-releasing peptide (ProGRP)
 --a useful marker in small cell lung carcinomas. Anticancer Res., 19 (4A) , pp2673-2678, 1999
- [8] 日本ベクトン・ディッキンソン株式会社: BD シュアパス™液状処理細胞診システムおよび関連製品. https://www.bdj.co.jp/cytology/products/surepath.html (2019年5月1日閲覧)
- [9] Simonyan K, Zisserman A: Very deep convolutional networks for large-scale image recognition. A conference paper at International Conference on Learning Representations (ICLR), San Diego, 2015, pp. 1-14
- [10] 金明哲著, "R によるデータサイエンス"第1版第5刷,森北出版株式会社, 東京,2010, pp66-77
Pilot Study on Automated Classification of Lung Cancer Types

from LBC Image and Electronic Medical Record

Ayumi YAMADA^{*1,2}, Atsushi TERAMOTO^{*1}, Yuka KIRIYAMA^{*3}, Tetsuya TSUKAMOTO^{*3}, Kazuyoshi IMAIZUMI^{*3}, Masato HOSHI^{*1}, Kuniaki SAITO^{*1,2}, Hiroshi FUJITA^{*4}

*1 School of Medical Sciences, Fujita Health University

*2 Graduate School of Health Sciences, Fujita Health University

*3 School of Medicine, Fujita Health University

*4 Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University

In recent years, as chemotherapy has advanced, it is important to accurately diagnosis the histological type (adenocarcinoma, squamous cell carcinoma and small cell carcinoma). Pathologists diagnose not only images but also the patient's clinical background. In this study, we aimed to develop automated classification scheme of lung cancer type by combining liquid-based cytological (LBC) images and electronic medical record. First, image features were extracted from LBC images using deep convolutional neural network (DCNN). Subsequently, patient clinical data (smoking status etc.) were collected, and dimension compression was performed by principal component analysis (PCA). Image features and patient clinical data corresponding to cytological images were given to the classifier. Finally, classification result of 3 histological categories was obtained. In the experiments, the proposed method was applied to 149 cases (Adenocarcinoma; 50, Squamous cell carcinoma; 51, Small cell carcinoma; 48) and evaluated via 3-fold cross-validation. As a result of experiments, the classification accuracy of the cytological image alone using DCNN was 82.9%. When the image feature and smoking information or tumor markers were given to the support vector machine (SVM), the classification accuracy was improved. These results indicate that the proposed method may be useful for histological classification of lung cancer.

Key words: Lung cancer, Liquid-based cytology, Histological type classification, Electronic medical record

ResSENetを用いたオートエンコーダによる 認知症の疾患鑑別

藤林 大毅*1

要旨

内閣府の調べによると認知症高齢者は年々増え続けると言われており,認知症の中でも割合の多いアルツハイマー病の精度の高い診断補助技術の開発が求められている.現在アルツハイマー病の診断補助に用いられているものは,統計学的手法を用いて脳の萎縮,特に海馬傍回の萎縮度を算出するソフトウェアが主流である.しかし海馬傍回の萎縮以外にもアルツハイマー病の徴候は現れるため,その精度は限られたものとなっていた.我々は恣意的に部位の抽出を行わず,脳の全領域を対象とした深層学習を行う鑑別手法を提案する.欧米のADNIデータベースを用いて学習を行い,検証には豪州のAIBLデータベースを用いたところ,我々の手法は従来手法よりも高い90.9%の鑑別精度であった.

キーワード:3次元T1強調MRI,アルツハイマー病,深層学習,鑑別精度,全脳領域

1. はじめに

アルツハイマー病(AD)は進行性の脳疾患 で、記憶や思考能力に障害を引き起こす.認 知症の原因としては、ADが最もその割合が 多く、全体の約70%を占める.ADの症状の 特徴は記憶、言語障害などが進行し、最終的 には日常の単純作業を行う能力も失われると いったものである.2012年時点で認知症高 齢者数は462万人と、65歳以上の高齢者の約 7人に1人であったが、2025年には認知症高 齢者数は675万人に上り、高齢者の約5人に1 人はなるとの推計データもある.今後患者が 増える上で、医師の負担も増える事が想定さ れ、認知症の中で特にAD鑑別の高精度な診 断補助技術は非常に重要なものとなる.

ADの診断では持病を含めた病歴,症状お

*1 株式会社Splink

〔〒107-0052 東京都港区赤坂2丁目9-3〕 e-mail: fujibayashi@splinkns.com

よび磁気共鳴画像法(MRI)などの所見を踏 まえた問診に基づき、医師が最終的に確定診 断を行うのが一般的である。しかし、ADに おけるMRI画像の読影は脳梗塞等の読影と異 なり、確実な病変が見えない事から、医師が これを行えるケースが少ないという現場の問 題がある。ADのMRI画像における所見として 代表的なものとしては、特定の部位、特に海 馬傍回の萎縮が特徴であると言われている. 国内では海馬傍回の灰白質領域の萎縮度を評 価する、VSRADと呼ばれるツールが存在 し、現在多くの医療現場で使用されている。 VSRADはVBMをベースとしたツールで、海 馬付近の領域を着目領域(ROI)として設定 した上で、母集団データに対する個々の患者 の脳の萎縮度合をZスコアとして統計的に評 価している、その他近年では、海馬以外の複 数の着目領域を設定したBrain Anatomical Analysis using Diffeomorphic Deformation (BAAD) というツールが提案されている. BAADでは脳の300以上のROIに対して、個々 の脳の容積を特徴化し、SVMという機械学習

手法を用いた疾患を良く分離する超平面から の距離をAlzheimer's Dementia Score (ADS)と定義している。BAADではこのス コアによる疾患鑑別を行った所、同じデータ

コアによる狭思端加を11572所, 向しアータ セットを用いた精度比較において, VSRAD を上回るという報告がされている[1]. 疾患鑑 別の精度を向上させるには, BAADのように 海馬領域以外の全脳領域に対してADの微細 な特徴を捉えていく事が重要であると考えら れる.

そこで、我々は3次元T1強調画像を入力と した、着目領域を恣意的に設定しないアルゴ リズムを提案する。本アルゴリズムはU-net構 造のAuto-EncoderにおけるEncodingの過程 でReSENetを用いる深層学習モデルである。

2. 関連研究

深層学習以前の機械学習手法を用いたADの 鑑別に関する関連研究は[2]に詳しい.深層学 習を用いた研究は2013年以降に始まり,現 在ではその研究内容も多岐に渡っている[3]. 深層学習モデルにおいては全脳を入力対象と した研究が多いが,一方で海馬を中心にROI を定めている研究も存在しており,その性能 の比較は[4]に詳しい.ROIベースと全脳の入 力とは,複雑なネットワークの学習を如何に 限られたデータ量でコントロールするかに よって,その性能の優劣が分かれるようであ る.以下,深層学習を適用した幾つかの研究 について概略を述べ,本課題への深層学習の 活用状況を紹介する.

・Payanらは、2次元スライス画像に対し て、全脳の3次元MRIデータを入力とする事 で鑑別精度が向上する事を報告した。一般画 像認識の学習済みモデルを再学習する転移学 習が主流であった深層学習の利用において、 MRIデータを直接入力する事を検討した初期 の成果である[5]. ・Mingxiaらは固定的なROIの設定を避け, データから鑑別に有意な特徴領域を発見する LDMILフレームワークという手法を提案し た.海馬及び海馬傍回に加えて,特に紡錘状 回も有意に鑑別に寄与する部位であると報告 されている[6].

・Liらは海馬領域に着目し,NC / 非進行性の MCI (sMCI) / 進行性のMCI (pMCI) / AD という順序をラベルとして付与したときの, 各状態間のどちらの可能性が大きいかを Ordinal Networkと呼ぶ畳み込みニューラル ネットワーク (CNN)の出力として構築し, 高い鑑別精度が得られると報告している.た だし,著者らは全脳の情報を用いる事でさら に高い精度が期待できるとも述べている [7][8].

これらの技術は近年盛んであるAI技術の医療 診断への利用という議論を踏まえて、将来的 には臨床現場でも用いられるツール化が進む と思われる.しかし、臨床の現場でADの疾 患鑑別として現在実際に利用されているツー ルで深層学習が用いられている物は、まだ殆 ど提供されていない.国内では主にVSRAD がこれまで利用されてきたが、近年では椎野 らによって開発されたBAADと呼ばれるツー ルの提供も進められている[9].

• VSRAD

VSRADは50歳以上の標準的な海馬領域の ROIを保有し、VBMを用いた海馬傍回の灰白 質部位の萎縮度合を評価し、54歳~86歳の 男女80名の健常者と比較してどの程度萎縮が 進行しているかを評価し、鑑別を行う.

• BAAD

BAADはVSRADと同じくVBMを用いた評価ツールであるが、VSRADが海馬傍回の特定領域のみを評価するのに対し、脳の全体領域内で300以上のROIを評価する事を特徴と

したツールである. ADの患者に有意差の見 られるROIのみを機械学習させる事で, 複数 のROIを対象としたAD罹患のスコア (ADS)を算出して鑑別を行うソフトウェア である. VSRADと鑑別精度の比較を行なっ た結果, VSRADはAccuracy84.8%に対し て, BAADは86.1%とVSより高い鑑別精度が 出せる事が報告されている[1].

本稿では後章において,これら既存ツールと 同じ条件における,提案手法の精度比較実験 の結果を示す.

3. 提案手法

本章では提案手法のニューラルネットワー クモデルの詳細を述べる.

3.1 ResNet

提案手法は3次元画像データに対応させた ResNetをベースとしている. ResNetはCNN の一種であるが,一般的なCNNに比べて畳み 込みを行う過程での特徴量の逸失を防ぐ特徴 を持っており,画像識別問題に関しては従来 のCNNより識別精度が高い事が多く報告され ている.

ResNetは、豊み込み層に加えて入出力を 繋ぐSkip Connectionの機構を加える事に よって、中間層の学習結果と、入力値から出 力層までの残差とを合わせた学習を可能とす る. これにより深い畳み込み層から構築され るモデルにおいても学習データが持つ特徴の 逸失を抑える事を可能とし、直接的な構成の CNNより画像データを用いた分類問題におい て、高い識別精度が得られる事が多く報告さ れている[10]. 一般に機械学習にはモデルの次元数に対し て学習データが少ない場合,訓練データに対 する過学習を起こし,汎化性能が低下する問 題が存在する.ResNetにおいても不十分な 数量での深層学習においては,この問題は発 生する為,個々の画像の特徴を過学習せずに ADの特徴のみを効率良く抽出する機構がさ らに必要となる.このため提案する構成は ResNetに加えてU-netを組み合わせたモデル を採用する(図1).

3.2 U-net

U-netはEncoding (左側) とDecoding (右 側) から構成されるネットワークである. Encodingの過程では学習データが共通して持 つ重要な特徴の抽出が行われ, Decoding部 では最下層の共通特徴とEncodingの各層の Skip Connectionによって伝搬される元画像 の情報が掛け合わされる形でデータの復号が 行われる[11].

我々の提案モデルはU-netのEncoding部に ResNetを用いており、学習に際しては、 ResNet部の出力である推定ラベルと正解ラ ベルの残差、並びにDecoding部の出力画像 と入力画像の残差の二つを同時に小さくする ように行われる.この時、U-Netの出力教師 画像は入力と同じMRI画像である(Auto Encoding).この復号の過程で最適化された 最下層の共通特徴を抽出して、これを識別に 用いる.つまり、提案モデルは個々の画像の 特徴を捉える役割をU-netのDecoding部に流 し、ResNetを通るEncoding部にADの分類に 重要な共通特徴の抽出が行われる事を意図し た構成となっている. さらに提案手法はSqusse-and-Excition(SE) をEncoding部のResNetの畳み込み部分に加 えるReSENetと呼ばれる構成とした.SEを 加えることにより、畳み込み時に画像の大域 的な情報をチャネルの値にも取り入れ、少な い畳み込みの中でも学習を効率的に進められ る効果が得られる事が知られている. ReSENetの部分的なネットワークアーキテク チャを図2に示す.

3.3 Squeeze-and-Excitation

Squeese-and-Excition(SE)は大域的な情報 をチャネルに圧縮し、入力画像に応じたチャ ネル情報を掛け合わせるものである[12].

Squeeze-and-Excitationは畳み込み時に計 算された特徴量を各チャネルに均等に出力す るのではなく、入力画像の特徴量に応じて チャネルに出力する特徴量を制御する.これ により少ない層の数でも分類に必要な特徴の 変換を可能とする.

図2:ResSENetのネットワークアークテク チャ

以上提案手法をまとめると、構成としてはU-NetのEncodingにReSENetを用いたものであ り、学習に際してはAuto Encodingとラベル 誤差の差異の両方を最小化するものである。 評価時にはU-net再下部のEncoding終了時点 に抽出される特徴を再度畳み込んだ上で出力 層でsoftmax関数を用いて二値分類を行うも のである。

アーキテクチャ

4. 実験

提案手法では、データに二種類の前処理を 行う、一つ目は特徴量間でスケールを揃える ために脳画像の正規化を施す。二つ目は学習 時にデータの拡充を行うために画像の移動と 歪 み を 施 す デ ー タ 増 強 (D a t a Augmentation) である。提案モデルの学習に はアルツハイマー病の発症予測や治療薬の効 果判定法の確立を目的とした北米臨床研究の ADNIデータセットを用いる。 学習済みのモ デルの検証には外部データとして, AD発症 の原因を特定する事を目的に1.100人を超え る人々を4~5年間縦断的に追った研究データ である豪州のAIBLデータを用いる. 従来手法 と同じ条件での鑑別精度の比較を行うため, 従来手法の実験と同様にAD=332例, NC=406例のADNIデータセットを学習に用 い、AD=71例、NC=447例のAIBLデータセッ トをモデル評価用のテストデータとして使用 した

5. 結果

VSRADとBAAD, 及び提案手法の Accuracy, Specifity, Sencitivity, Diagnostic odds ratioの結果を表1に示す. ま た真陽性を縦軸, 偽陽性を横軸に設定した提 案手法のROC曲線を図3に示す. 提案手法の AUCは96%, 精度は90.9%, 検査後のオッズ は62.3であり, 従来手法より高い鑑別精度が 達成されるとともにSpecificity, Diagnostic odds ratioについても従来手法より高い結果 となった.

表1. 提案手法の有用性検証と既存手法の比較 ADNIデータセットで学習した後にAIBLデータでモデルを評価した.

	Accuracy	Sensitivity	Specificity	Diagnostic odds ratio
VSRAD	84.8%	68.1%	84.5%	14.9
BAAD	86.1%	88.9%	85.7%	47.9
提案手法	90.9%	84.5%	91.9%	62.3

6. 結論

本研究ではADの疾患鑑別の高精度化を目 的に, ROIの設定を恣意的に行わない深層学 習による手法を提案した。我々の提案した ReSENetを用いたU-Net構成のネットワーク について従来手法との比較実験を行い、精 度 90.9%, 特異度 91.9%, 検査後オッズ 62.3とより高い結果が得られる結果となっ た。ADの進行と海馬領域の萎縮の関係はこ れまでに良く知られた関係であったが, AD の鑑別には全脳の情報を用いる事で、さらに その精度を向上させ得る事を支持する結果と なった。今後はGrad CAM等の技術[13]を用 いて提案モデルが判定時に脳内のどのような 領域を重要視しているか可視化し、判定根拠 をより明確にすると共に、ADの進行につい て海馬萎縮以外の要因を明らかにする事が課 題である.

利益相反の有無

なし

文 献

[1] 椎野 顯彦, 岩本 祐太郎, 韓 先花, 陳 延偉, アルツハイマー病の画像診断– voxel-based morphometryと人工知能に よるアルツハイマー病スコアの有用性, 脳循環代謝(日本脳循環代謝学会機関 誌), 2016-2017, 28 巻, 2 号, p. 303-308,, 抄録

[2] Arbabshirani, Mohammad R., et al. "Single subject prediction of brain disorders in neuroimaging: promises and pitfalls." Neuroimage 145 (2017): 137-165.

[3] Litjens, Geert, et al. "A survey on deep learning in medical image analysis." Medical image analysis 42 (2017): 60-88.

[4] Wen, Junhao et al. "Convolutional Neural Networks for Classification of Alzheimer's Disease: Overview and Reproducible Evaluation." CoRR abs/ 1904.07773 (2019)

[5] Payan, A. & Montana, G. (2015),

Predicting Alzheimer's Disease - A Neuroimaging Study with 3D Convolutional Neural Networks., in Maria De Marsico; Mário A. T. Figueiredo & Ana L. N. Fred, ed., 'ICPRAM (2)', SciTePress, pp. 355-362.

[6] Liu, Mingxia, et al. "Landmarkbased deep multi-instance learning for brain disease diagnosis." Medical image analysis 43 (2018): 157-168.

[7] Li, Hongming et al. "Deep Ordinal Ranking for Multi-Category Diagnosis of Alzheimer's Disease using Hippocampal MRI data." CoRR abs/ 1709.01599 (2017): n. pag.

[8] Li, Hongming, et al. "A deep learning model for early prediction of Alzheimer's disease dementia based on hippocampal MRI." Alzheimer's & Dementia: The Journal of the Alzheimer's Association, Volume 14, Issue 7, P1407 - P1409 (2019).

[9] 脳ドックのガイドライン2019,2019年3月20日 改訂・第5版, 脳ドックのガイドライン2019改訂委員会編

[10] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

[11] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computerassisted intervention. Springer, Cham, 2015.

[12] Hu, Jie, Li Shen, and Gang Sun.

"Squeeze-and-excitation networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

[13] Selvaraju, Ramprasaath R., et

al. "Grad-cam: Visual explanations from deep networks via gradient-based localization." Proceedings of the IEEE International Conference on Computer Vision. 2017.

ResSENet-based AutoEncoder for Alzheimer's Disease Detection Daiki FUJIBAYASHI*1

*1 Splink, Ltd.

The importance of diagnostic support tools for dementia will increase since it is predicted that the number of elderly patients with dementia increase in the future. Alzheimer disease (AD), which is the most common cause of dementia, is mainly characterized by hippocampal atrophy. For diagnosis of AD, statistical methods to calculate hippocampal atrophy by setting a region of interests (ROI), within 3DT1-MRI images is widely used. On the other hand, it has been reported that setting multiple ROIs can improve the accuracy of AD classification. In this paper, we propose a classification method which utilize the whole area of the brain instead of setting arbitral regions to be analyzed. We trained the classifier based on the proposed method using the ADNI datasets and verified its performance using the AIBL datasets. We obtained 90.9% accuracy for AD / NC classification.

Key words: T1-MRI, Alzheimer's disease, Deep learning, Classification accuracy

著者紹介

藤林 大毅 (ふじばやし だいき)

2015年同志社大・理工学部・イン テリジェント情報工学科卒.2017 年奈良先端科学技術大学院大学博 士課程前期・情報科学・情報科学専 攻了.現在,株式会社Splink機械 学習エンジニア.MRIを中心とし た画像処理の研究開発に従事. テンプレート(全ての原稿の種類に共通) Ver. 2.1 (2019.3.28 改訂)

ドメイン敵対的学習を用いる病理画像からの

悪性リンパ腫候補領域の抽出と病型識別

古賀 諒一*1 橋本 典明*1 横田 達也*1 中黒 匡人*2

高野 桂*2 中村 栄男*2 竹内 一郎 *1 本谷 秀堅*1

要旨

本研究では、悪性リンパ腫の薄切切片のHE染色病理顕微鏡画像より、その病型を推定する手法を提案する. 悪性リンパ腫には 70 種類以上の病型があり、その病型に依存して治療法や治療後の経過が異なるうえに、 その病型を病理画像より診断することは専門の病理医であっても容易ではない.この病型識別を支援する システムを構築するために、切片全体を含む病理画像中より悪性腫瘍領域の部位を自動的に選択し、その うえで病型を推定する手法を提案する.この際、施設や染色を行った技師ごとに異なるHE染色の色味の違 いを積極的に無視するために、ドメイン敵対的学習を導入する.これにより、切片全体の病理画像から悪 性腫瘍領域の抽出ができるようになり、病理画像における腫瘍領域の可視化が可能となった.また、自動 的に取り出された悪性腫瘍を含むパッチのみを用いて病型を推定することで、病型推定の精度向上が確認 できたので報告する.

キーワード:ニューラルネットワーク、ドメイン敵対的学習

1. はじめに

悪性リンパ腫は 70 種類以上の病型に分類さ れているうえ、どの病型であるかを判断するこ とが困難な病気である.本研究では、HE 染色が 行われた悪性リンパ腫の病理標本を顕微鏡で 撮影して獲得できる、図1に示すような病理顕 微鏡画像を用いる.しかし、これらの病理標本 はその全体ががんに侵されているわけではな く、病型の同定に利用できるのは標本中の一部 分のみで、腫瘍領域を注視することが必要であ る.病理画像は図1のように、そのサイズが非 常に大きいため、一括に処理を行うことが非現 実的であり、そのため、一定の大きさのパッチ に切り出して処理を行う.この場合、切り出し たパッチの中に腫瘍領域が存在しない非病気

*1 名古屋工業大学

〔〒466-8555 名古屋市昭和区御器所町〕
 e-mail: koga@iu.nitech.ac.jp
 *2 名古屋大学医学部付属病院

〔〒466-8560 名古屋市昭和区鶴舞町 65〕

図1HE染色病理顕微鏡画像の例.施設ごとに染 色の色合いや強さが異なる.

パッチが混在するという問題点が生じる.また, これらの病理標本は症例間で HE 染色の色味が 異なるという問題点もある.本研究の目的は, 上に述べた2つの問題点に対処した悪性リンパ 腫病型識別システムを構築することである.

2. 提案法

本研究では、上に述べた病型識別システムを 構築するために、腫瘍領域の判定を行う病気パ ッチ検出器と、入力パッチの病型を識別する病 型識別器が必要となる.

本研究では、病気パッチ検出器の学習に必要 となるパッチごとの病気か非病気かを示す正 解情報が存在しないため、すべてのパッチを病 気パッチと仮定した区別なし識別器が出力す る事後確率値を病気パッチ検出器のラベルデ ータ[1]として利用する.その後,病気パッチと 判断されたパッチのみを用いて,病型識別器の 学習を行う.ここで,これらの識別器はすべて, 症例間の染色の違いを無視するために,ドメイ ン敵対的学習を用いて学習を行う.ドメイン敵 対的学習を用いたニューラルネットワークは DANN[2]と呼ばれており,図2のような構造を 持つ.本研究では,症例それぞれを1つのドメ インと定義して,ドメインが識別できなくなる ように学習を行う.これにより,本研究におけ る2つの問題点に対処した病型識別システムの 構築が可能となる.

3. 実験

3.1. 病気パッチ検出器を用いた腫瘍候補領 域の抽出

病気パッチ検出器の学習には 5 つの病型, 合計 208 症例からなる悪性リンパ腫の HE 染色画 像を大きさ 224×224 として切り出したパッチ 20 万枚を用いた.

病気パッチ検出器によって出力された,0か ら1の連続値で表される病気らしさの値を画素 値として書き込むことで,図3のような病気ら しさの分布を示す画像を生成した.このような 画像から,ある閾値以上の病気らしさを持つパ ッチを病気パッチとして抽出する.

3.2. 病気パッチのみを用いた病型識別

抽出した病気パッチのみを用いて病型識別 器の学習を行った.予測時に出力されるパッチ ごとの識別結果で投票を行い,最も得票率の高 かった病型を標本画像に対する識別結果とし て出力する.病気パッチ抽出時の閾値ごとの正 解率を図4に示す.図4から,病気パッチとし て抽出する閾値を大きくするに従い,病型識別 率が向上する傾向にあることがわかった.専門 の病理医でさえ,高い確度で HE 画像のみから 病型を推定することは容易ではなく,図4の結 果は腫瘍領域の自動選択が適切に機能してい ることと矛盾がないことが確認できた.

図4 腫瘍候補領域選択の閾値と病型識別率.

4. まとめ

本研究では、悪性リンパ腫診断支援システム に必要な識別器を構築した.病気パッチ検出器 を用いることで、腫瘍候補領域の自動抽出が可 能となった.また、病気パッチのみで病型識別 を行うと、その識別率は病気パッチとして取り 出す閾値を大きくするに伴い向上した.

利益相反の有無

なし

文 献

- [1] Le Hou, Dimitris Samaras, Tahsin M. Kurc, et al.: Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification. CVPR, pp.2424-2433, 2016.
- [2] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, et al.: Domain-Adversarial Training of Neural Networks. Journal of Machine Learning Research, vol.17, pp.1-35, 2016.

Extraction and Subtype Identification of Malignant Lymphoma Candidate Regions from Pathological Images Using Domain Adversarial Training

Ryoichi KOGA^{*1}, Noriaki HASHIMOTO^{*1}, Tatsuya YOKOTA^{*1}, Masato NAKAGURO^{*2}, Kei TAKANO^{*2}, Sigeo NAKAMURA^{*2}, Ichiro TAKEUCHI^{*1}, Hidekata HONTANI^{*1}

*1 Nagoya Institute of Technology*2 Nagoya University Hospital

In this study, we propose a method to estimate the subtype of malignant lymphoma from hematoxylin and eosin (H&E) stained pathological microscopy images of sliced sections. There are more than 70 subtypes of malignant lymphoma, and depending on the subtype, the treatment method and the progress after treatment differ, and it is so difficult for a specialized pathologist to identify the subtype from pathological images. In order to construct a system to support this subtype identification, we propose a method to automatically extract the malignant tumor area from the whole slide image and then estimate the subtype. In this case, in order to actively ignore differences in the color of H&E stains that differ depending on the facility and the pathologist performing the stain, we adopt domain adversarial training. This enables us to extract the malignant tumor area from the whole slide image, and to visualize the tumor area. Further, by estimating the subtype, the accuracy improvement of estimation could be confirmed.

Key words: Neural Network, Domain Adversarial Training

造影 CT 画像における 2 段階閾値処理及び

テクスチャ解析による外傷出血自動検出の検討

木村 拓貴*1 田中 久美子*3 吉村 裕一郎*2

中田 孝明*3 織田 成人*3 中口 俊哉*2

要旨

現在の外傷治療では救急医による造影 CT 画像を用いた読影診断が行われているが、1000 枚以上の CT 画 像を迅速かつ正確に読影する必要があることから医師の負担は大きい.本研究では、医師の負担軽減を目 的に外傷出血の自動検出を検討する.外傷出血候補領域の抽出においては、各組織の CT 値分布を参考に、 骨領域の除去及び抽出範囲を限定した 2 段階の閾値処理によって出血領域の候補を抽出する.抽出した候 補領域のテクスチャ特徴量からランダムフォレスト学習器を用いて候補領域を分類することで誤検出領域 の低減を行った.実験として外傷 29 例の全身 CT 像を用意し、計 153 箇所の外傷出血の検出を試みた.読 影医によって抽出された正解領域との重心間距離が 7.5mm 以下を正解として評価したところ、感度 96%の 出血領域の検出に成功し、候補領域分類を行うことで偽陽性を約 70%低減した.

キーワード:造影 CT 画像,外傷出血,機械学習,Random Forest 法,テクスチャ解析

1. 目的

外傷とは、何らかの要因による体外から加わ る力によって生じる損傷であり、出血の程度に よっては出血死を引き起こす危険性がある.外 傷による死亡は、10万人当たりおよそ30人程 度の割合で発生しているが[1]、全国の救命救急 センターに外傷治療の実態調査を行ったとこ ろ、実際に死亡した外傷患者のうち、修正予測 外死亡数(防ぎえた可能性の高い外傷死亡)は 40%に迫る数値であった[2].こうした外傷死亡 を回避するために外傷出血の診断は外傷治療

*1 千葉大学大学院融合理工学府

〔〒263-8522 千葉市稲毛区弥生町 1-33〕 e-mail: afya2170@chiba-u.jp

*2 千葉大学フロンティア医工学センタ ー

*3 千葉大学大学院医学研究院 救急集 中治療医学

において重要である.現在の外傷治療では救急 医による造影 CT 画像を用いた読影診断によっ て治療方針の決定を行っているが,この診断方 法の問題点として,出血の見落としや膨大な CT 画像の診断に時間を要すること,救急医は外傷 患者の処置を行わなければならず読影に専念 できる医師が少ないことなどが挙げられる.以 上の点を改善するため,本研究では医師の負担 軽減を目的に外傷出血の自動検出手法につい て検討する.

2. 提案手法

2.1. 前処理

研究の対象とする CT 画像は読影に用いられ ている静脈時相の造影 CT 画像であり,等方化 して取り扱う.本研究の提案手法では,前処理 として入力画像の分割,骨領域の除去を行う.

図1に示す CT 値分布から分かるように,身体の位置によって出血領域の CT 値の分布が異なるため,すべての位置に対応できる一つの閾

値を設定する事は困難である.そのため,それ ぞれの位置に対応した閾値を設定する事を目 的に入力画像を図2に示すように肩より上,骨 盤より上,下半身に分割を行った.

骨付近の出血は候補領域抽出を行う際に出 血領域と骨領域の境界が曖昧になり,検出が困 難になるという問題点がある.そのため,閾値 処理による骨領域除去を実装した.閾値処理に よって抽出される領域の中で骨領域は体積が 十分に大きいという仮定のもと,一定ボクセル 以上の領域を骨領域として抽出を行い,骨内部 組織の穴埋め後,入力画像内から対象となる領 域を除去する事で骨領域除去を行う.アルゴリ ズムは以下の通りである.

- (1) 図3を参考にCT値380HUを閾値と 設定し、閾値以上のボクセルを骨領域 として抽出
- (2) 候補領域の中からボクセル数が
 90000(約 20cm³)以上の領域のみを抽出
 (図 4)
- (3) Closing, スライスごとの外輪郭抽出に よる領域内部の穴埋め
- (4) 入力画像内から抽出した対象となる 領域部分を除去

2.2. 候補領域抽出手法

図1を参考にした上で,経験的に閾値の決定 を行い,出血候補領域の抽出を行った.アルゴ リズムは以下の通りである.

- (1) ガウシアンフィルタσ=2.0を用いて 平滑化を行い、ノイズの低減を行う.
- (2) 頭部:85HU, 胴体:160HU, 下半身:80HU
 に閾値を設定し, 閾値以上の CT 値のボ クセルを候補領域として抽出.

候補領域を抽出した際,出血領域に加え,ベ ッドや太い血管など明らかに出血領域ではな い領域などの誤検出領域が同時に抽出されて いる.このような領域を除去する事を目的に以 下に示す条件を設定し,条件に合う領域のみを 候補領域として抽出した.

- ボクセル数が 30(約 6mm³)以上 90000 (約 20cm³)以下.
- (2) 候補領域の平均 CT 値が一定範囲内 頭部 : 100~175HU 胴体 : 150~250HU 下半身: 90~160HU

図1 身体の位置における出血領域の CT 値分布

図2 入力画像の分割

図 3 造影 CT 画像における CT 値分布

図4 骨領域の抽出

(a)候補領域抽凸 (b)誤検口刊別結果 図5抽出結果(赤色の領域が出血領域)

図5に抽出結果を示す.図5(a)に存在している ベッドや太い血管,ノイズと思われる小さな領 域を図5(b)では除去できている事が確認できる. また,出血領域で検出される領域とそれ以外の 軟組織で検出される誤検出領域では,図3から 分かるように出血領域の方がCT値の高い領域 が多く含まれており,平均CT値に差が生じる という仮定のもと,平均CT値が一定範囲外の 領域を誤検出領域として除去する条件(2)を設 定した.

ここまで閾値処理による候補領域抽出を行 ってきたが、図1が示すように出血領域が取り うる CT 値の範囲は広いため、すべての出血領 域を検出できる一つの閾値を決定する事は困 難である. そこで,本研究では2つの閾値を用 いた2段階閾値処理による抽出手法を実装した. 図 6 に 2 段階閾値処理の流れを示す. 高い CT 値の出血領域を検出する閾値と低い CT 値の出 血領域を検出する閾値の2つの閾値を設定して, それぞれ検出処理を行い、最終的に結果を足し 合わせた. 誤検出除去の条件(2)である平均 CT 値の範囲を調整する事で,低閾値での検出で高 い CT 値の出血領域を抽出しないように抽出範 囲を限定する事が可能である. 閾値及び平均CT 値の範囲は経験的に調整し,最も検出率が高く なる値を探索して、以下のように設定した.

頭部:	低閾値:85HU
	平均 CT 值:100~170HU
	高閾値:150HU
	平均 CT 值:180~265HU
胴体:	低閾值:75HU
	平均 CT 值:90~120HU
	高閾値:165HU
	平均 CT 值:200~350HU
下半身:	低閾値:80HU
	平均 CT 值:90~140HU
	高閾値:140
	平均 CT 值:150~280HU

2.3. 候補領域分類

液体である出血領域の形状は複雑であり,領 域ごとに全く異なるため,形状による候補領域 の分類は困難である.そこで,出血領域の形状 に依存しない特徴として,テクスチャ特徴量を 用いた候補領域の分類を行った.本研究では, 表1に示す手法により算出される計23種のテ クスチャ特徴量[3][4]を正解領域と誤検出領域 でそれぞれ算出し, Random Forest で学習を行い, 分類器を作成した[4].訓練データとして表2の データセットを用意した.作成した分類器を用 いて各候補領域が誤検出かどうかを推定する 事で誤検出低減を行った.

3. 評価

3.1. 候補領域の抽出

29 症例 157 箇所の外傷症例に対して抽出処理 を行い,正解領域と候補領域との重心間の距離

正解領域	誤検出領域
354箇所	354箇所

が 7.5mm 以内の領域を真陽性として評価を行った.通常の閾値処理では,138 箇所の出血領 域を抽出したのに対し,2 段階閾値処理による 抽出では,151 箇所の出血領域の抽出に成功し, 感度は 96%まで向上した(表 3).

3.2. 候補領域分類

候補領域の分類の前後でそれぞれの誤検出 の数を比較した.1 症例あたり1596 箇所の FP が生じていたが,候補領域の分類によって一症 例あたりの平均 FP 数が490 箇所となった.感 度を維持した上で,約70%の誤検出領域の低減 に成功した(表4).

4. 結論

本研究では,造影 CT 画像からの外傷出血検 出手法を提案した.候補領域の抽出においては 2 段階閾値処理を実装する事で,感度が向上し 通常の閾値処理よりも性能の良い抽出手法で ある事を確認した.また,テクスチャ特徴量を 用いた候補領域分類を行うことにより,誤検出 の低減効果を確認した.

利益相反の有無

なし

生体に関わる研究の倫理規範順守

本研究は千葉大学大学院医学研究院生命倫 理審査 2972 号の承認を得た.

表3 2段階閾値処理の結果

	感度[%]	平均FP数
通常の閾値処理	88	998
2段階閾値処理	96	1596

表 4 候補領域分類結果

分類前 96 1596		感度[%]	平均FP数
	分類前	96	1596
分類後 96 490	分類後	96	490

文 献

- [1] 厚生労働省 死因順位別に見た年齢階級・ 性別死亡数・死亡率・構成割合 2007 年 https://www.mhlw.go.jp/toukei/saikin/hw/jink ou/suii07/deth8.html
- [2] 平成 13 年度厚生科学特別研究「救命救急 センターにおける重傷外傷患者への対応 の充実に向けた研究」研究班の結果報告 2001 年
- [3] 藤田広志,石田隆行,桂川茂彦ら,"実践 医 用画像解析ハンドブック"オーム社, 2012 年
- [4] Bowen Song et al.,
 "Volumetric texture features from higher-order images for diagnosis of colon lesions via CT colonography," International Journal of Computer Assisted Radiology and Surgery, Vol.9, No. 6, pp. 1021-1031, 2014.
- [5] Random Forests [Online]. Available : https://www.stat.berkeley.edu/users/breiman/R andomForests/cc_home.htm

Automatic detection of extravasation by two-step thresholding and

texture analysis in contrast-enhanced CT image

Hiroki KIMURA^{*1}, Kumiko TANAKA^{*3}, Yuichiro YOSHIMURA^{*2} Takaaki NAKADA^{*3}, shigeto Oda^{*3}, Toshiya NAKAGUCHI^{*2}

*1 Graduate of Science and Engineering, Chiba University

*2 Center for Frontier Medical Engineering, Chiba University

*3 Department of Emergency and Critical Care Medicine

In the current trauma treatment, an emergency doctor diagnoses an image using contrast-enhanced CT images, but the burden on the doctor is large because it is necessary to read more than 1000 CT images quickly and accurately. In this study, we consider automatic detection of extravasation for the purpose of reducing the burden on doctors. In the extraction of extravasation candidate regions, the regions are extracted by bone region removal and two-step threshold processing with limited extraction range with reference to the CT value distribution of each tissue. The false detection region was reduced by classifying the candidate area using the random forest learner from the texture feature quantity of the candidate area. We prepared whole-body CT images of 29 cases and tried to detect a total of 153 points of extravasation. When the region which the distance between the candidate region and the extracted correct region by doctor is less than or equal to 7.5mm is the correct answer, It successfully detected a extravasation with a sensitivity of 96%, and candidate region classification reduced false positives by about 70%.

Key words: contrast-enhanced CT images, extravasation, machine learning, Random Forest method, texture analysis

深層学習における学習データセット規模拡大に応じた 分類精度向上に関する実験的検討 -超拡大大腸内視鏡画像における腫瘍性病変分類に向けた

特徵量抽出-

伊東 隼人^{*1}, 森 悠一^{*2}, 三澤 将史^{*2}, 小田 昌宏^{*1}, 工藤 進英^{*2}, 森 健策^{*1,3,4}

要旨

超拡大大腸内視鏡による超倍率の拡大観察はリアルタイムなポリープの組織学的分類を実現しうる. この 新しいモダリティによる高精度な実時間診断は内視鏡医に高度な知識と十分な経験があって初めて実現し うる. 超拡大大腸内視鏡の普及に向けた非熟練医の教育・サポートを対象とする CAD システムが求められ ている. CAD システムにおいては高精度な画像分類器がその中核をなす. 特に機械学習に基づく分類器の 構成においては大規模な学習データセットが不可欠である. 中でも深層学習はデータセットから分類に適 したパターン表現を自動的に学習して特徴量抽出を行い, それらの分類を行う. したがって, 深層学習にお いては良質なデータセットの構築が非常に重要である. 本研究では大規模データセットを構築し, 深層学習 に基づく分類器構築における症例数・画像数・分類精度の関係を実験的に調査する. キーワード: 内視鏡検査, 超拡大内視鏡, 病理類型分類, 深層学習, テクスチャ解析, 汎化性能

1. はじめに

医用画像工学の領域においても診断支援・画 像処理・画像再構成をはじめ多くの応用研究に 対し, Convolutional Neural Network (CNN) [1-6] ベースの深層学習手法が大規模データを対象と する最適化手法として利用されている. 一方 で機械学習のための医用画像収集ならびにアノ テーションに関しては医師に多大な負担をかけ るとともに、構築した医用データセットの利用 に関しては患者の人権問題をも含む. 一般画像 とは異なり、大規模データセット構築・利用は困 難である上に, データドリヴンな深層学習を利 用するに際してはどの程度の大規模データをど のように収集するかが肝要となる.本稿では図 1 に示す超拡大大腸内視鏡画像の腫瘍・非腫瘍 分類を対象とする.この2カテゴリへのパター ン分類というパターン認識問題で最も基本的な 問題に対し、収集した約3500症例分のアノテー ション済み画像を用いて症例数・画像数・分類

2. 関連研究

大腸ポリープ表面を内視鏡で拡大観察に基 づき、組織学的なポリープの分類を行う診断方 法[7]が研究されている.この診断方法は細胞 核の分布パターン(ピットパターン)や血管の 形状といったポリープ表面のテクスチャに基づ く診断方法である.この診断方法は生検を介さ ない実時間病理診断を実現しうるが、高度な知 識と十分な経験が要される.特に520倍の超拡 大観察な可能な超拡大内視鏡(Olympus, Tokyo) は新しいモダリティであるために熟練医の数が 非常に少ない.そのため、非熟練医の教育・補助 を目的としたコンピュータ支援診断(CAD)シ ステムが望まれており、拡大内視鏡画像の病理 パターン分類手法[8-18]が検討されている.

玉木らは 75 倍拡大観察下でのポリープ表面 の狭帯域画像より、局所領域における勾配の方向 統計に基づく徴量表現 [9],局所領域の方向・形 状を考慮した多重解像度解析 [10],そして深層 学習 [11] といった複数アプローチでポリープ表 面のテクスチャを表す特徴量を抽出し、病理学的

 ^{*1} 名古屋大学大学院情報学研究科知能システム
 専攻 [〒 464-0822 名古屋市千種区不老町]
 e-mail: hitoh@mori.m.is.nagoya-u.ac.jp
 *2 昭和大学横浜市北部病院消化器センター
 *3 名古屋大学情報基盤センター
 *4 国立情報学研究所医療ビッグデータ研究セン
 ター

精度の関係を調査する. さらに学習済みモデル の汎化性能を評価することで, 深層学習に向け た大規模データセット構築の指針を模索する.

図1超拡大内視鏡ならびに 520 倍拡大観察におけるポリープ表面の画像例. (a) CF-H290HCI (Olympus, Tokyo). 内視鏡先端のレンズ部分をポリープ表面に接着し, 倍率を上げることで超拡大観察を実行する. (b)-(d) はそれぞれ非腫瘍, 腺腫, そして浸潤癌の典型例を示す. (c) および (d) が腫瘍性病変のテクスチャパターンに該当する.

な分類を試みた.いずれの場合も線形サポート ベクターマシン (SVM) [19] を分類器として用い ている. 深層学習ベースのアプローチ [11] では AlexNet [2], CaffeNet [3] そして GoogLeNet [4] という3つのネットワーク構造を利用し、それ ぞれの学習モデルの各層より特徴抽出を行った. 抽出した特徴量を SVM で学習・分類すること により、分類精度の高い特徴量抽出を行う層を 調査した. AlexNet と CaffeNet は全 8 層の中に 5層の畳み込み層を持つが、最も分類精度の高い 特徴量を抽出しているのは2また3層目であっ た. GoogLeNet は最後の全結合層を除くと 21 層であるが,最も分類精度の高い特徴量を抽出 するのは最初の2つの Inception module の後に ある pooling 層であった. 深層学習の 1-3 層目の 浅い畳み込み層ではエッジ・コーナー・ブロッ ブといった低レベル特徴量を抽出すると言われ ているが、テクスチャの分類にはこのような低 レベル特徴量の抽出が有用である.

森らは 520 倍観察が可能な超拡大内視鏡を 用いた実時間病理診断を目標に CAD システム の構築 [12–14] を検討した.細胞核の形状特徴 量 [12] や形状特徴の局所的なバイナリパター ンを追加した特徴量 [13] の検討報告があるもの の,倍率が上がったとしても観察されるパター ンはポリープ表面のテクスチャであることから マルチスケールのテクスチャ特徴量を採用する に至った [14].分類には SVM を採用し,特徴 空間における識別境界かクエリまでの距離に基 づいたカテゴリに属する尤度 [20] を推定して いる. 伊東らは約400-1000症例程度の超拡大内視 鏡画像2万枚を用いて、深層学習による特徴抽 出の初期検討[15,16]を行った.しかしこの規 模のデータセットは深層学習ベースの大規模学 習には不十分であり、データセット拡充の必要 性を主張した.伊東らはマルチスケールのテク スチャ特徴量と深層学習モデルの浅い層より得 られる特徴量に対する特徴選択法[17,18]も検 討している.

野里らは病理組織画像から高次相関局所特徴 量 [21] を抽出し、正常な細胞とがん細胞それぞ れを表す特徴ベクトル集合が張る2つのカテ ゴリ部分空間を直交化させることで特徴選択を 行っている [22]. 一方, 伊東らは超拡大内視鏡 画像からマルチスケールの Haralick 特徴量 [23] を抽出し、2カテゴリの線形部分空間同士のグラ スマン距離を最大化することで特徴選択を行っ ている[17,18]. このグラスマン距離最大化で は期待値の意味で2カテゴリの線形部分空間が 直交する最小次元の特徴空間を求めている.野 里らの特徴選択では一方のカテゴリの線形部分 空間の補空間にもう一方の特徴量を射影するこ とで直交化を行うが,伊東らの特徴選択は直交 化において学習データに共通でありかつ分類に 寄与しない成分を除去する.したがって、学習 データが単一の施設により得られたものであっ たとしても、特徴選択により高い汎化性能が得 られる.

表1 ResNetの構成. 各 residual unit は文献 [6] の building block の構成に準拠. カーネルサイ ズの削減時には Residual unit 内にて線形写像 を用いてサイズ調整を行った. Weight decay は 0.00001 とした. パラメータ数は総計 1,228,034 個. 最終層は出力数 2 の softmax 関数とした.

Layer name	Architecture							
conv1	3×3 , 64, stride 2×2							
	max pooing, stride 2×2							
	$\begin{bmatrix} 3 \times 3, & 64 \end{bmatrix} \times 1$							
conv2_x	$\begin{bmatrix} 3 \times 3, & 64 \end{bmatrix}^{\times 1}$							
2000V ² V	$\begin{bmatrix} 3 \times 3, 128 \end{bmatrix} \times 1$							
conv5_x	$\begin{bmatrix} 3 \times 3, 128 \end{bmatrix}^{1}$							
conv1 v	$[3 \times 3, 256] \times 1$							
conv4_x	$3 \times 3, 256 \times 1$							
global aver	age pooling, 256-dimensional fc layer							

3. 手法

深層学習手法として CNN [1,2,5] ならびに Residual Neural Network (ResNet) [6] を利用す る. CNN は AlexNet [2] をベースに超拡大大 腸内視鏡画像の分類に最適化された 3 層の構 成 [15,16] を利用する.上記の 3 層 CNN にお ける畳み込み層を residual unit [6] に置き換えた ものを ResNet の構成として利用する.図 2 お よび表 1 がそれぞれ CNN と ResNet のネット ワーク構成を示す.非深層学習手法としては、マ ルチスケールでテクスチャ特徴量を抽出し、線 形 SVM ならびに Platt 尤度推定に基づく分類手 法 [17,18] を利用する.

4. 実験

1) データセット構築

実験においては IRB 承認済みの 2 種類のデー タセットを利用した.ひとつはある 1 施設の通 常診察時に収集された超拡大大腸内視鏡画像集 合である.もうひとつは 3 つの他施設における 通常診察時に収集された超拡大大腸内視鏡画像 集合である.これらを EC 染色画像データセット および他施設データセットと呼称する.画像収 集においては染色液でコントラスト強調を行っ た上で,ポリープそれぞれに対して表面に接着 した超拡大内視鏡の位置を少しずつ移動させな がら 10 枚から 200 枚ほどの撮影を行った.こ れらの収集した画像には生検・病理診断を経て

表2 EC 染色画像データセット

	学習	検証	テスト	計
腫瘍 [枚]	26,462	3,213	3,262	32,937
非腫瘍 [枚]	13,180	1,592	1,638	16,937
計 [枚]	39,642	4,805	4,900	49,347
計 [症例数]	2,822	342	349	3,513

表3	他施設デー	タセット.	3 つの病	ī院 A, B	,そ
して	C それぞれに	こおける腫	瘍・非腫	瘍画像0	つ内
訳を	示す.				

	A	В	С	計
腫瘍 [枚]	2,907	231	827	3,965
非腫瘍 [枚]	443	29	190	662
計 [枚]	3,350	260	1,017	4,627

腫瘍・非腫瘍ラベルのアノテーションを施した. 表2および3は2つのデータセットにおける画 像数の内訳を示す.表2の症例数はデータセッ ト全体の症例数のみを把握しているため,学習・ 検証・テストデータの症例数は画像数の比と対 応するように算出した.

EC 染色画像データセットは症例レベルで重 複がないように学習・検証・テストデータの3 つに分割した.検証・テストデータの構成にお いては実臨床における腫瘍・非腫瘍のパターン の分布の分散を反映した構成となるように,熟 練内視鏡医2名に選別を依頼した.さらに,診 断に不適切である染色失敗である画像は検証・ テストデータからは除去した.

2) 深層学習手法の学習

EC 染色画像データセットを 1/2, 1/4, そして 1/8 の画像数となるように更に分割を行った.分 割に際して症例数も画像数に比例するように,撮 影日時に基づいて行った.これら 3 つの症例数 が削減された学習データとすべての症例数を含 む元の学習データを用いて CNN の学習を行っ た.バッチサイズは 1024, エポック数は 300,学 習データは事前に 30 度ずつ回転させて 12 倍に データ拡張した上で,ミニバッチごとにランダ ムに左右上下の反転を加えて学習させた.デー タ拡張を含めると 4 種類の学習データの総画像 数は約 143 万,72 万,36 万,そして 18 万枚程度 となる.基本学習率は 0.00001 からはじめ,100, 150,200 そして 250 エポックにて逐次 1/10 倍の

図23層CNNの構成. 学習時には畳み込み層それぞれにバッチ正規化 [24] を, 全結合層には dropout [25] を利用した. 活性化関数には Leaky ReLu (負領域の勾配は 0.3) [26] を用いた. パラメータ数は総計 529,794 個. 最終層は出力数2の softmax 関数とした.

値に再セットし, He の初期化 [28] と Adam [27] を利用して学習させた.図3は各学習過程にお ける各エポックごとの学習・検証データに対す る分類精度(accuracy)の推移を示す.図4は 学習データの症例数に対する学習済み CNN モ デルの学習・検証・テストデータにおける分類 精度を示す.分類精度はデータ全体のうち正し いカテゴリに分類できた画像の割合を指す.

ResNet の場合はすべての学習データを用い, CNN の場合と同様に事前・オンラインのデー タ拡張を利用した. バッチサイズは 512, エポッ ク数は 250, 基本学習率は 0.00001 からはじめ, 100, 150 そして 250 エポックにて逐次 1/10 倍 の値に再セットし, He の初期化と Adam を利用 した学習を行った.

どちらの場合も入力は 179×179pixel の RGB カラー画像とし、実装には TensorFlow バックエ ンドの Keras [29] を用いて Nvidia 製 GPU V100 (32GB) を 1 枚利用して計算した.

3) 非深層学習手法の学習

EC 染色画像データセットの学習・検証デー タセットを合わせて SVM 用の学習データとし た. この学習データを 1/2, 1/4, 1/8 の画像数・症 例数となるように再分割を行った. 計4 種類の 学習データそれぞれに対して5分割交差検定を 行い, グリッドサーチによる線形 SVM のハイ パーパラメータの最適値を求めた上でそれぞれ の学習を行った. SVM の学習には LibSVM [30] を利用した.

4) 学習済みモデルの比較

4 つの学習済み CNN モデル, 1 つの学習済 み ResNet モデル, そして 4 つの学習済み SVM モデルを用いて EC 染色画像データセットおよ び他施設データセットのテストデータに対する 分類を行った.評価指標として感度・特異度 (sensitivity・specificity)を用いた.腫瘍ならび に非腫瘍をそれぞれ陽性と陰性とおくとき,感 度と特異度はテストデータを分類した際の腫瘍 における真陽性の割合と非腫瘍における真陰性 の割合を指す.図5 がテストデータに対する各 モデルの分類の ROC 曲線を示す.

5. 考察

図3(a)では学習初期より終了時まで一貫して 学習データと訓練データにおける分類精度に乖 離が存在する.しかも訓練データにおける分類 精度エポックごとの上下も大きい.この結果は パターン全体を表す特徴量の深層学習には、学 習データの症例数が完全に不足していることを 示す.図3(b)では学習初期の学習データと訓 練データにおける分類精度乖離はないが、20エ ポック付近から2つのデータ間における分類精 度の乖離が始まる.図3(c)では図3(a),(b)より も分類精度の向上が確認できるものの、やはり 10-20エポック付近で学習データと検証データ における分類精度の乖離が始まる.図3(d)では 学習データと検証データの分類精度の差は僅か であり、100エポック付近まではほぼ一致して

図 3 CNN の学習過程における学習・訓練データに対する分類精度. (a)-(d) はそれぞれ 1/8, 1/4, 1/2 そしてすべての学習データを用いた場合の学習における分類精度を示す. (a)-(d) における学習に用いた データに含まれる症例数はそれぞれ 353, 706, 1411 そして 2822 である.

図 4 学習データの症例数と学習済み CNN モデ ルの分類精度.

いる.理想的な学習データで学習を行った場合, 学習データと検証データの分類精度を表す曲線 は一致するか,検証データの分類精度がやや上 となることが想定される.約2800症例程度が あれば,完全ではないものの,本問題に関して十 分な学習データであると考えられる.

図4の示す学習データにおける症例数と学習 済みモデルの分類精度の関係より,約2800症 例の2倍から4倍程度の症例数があれば,学習 データと検証データの分類精度はほぼ一致する と予想される.学習データ内の症例数が1400程 度以上では検証・テストデータにおける分類精 度がほぼ一致していることから,検証・テスト データが合わせて約1400症例程度のパターン の分散をよく表していることも伺える.

図 5 ではいずれの手法においても, 腫瘍カテ ゴリの画像数が多いためか, 感度重視の学習済 みモデルとなってる. 図 5(a) において, 学習デー タにおける症例数が約 350-1400 程度では感度・ 特異度はともに非深層学習手法の方が高いもの の, 学習データの症例数が約 2800 程度となると 深層学習手法の方が高い評価値となる. 図 5(b) は学習データにおける症例数が約 2800 程度の 場合の学習済み CNN, ResNet そして SVM にお ける他施設データセットの分類結果である. 図 5(a) とは対照的に, 図 5(b) の結果は非深層学習 手法である SVM の評価値が最も高く, ResNet の評価値が最も低い.

図 5 の比較結果は深層学習手法が学習データ における観測パターンをよく学習していること を示す一方, 汎化性能が十分でないことを意味 する. 統計量を元に定義されたテクスチャ特徴 量と SVM の場合, 学習データを収集した施設 と他施設の両方の分類精度で同程度の精度であ

図5テストデータに対するROC曲線. (a)EC染色画像データセット(b)他施設データセット. どちらの場合も,縦・横軸はそれぞれ感度および1から特異度引いた値を示す.

ることから、データドリヴンな特徴量抽出にお いて、学習に用いた施設データに由来する共通 のパターンも抽出していると考えられる.特に、 ResNet においては学習データをよく学習して いるため、学習データを収集した施設における 観測パターンのみに最適化された学習モデルと なっている.一般的には CNN よりも高い分類 精度を達成することで知られる ResNet ではあ るが、これらの実験結果は ResNet の汎化性能の 低さを明らかにした.

深層学習手法で抽出される特徴量が施設由来 の共通の特徴量を持っていると仮定するとき, この共通の特徴量を除去し,2つのカテゴリの 差のみをよく表す特徴量を選択することで汎化 性能の向上が期待できる.

6. まとめ

本稿では超拡大内視鏡画像の腫瘍・非腫瘍の 2 分類に対して、深層学習における学習データ の規模と分類精度の関係を調査した.さらにテ クスチャ特徴量抽出と SVM による分類との比 較を行い、抽出した特徴量の汎化性能をも調査 した.約2800症例からなる約4万枚の学習デー タにデータ拡張を併用することで、従来のハン ドクラフト特徴量と同程度の分類精度となる特 徴量抽出が深層学習にて行えることを確認した. 一方で、他施設データに対する汎化性能に関し ては特徴抽出・特徴選択に未だ改善の余地があることを確認した.

謝辞本研究の一部は JSPS/MEXT 科研費 (No. 26108006, 17H00867), 堀科学芸術振興財団そし て AMED (No. 18hk0102034h0103, 19hs01100 06h0003, 19lk1010036h0001) の支援を受けた。 利益相反 なし

文献

- Lecun Y, et al.: Gradient-based learning applied to document recognition, Proc. of IEEE, 86: 2278-2324, 1998.
- [2] Krizhevsky A, et al.: ImageNet Classification with Deep Convolutional Neural Networks, Proc. of NIPS, 1: 1097-1105, 2012.
- [3] Jia Y, et al.: Caffe: Convolutional architeture for fast feature embedding, arXiv:1408.5093, 2014.
- [4] Szegedy C, et al.: Going Deeper With Convolutions, Proc. CVPR, 2015.
- [5] Simonyan K, Zisserman A: Very Deep Convolutional Networks for Large-Scale Image Recognition, Proc. International Conference on Learning Representations: 2015.
- [6] He K, et al.: Deep Residual Learning for Image Recognition, Proc. CVPR: 770-778, 2016.
- [7] Kudo S-E, et al.: The Diagnosis of

Colorectal Tumors with Endocytoscopy (Japanese), Gastroenterological endoscopy, **55(4)**: 1510-1517, 2013.

- [8] Kominami Y, et al.: Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy, Gastrointestinal Endoscopy, 83: 643-649, 2016.
- [9] Tamaki T, et al.: Computer-aided colorectal tumor classification in NBI endoscopy using local features, Mediacal Image Analysis, 17(1): 78–100, 2013.
- [10] Wimmer G, et al.: Directional wavelet based features for colonic polyp classification, Medical Image Analysis, **31**: 16-36, 2016.
- [11] Tamaki T, et al.: Computer-Aided Colorectal Tumor Classification in NBI Endoscopy using CNN Features, Proc. Korea-Japan joint workshop on Frontiers of Computer Vision, 2016.
- [12] Mori Y, et al.: Novel computer-aided diagnostic system for colorectal lesions by using endocytoscopy, Gastrointestinal Endoscopy, 81(3): 621-629, 2015.
- [13] Mori Y, et al.: Impact of an automated system for endocytoscopic diagnosis of small colorectal lesions: an international webbased study, Endoscopy, 48(12): 1110– 1118, 2016.
- [14] Mori Y, et al.: Real-Time Use of Artificial Intelligence in Identification of Diminutive Polyps During Colonoscopy: A Prospective Study, Annals of Internal Medicine, 169(6): 357-366, 2018.
- [15] Itoh H, et al.: Classification of neoplasia and non-neoplasia for colon endocytoscopic images by convolutional neural network, IEICE Technical Report, **117**(220): 17-21, 2017.
- [16] Itoh H, et al.: Cascade classification of endocytoscopic images of colorectal lesions for automated pathological diagnosis, Proc. SPIE Medical Imaging, **10575**, 2018.
- [17] Itoh H, et al.: Feature-selection method based on Grassmann distance for the classification of neoplastic polyps on endocytoscopic images, IEICE Technical Report, 117(518): 51-56, 2018.
- [18] Itoh H, et al.: Discriminative Feature Se-

lection by Optimal Manifold Search for Neoplastic Image Recognition, Proc. ECCV workshps, **4**: 534-549, 2018

- [19] Vapnik VN: Statistical Learning Theory, *Wiley*, 1998.
- [20] Platt JC: Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods, Advances in large margin classifier: 61-74, 1999.
- [21] Kobayashi T and Otsu N: Image Feature Extraction Using Gradient Local Auto-Correlations, Proc. ECCV: 346–358, 2008.
- [22] Nosato H, et al.: Histopathological Diagnostic Support Technology using Higher-order Local Autocorrelation Features (Japanese), IPSJ SIG Technical Report, 2010-MPS-81(32): 161-164, 2009.
- [23] Haralick, RM, et al.: Textural Features for Image Classification, IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6): 610-621, 1973.
- [24] Ioffe S and Szegedy C: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Proc. International Conference on Machine Learning, **37**: 448–456, 2015.
- [25] Srivastava N, et al.: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Journal of Machine Learning Research, 15: 1929-1958,2014.
- [26] Maas AL, et al.: Rectifier Nonlinearities Improve Neural Network Acoustic Models, Proc. International Conference on Machine Learning, 2013.
- [27] Kingma DP and Ba J: Adam: A Method for Stochastic Optimization, Proc. International Conference on Learning Representations, 2015.
- [28] He K, et al.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, Proc. ICCV: 1026– 1034, 2015.
- [29] Chollet F, et al.: Keras, https://keras. io, 2105.
- [30] Chang C-C and Lin C-J: LIBSVM: A library for support vector machines, ACM Transactions on Intelligent Systems and Technology, 2(3): 27:1–27:27, 2011.

Experimental Evaluation of Relation between Dataset Size and Classification Accuracy in Deep Learning -Feature Extraction from Endocytoscopic Colorectal Images for Neoplasia Classification-

Hayato Itoh^{*1}, Masashi Misawa^{*2}, Yuichi Mori^{*2}, Masahiro Oda^{*1}, Shin-Ei Kudo^{*2}, Kensaku Mori^{*1,3,4}

*1 Graduate School of Informatics, Nagoya University
*2 Digestive Disease Center, Showa University Northern Yokohama Hospital
*3 Information Technology Center, Nagoya University
*4 Research Center for Medical Bigdata, National Institute of Informatics

A new modality, endocytoscope, can establish real-time pathological diagnosis of colorectal polyps. However, high-level knowledge and sufficient experiences are required of endoscopists for accurate endocytoscopic diagnosis. For the achievement of the real-time cost-effective endocytoscopic diagnosis, computer-aided diagnosis (CAD) system, which helps and educates trainee and non-expert endoscopists, has potential demands. Accurate image-pattern classifier has a core role in the CAD system. In the machine-learning approach for the construction of high-performance classifier, designing of large-scale training dataset has an essential role. In especially, this data design is critical role in deep learning, since the deep learning is a data-driven representation learning for feature extraction and classification of it. We explore the relation among the number of cases, the number of images, and classification accuracy in deep learning approach for recognition of colorectal neoplastic polyps.

Keywords: Colonoscopy, endocytoscope, pathological pattern classification, deep learning

CNN を用いた人工股関節全置換術術後 CT 画像からの

自動インプラント姿勢推定

阪本 充輝^{*1} 槇野 大樹^{*1} 大竹 義人^{*1} 日朝 祐太^{*1}

高尾 正樹*2 菅野 伸彦*2 佐藤 嘉伸*1

要旨

人工股関節全置換術において、カップ位置・角度といった置換されたインプラント姿勢の計測は術後評価 において重要な役割を果たす.従来,術後 CT 画像からの計測が行われているが、金属アーチファクトによ る画像の乱れが原因となり自動計測は容易ではなく、半自動での計測が行われてきた.しかし、我々が目 的としている大規模データセットでの人工股関節全置換術術後 CT 画像の解析には、高速かつ自動でイン プラント姿勢を推定する手法が求められる.そこで本研究では、CNN (Convolutional Neural Network)を用 いて術後 CT 画像から置換されたカップの角度を自動で推定する手法を提案する. キーワード: 姿勢推定, Convolutional Neural Network,術後 CT 画像

1. はじめに

人工股関節全置換術(THA)において,不適 切なカップ位置・角度はインピンジメントや脱 臼などの術後合併症を引き起こす要因となる ため[1],置換されたインプラント姿勢の計測は 術後評価において重要な役割を果たす.従来, 術後 CT 画像からの解析が行われているが,金 属アーチファクトによる画像の乱れが原因と なり自動解析は容易ではなく,半自動での解析 が行われてきた.しかし,大規模データセット での解析には高速かつ自動でインプラント姿 勢を推定する手法が求められる.Tompsonら[2] は CNN (Convolutional Neural Network)を用い て関節位置を推定し,を人体の姿勢を推定する

*1 奈良先端科学技術大学院大学先端科 学技術研究科情報科学領域 〔〒630-0192 奈良県生駒市高 山町 8916-5〕 e-mail: <u>sakamoto.mitsuki.si2@is.naist.jp</u> *2 大阪大学大学院 医学研究科 投稿受付: 2019 年 5 月 22 日 手法を提案している.本研究では CNN により, 設置されたカップの角度 (anteversion, inclination) (図1) を手動で推定する手法を提 案する.

図1カップ角度の定義

2. データセット

本研究では、大阪大学医学部付属病院で撮影 された 34 症例の THA 術後 CT 画像を用いる. CT 画像の Field of view は 360×360 [mm²],マ トリックスサイズは 512×512,スライス間隔は 1.0 [mm]である.

また, Murray ら[3]の定義に従い, それら 34 症例のデータにおいて手動で計測したカップ の角度データを使用した. 手動計測では, coronal 平面においてカップ径が最大となるス ライスで inclination を測定し, 同様の方法で axial 平面から anteversion を測定した.

3. 手法

図2に本手法のフローを示す.まず,THA 術後 CT 画像を入力として U-Net[4]によりカップ の辺縁を示すヒートマップを推定する.その後, ヒートマップの最大値の 80%を閾値として二 値化した結果を用いて主成分分析を行い,その 第3主成分をカップの法線ベクトルとするこ とで,カップの角度を推定する.

4. 実験

4.1 実験概要

CT 画像から閾値(2000HU)により抽出したイ ンプラントと CAD モデルを位置合わせするこ とで学習データを作成した.

U-Net の学習には閾値により抽出したマトリ ックスサイズ 128×128, スライス間隔 1.0 [mm] の画像を 34 症例使用した. 画像データセット は 2-fold に分割し, 交差検証により U-Net の学 習を行った.

4.2 実験結果

手動計測と提案手法により計測したカップ 角度の差を示した box plot と誤差が最も大きか った症例,最も小さかった症例,中央値を示し た症例を anteversion と inclination それぞれにつ いて図 3 に示す.

\mathbf{r}	表	1	手動	と	提案法	での	力	ップ	`角	度	の	計	測	\mathcal{O}	差
---	---	---	----	---	-----	----	---	----	----	---	---	---	---	---------------	---

anteversion[deg]	Inclination[deg]
(median)	(median)
1.57	1.76

図 3 手動計測と提案手法でのカップ角度の差. 赤線:手動,青線:提案手法による法線ベクトル.

5. 考察

図 4 U-Net でのヒートマップ推定例. 左:DRR 画像,右:閾値処理後のヒートマップ

anteversion, inclination についてそれぞれ手動 と手法によるカップ角度の計測誤差が中央値 を示した症例と最も大きかった症例での U-Net からのヒートマップの推定結果を図 4 に示す. anteversion について最も誤差が大きい場合はカ ップの辺縁を正常に認識できないケースであ った. U-Net からのヒートマップの予測値が低 く閾値処理の際に多くの点が失われたことが 原因と考えられる. inclination ではボルトを誤 認識したケースで最も誤差が大きかった. カッ プ辺縁から離れた位置にヒートマップが推定 されることで誤った角度が推定された.

6. まとめ

本研究では U-Net によりヒートマップを推定 し、主成分分析を用いることでカップの姿勢を 推定し、手動計測との結果と比較を行った. ヒ ートマップの推定が正常に行われないケース が見られたためセグメンテーションと姿勢推 定を同時に行うマルチタスクによる手法や 3D U-Net[5]による推定を行う予定である.

また,今後は提案法を大規模データセットへ 適応し,解析を進めていく予定である.

謝辞

本研究の一部は, KAKENHI 19H01176 および KAKENHI 26108004 の支援による.

利益相反の有無

なし

文 献

- [1] Yamada K, Endo H, Tetsunaga T, et al.: Accuracy of cup positioning with the computed tomography-based twodimensional to three-dimensional matched navigation system: a prospective, randomized controlled study. J Arthroplasty 33(1):136–143, 2018
- [2] Tompson J, Jain A, LeCun Y, et al. : Joint training of a convolutional network and a graphical model for human pose estimation. In Advances in neural information processing systems (pp. 1799-1807), 2014.
- [3] Murray D. W. The definition and measurement of acetabular orientation. The Journal of bone and joint surgery. British volume, 75(2), 228-232. 1993
- [4] Ronneberger O, Fischer P, Brox T, U-net: Convolutional networks for biomedical image segmentation. MICCAI 234-241, 2015 Springer, Cham
- [5] Çiçek Ö, Abdulkadir A, Lienkamp S. S., Brox, T., & Ronneberger, O.et al.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. MICCAI 424-432, 2016 Springer, Cham. 2016

Automatic implant orientation estimation from CT images after total hip

arthroplasty using CNN

Mitsuki SAKAMOTO^{*1}, Hiroki MAKINO^{*1}, Yoshito OTAKE^{*1}, Yuta HIASA^{*1} Masaki TAKAO^{*2}, Nobuhiko SUGANO^{*2}, Yoshinobu SATO^{*1}

*1 Graduate School of Information Science, Nara Institute of Science and Technology
 *2 Graduate School of Medicine, Osaka University

In total hip arthroplasty, the implant orientation properties, such as cup position and angle, play an important role in the evaluation of surgical outcome. Conventionally, estimation has been performed based on postoperative CT images. As metal artifacts caused by the implant degrade the image quality, the automatic estimation is not easy, thus a semi-automatic estimation is usually performed. However, for analysis on a large-scale data set, a fast and automated method to analyze the implant orientation is required. In this study, we propose an automated method to estimate implant orientation such as cup angle from postoperative CT image using Convolutional Neural Network (CNN).

Key words: Convolutional Neural Network, Postoperative CT image, orientation estimation

MR 圧縮センシングにおける ADMM-Net を利用した 深層学習再構成の検討

植松 駿*1, 伊藤 聡志*1

要旨

本研究では、ADMM-Net を利用した MR 圧縮センシングの深層学習再構成について検討を行った. 臨床で多く使用され るカルテシアン座標系を使用し、必要なステージ数、および学習用 MR 画像とテスト用モデルが同一種の場合と別種の 場合の画質評価を行った. 結果、15 ステージで良好な結果が得られ、また、同種の画像を学習させるとより高画質の再 構成像が得られた. 反復再構成との比較では、ADMM-Net において極めて短い再構成時間で高い PSNR と SSIM の値を得 ることができた. ADMM-Net は圧縮センシングの再構成手法として優れた性能を有していることが示された.

キーワード: 圧縮センシング, 交互方向乗数法(ADMM), 深層学習

1. はじめに

核磁気共鳴現象を利用した生体映像法 (Magnetic Resonance Imaging: MRI)による診断画 像を医療現場で使用する場合は,画質は高い方 が良いが,そのためには一般的に長時間の撮像 が求められるトレードオフの関係がある.圧縮 センシング(Compressed Sensing: CS)[1]を MRI に 応用した圧縮センシング MRI(CS-MRI)[2]は、サ ンプリング定理を満たさない少数の信号から良 質な MR 画像を再構成できる方法であり,信号 収集量を減らすことができるため効果的に撮像 時間の短縮が可能となる.

一般的に, CS-MRI は MR 信号の推定誤差に L2 ノルムを与え, その条件のもとで L1 ノルム最小 化問題を解く[2][3]. CS-MRI において, データの 正則化を事前に行うことは画質を改善するため の重要な手法であり, さらに圧縮センシングの 理論において,信号にスパース性を与えること もまた,再構成像上のアーティファクトを除去 するために重要な要素である[3].

CS-MRIの最小化問題を解く方法として、収束 保証を伴う変数分割アルゴリズムである交互方 向乗数法(Alternating Direction Method of Multipliers: ADMM)が提案された[4][5]. L1 ノルム最小化 問題の解法として一般的に知られる反復的ソフ ト閾値法に比べて良質な画像を再生できると報 告されている.しかしながら、再構成の性能と時 間に影響を与える最適パラメータを決めるのは 必ずしも容易ではない.

一般的に CS-MRI においてスパース化関数や 正則化の方法は経験的に選択されることが多い が, MR 画像再構成の精度および再構成時間を考 慮すると, 必ずしも最適な選択とは言えない. 最 適なスパース化関数や正則化の方法も撮像対象 に依存することも想定される.

近年, CS-MRI の再構成に深層学習を利用して 行う研究が注目されている.深層学習を用いた MR 画像の再構成は,従来の反復的解法よりも高

^{*1} 宇都宮大学 大学院地域創生科学研究科 工農総合科学専攻 情報電気電子システム工学プログラム [〒321-8585 栃木県宇都宮市陽東 7-1-2] e-mail: mc196809@cc.utsunomiya-u.ac.jp

速,かつ高画質である報告が行われており [6][7][8], 圧縮センシングの画像再構成への応用 に期待が高まっている.

間引きを行った MR 信号から良質な画像を再 構成するための,高速かつ高い精度を有する方 法に,ADMM の反復手順を参考にした深層学習 再構成である ADMM-Net が提案されている[6]. ADMM-Net は間引いた MR 信号空間を入力とし, 再構成された MR 画像を出力とする CNN で構成 されている. ADMM-Net は,反復再構成をモデ ルとしているが,各反復ステップにおける重み やスパース化関数の係数を学習により調整でき る柔軟な構造となっている.そのため,反復再構 成に比べて高精度の再構成が期待される.

ADMM-Net においてラジアルスキャンの CS-MRI について検討が行われているが,臨床で最 も多く使用されるカルテシアンスキャンについ ての検討は行われていない.そこで,本研究では, カルテシアンスキャンによる 2 次元撮像の CS-MRI に ADMM-Net を応用し,ステージ数や再構 成像の品質ついて検討を行った.また,MRIのプ ロトン密度,T₂の特徴量に対し学習画像と同種の 場合と別種の場合とでの再構成性能を比較し, 学習画像とテスト画像の関係について検討を行 った.

2. ADMM-Net

2.1. 交互方向乗数法 (ADMM)

圧縮センシングとは、信号がスパース性を満 たすとき、サンプリング定理を満たさない少数 の信号から元の信号を再構成する技術である. この手法を MRI に応用することにより、MR 信号 空間の信号の格納を間引くことが可能となり、 撮像時間の短縮化が図れる. xを推定した再構成 像、yを MR 信号空間の間引き信号とする.間引 きを行う関数をU,フーリエ変換をF,スパース 性を促す関数をΨとするとき,再構成像は式(1) の最適化問題を解くことで推定される.ここで, λは正則化パラメータである.

交互方向乗数法(ADMM)は、二つの関数を含む 最適化問題に対して、新たな変数と制約条件を

$$\underset{x}{\operatorname{argmin}} \left\{ \frac{1}{2} \| UFx - y \|_{2}^{2} + \lambda \| \Psi x \|_{1} \right\}$$
(1)

加え, 拡張ラグランジュ法を利用する方法である[9]. 式(1)において, ADMM では変数 $z = \{z_1, z_2, \cdots, z_L\}$ と制約条件を加えた以下の最適化問題を求める.

$$\underset{x,z}{\operatorname{argmin}} \left\{ \frac{1}{2} \| UFx - y \|_{2}^{2} + \sum_{l=1}^{L} \lambda_{l} \| z_{l} \|_{1} \right\}$$

s.t. $z_{l} = \Psi_{l} x, \ \forall l \in \{1, 2, \cdots, L\}$ (2)

式(2)に拡張ラグランジュ法を適用する(式(3)).

$$L_{aug}(x, z, h) = \frac{1}{2} \|UFx - y\|_{2}^{2} + \sum_{l=1}^{L} \{\lambda_{l} \|z_{l}\|_{1} + (h_{l})^{T} (\Psi_{l}x - z_{l}) + \frac{\mu_{l}}{2} \|\Psi_{l}x - z_{l}\|_{2}^{2} \}$$
(3)

ここで、 μ_l を罰金項の係数とすると、新たに導入 した変数zと元の変数x、およびラグランジュ未 定乗数hを以下のように更新する.

$$\begin{cases} x^{(n)} = \underset{x}{\operatorname{argmin}} L_{aug}(x^{(n-1)}, z^{(n-1)}, h^{(n-1)}) \\ z^{(n)} = \underset{z}{\operatorname{argmin}} L_{aug}(x^{(n)}, z^{(n-1)}, h^{(n-1)}) \\ h^{(n)} = h^{(n-1)} + \mu_l(\Psi_l x^{(n)} - z_l^{(n)}) \end{cases}$$
(4)

ここで, nはn回目の反復を示す. このように変 数を分割して最適化を行う方法が ADMM であ る.

2.2. ADMM-Net の構造

本研究で使用する ADMM-Net[6]は上記に示した ADMM から構成される. ADMM の式(4)から式(5)が導かれる.ここで、 η_l は更新係数、 $\beta_l = h_l/\mu_l$ としており、 $Z^{(n)}$ ではソフト閾値関数 S_{α} (·)が用いられる.

$$\begin{cases} X^{(n)}: x^{(n)} = F^{T} \left(U^{T} U + \sum_{l=1}^{L} \rho_{l} F \Psi_{l}^{T} \Psi_{l} F^{T} \right)^{-1} \\ \left\{ U^{T} y + \sum_{l=1}^{L} \rho_{l} F \Psi_{l}^{T} \left(z_{l}^{(n-1)} - \beta_{l}^{(n-1)} \right) \right\} \\ Z^{(n)}: z_{l}^{(n)} = S_{\lambda_{l}/\rho_{l}} \left(\Psi_{l} x^{(n)} + \beta_{l}^{(n-1)} \right) \\ M^{(n)}: \beta_{l}^{(n)} = \beta_{l}^{(n-1)} + \eta_{l} \left(\Psi_{l} x^{(n)} - z_{l}^{(n)} \right) \end{cases}$$
(5)

ADMM-Net の構造を図 1 に示す. この図は, ADMM による式(5)の異なる処理に対応する層 と,処理間に対応する矢印で表される. また, ADMM のn回目の反復はn番目のステージに対 応し,n番目のステージには,再構成層 $(X^{(n)})$, 畳込み層 $(C^{(n)})$,非線形変換層 $(Z^{(n)})$,乗数更新 層 $(M^{(n)})$ からなる4 種類の層により構成される. 図 1 の ADMM-Net の全体の流れは,間引いた MR 信号空間を入力すると,上記の 4 種類の層 からなるステージをN回繰り返し,最終的に再 構成層 $(X^{(n+1)})$ により再構成された MR 画像を 出力する.本研究では,畳込み処理で用いられる フィルタには3×3の離散コサイン変換を基本と したもの,パラメータの更新手法は Adam[10]と して検証を行う.

3. 画像再構成実験

3.1. 再構成実験に使用した MR 画像

本研究では、一般に公開と使用が許可されて いる IXI Dataset [11]に含まれる256×256画素の 頭部 MR 画像を再構成実験に使用した. IXI Dataset には、Information eXtraction from Images プロ ジェクトの一環として、ロンドンの 3 つの医療 機関から集められた健全な被験者 600 人分の MR 画像が含まれている. 学習に使用する画像は、 IXI Dataset のプロトン密度強調像(以下, PDWI)、 T₂強調像(以下, T₂WI)からそれぞれ 200 枚を選別 し、テスト画像は学習用画像と重複の無い 25 枚 をそれぞれ選別した.

図1 ADMM-Net の構造

3.2. 学習用データセット

本研究では, IXI Dataset の MR 画像をフーリエ 変換することで数値的に合成した MR 信号空間 から,カルテシアン座標系を用いて間引き処理 を行っている.図2の信号収集パターンは,中心 部に近い領域を重点的に収集した位相エンコー ド方向ランダム間引き法を適用している.なお, 収集する信号量は 30%である.学習用画像に対 して,図2の信号収集パターンを用いた間引き MR 信号空間と,全信号による MR 画像との学習 データ対を作成し,学習を行った.

図2 信号収集パターン

3.3. 画像再構成

本研究で使用した計算機環境を表 1 に示す. テスト用 MR 画像に対し, ADMM-Net と従来法 として ADMM を利用した反復的解法である C-SALSA-B[12]を使用し, 再構成性能の比較を行っ た. ここで, C-SALSA-Bのスパース化関数にはウ ェーブレット変換(Daubechies, N=3)を適用して いる. 再構成実験において, 学習するモデルによ る再構成性能の依存度を調べるために,以下の2 通りの学習モデルを使用した.

- 1. 200 枚の PDWI を学習(モデル P)
- 2. 200 枚のT₂WI を学習(モデルT₂)

テスト用 MR 画像である PDWI, T_2 WI それぞれ において、学習モデルを変更した場合における ADMM-Net と、C-SALSA-B における性能評価を 行った. ここで、学習には CPU と GPU、テスト には CPU のみを用いた.学習時間は両モデルと も約 16 日であった.また、評価方法にはピーク 信号対雑音比(Peak Signal-to-Noise Ratio: PNSR), および両画像間で対応する局所領域内での輝度 値やコントラスト、構造の相似性を評価する SSIM(Structural SIMilarity index)[13]を使用した.

CPU	Intel Core i7-8700 (3.2GHz)
GPU	NVIDIA GeForce GTX1070Ti
RAM	32GB (DDR4-2400)
Software	MATLAB R2017b
	CUDA Toolkit 9.0 / cuDNN 7.0.5

ADMM-Net におけるステージ数による PSNR と SSIM を比較した. それぞれの平均値を図 3 に 示す. なお, モデル P で使用した 200 枚の PDWI から選別した 25 枚で学習を行っており, テスト 画像は学習画像と重複の無い 25 枚としている. 図 3 より, ADMM-Net はステージが増加するほど 良好な結果を示した. 本研究では, 十分なステー ジ数として 15 を選び, 学習画像とテスト画像の 関係について検討を行った.

テスト画像を PDWI として、学習モデルを変 更した場合の ADMM-Net,およびC-SALSA-Bに より得られた再構成像を定量的、および定性的 に比較した.このときの PSNR と SSIM の平均値 を表 2 に示す.ここで、ADMM-Net における画像 再構成において、モデル P、モデルT₂により得ら

図3 ステージ数ごとの PSNR と SSIM

表2 PDWI 再構成像の評価値

再構成法	PSNR[dB]	SSIM
DL_P→P	35.16	0.9757
$DL_T_2 \rightarrow P$	35.12	0.9756
C-SALSA-B	30.93	0.9507

れた PDWI 再構成像をそれぞれ DL_P→P, DL_T₂ $\rightarrow P$ と称する. 表 2 より, DL P $\rightarrow P$ は DL T₂ $\rightarrow P$ に比べて、PSNR、SSIM の面で高い値を記録して いた. また, ADMM-Net は C-SALSA-B に比べて, どちらの学習モデルの場合でも評価値が高い結 果となった. 図 4 に PDWI 再構成像の例を示す. なお, 拡大画像はコントラストをわかりやすく するための調整を行っている. 図 4 における再 構成像の拡大画像より、C-SALSA-B による再構 成像にはアーティファクトが残留していた. ADMM-Net による再構成では平滑化の程度が大 きい再構成像となったが、C-SALSA-B よりも目 標画像の特徴を有していることが確認できる. ADMM-Netによる再構成像2種の比較において、 同種の画像を学習した DL P→P が,赤矢印で示 す画像中央の黒い部分のコントラストの表現が 他の方法に比べて良好である.

次に、テスト画像を T_2 WI として、学習モデル を変更した場合の ADMM-Net、および C-SALSA-B により得られた再構成像を比較した. このときの PSNR と SSIM の平均値を表 3 に示 す. ここで、ADMM-Net における画像再構成にお

いて,モデルP,モデルT2により得られたT2WI再 構成像をそれぞれ DL P→T₂, DL T₂→T₂と称す る. 表 3 より, DL $T_2 \rightarrow T_2$ は DL P $\rightarrow T_2$ に比べて, PSNR, SSIM の面で高い値を記録していた. また, ADMM-NetはC-SALSA-Bに比べて、いずれの学 習モデルの場合においても高いPSNRとSSIMが 得られた. 図 5 にT₂WI 再構成像の例を示す. な お, 拡大画像はコントラストをわかりやすくす るための調整を行っている. 図 5 における再構 成像の拡大画像より、テスト画像を PDWI とし た場合と同様に C-SALSA-B から得られる再構 成像にはアーティファクトが残留した. ADMM-Net による同種と別種の再構成像を比較すると、 同種の画像を学習した DL T₂→T₂において,赤 枠部で示す画像中央左上の黒い線が明瞭に描出 された.

再構成に要する時間を比較すると, ADMM-Net の再構成時間の平均は約0.74秒, C-SALSA-Bで は約19.92秒であり, ADMM-Netの再構成に要す る時間はC-SALSA-Bの約1/25倍と極めて短時 間で行うことができた.以上より, ADMM-Netは C-SALSA-Bに比べて短い再構成時間で, かつ高 い精度の画像を再生できる可能性が示された. また, ADMM-Netにおいて, テスト画像と同種の 画像を学習させることがより効果的であること が示唆された.

4. 考察

ADMM-Net において、テスト画像と同種の画像を学習させることがより効果的であったが、 それぞれ別種の場合における再構成像の評価値を比較してみると、テスト画像が PDWI の場合では大きな差はなく、 T_2WI とした場合の方が差が大きかった.このことから、学習画像とテスト画像の関係において、 T_2WI の方が効果的であると考える.また、本研究で使用した IXI Dataset の

表3 T₂WI 再構成像の評価値

再構成法	PSNR[dB]	SSIM
$DL_P \rightarrow T_2$	33.40	0.9751
$DL_T_2 \rightarrow T_2$	33.64	0.9759
C-SALSA-B	30.06	0.9566

MR 画像において, モデル P とモデルT₂で用いら れる学習画像は, それぞれランダムに 200 枚選 んでいる.しかし, IXI Dataset に含まれる PDWI とT₂WI には同じ被験者での撮像面のみが異なる MR 画像があり,この撮像面が一致している画像 をそれぞれ 200 枚選別して学習を行い,本研究 で検証したランダム選択の場合との再構成性能 と比較,検討していく必要があると考える.

本研究で,反復的解法として使用した C-SALSA-Bは100回の反復を行っている.ADMM-Net は15 ステージとしており,これは反復的解 法における15回の反復に相当する.そのため, ADMM-Net の方が再構成時間を短縮できたと考 える.ADMM-Net の方が反復的解法よりも高い 評価結果が得られた点に関して,反復的解法は 反復ステップで使用する重み係数の値を経験的 に与え,かつ固定して使用している.それに対し, ADMM-Net で用いられる重み係数は,学習によ ってステージごとに誤差を軽減する方向に更新 される.これより,少ないステージ数でもステー ジごとに適した重み係数を使用しているので高 い精度で画像再構成を行うことができると考え る.

5. まとめ

本研究では、ADMM-Net を利用した MR 画像の深層学習再構成について検討を行った.従来 法である反復的解法と比較した結果、高い PSNR と SSIM を示したことから、医用画像で重要とな るコントラストや構造的な特徴の復元性能が高 く,また学習には時間を要するものの再構成処 理は高速であることが示された.また,テスト画 像と同種の画像を学習させることが有効である ことが示唆された.今後は,新たな学習モデルの 組み合わせに関する検証や ADMM-Net のステ ージ数をさらに増加させた場合における検証を 通じて,再構成性能の改善を図る予定である.

謝 辞

本研究の一部は、科学研究費助成金(16K06379, 19K04423)により実施された.また、本研究を遂 行する際に利用した IXI Dataset を提供する Information eXtraction from Images プロジェクトに 感謝の意を表します.

利益相反の有無

なし

文 献

- D.L.Donoho, "Compressed sensing," IEEE Transactions on Information Theory, vol.52, no.4, pp.1289-1306, 2006
- [2] M.Lustig, D.L.Donoho, J.M.Santos, J.M.Pauly, "Compressed Sensing MRI," IEEE Signal Processing Magazine, vol.25, no.2, pp.72-82, 2008
- [3] M.Lustig, D.Donoho, J.M.Pauly, "Sparse MRI: The application of compressed sensing for rapid MR imaging," Magnetic Resonance in Medicine, vol.58, no.6, pp.1182-1195, 2007
- [4] S.Boyd, N.Parikh, E.Chu, B.Peleato, J.Eckstein, "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers," Foundation and Trends in Machine Learning, vol.3, no.1, pp.1-122, 2010
- [5] Y.Wang, W.Yin, J.Zeng, "Global Convergence of ADMM in Nonconvex Nonsmooth Optimization," arXive:1511.06324, 2015
- [6] Y.Yang, J.Sun, H.Li, Z.Xu, "Deep Admm-Net for Compressive Sensing MRI," Advances in Neural Information Processing Systems, pp.10-18, 2016.
- [7] Y.Yang, J.Sun, H.Li, Z.Xu, "ADMM-Net: A Deep Learning Approach for Compressive Sensing MRI," arXiv:1705.06869, 2017

- [8] J.Zhang, B.Ghanem, "ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing," arXiv:1706.07929, 2018
- [9] 大関真之、"「今日からできるスパースモデリ ング」、"http://www-adsys.sys.i.kyoto-u.ac.jp/m ohzeki/Presentation/lecturenote20150902.pdf
- [10] D.P.Kingma, J.Ba, "Adam: A Method for Stochastic Optimization," International Conference on Learning Representations, San Diego, 2015
- [11] IXI Dataset," https://brain-development.org/ixidataset/
- [12] Y.Liu, J.F.Cai, Z.Zhan et al., "Balanced Sparse Model for Tight Frames in Compressed Sensing Magnetic Resonance Imaging," PLOS ONE, vol.10, no.4, pp.1-19, 2015
- [13] Z.Wang, A.C.Bovik, H.R.Sheikh, E.P.Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE Transactions on Image Processing, vol.13, no.4, pp.600-612, 2004

図 4 PDWI 再構成像比較 : (a)目標画像, (b) DL_P→P, (c) DL_T₂→P, (d) C-SALSA-B, (e)~(h) それぞれ(a)~(d)の拡大画像

図 5 T₂WI 再構成像比較: (a)目標画像, (b) DL_P→T₂, (c) DL_T₂→T₂, (d) C-SALSA-B, (e)~(h) それぞれ(a)~(d)の拡大画像
Study on Deep Learning Reconstruction using ADMM-Net in MR Compressed Sensing

Shun UEMATSU^{*1}, Satoshi ITO^{*1}

*1 Graduate School of Regional Development and Creativity, Utsunomiya University

Study on MR image reconstruction using ADMM-Net as convolutional neural network(CNN) was executed. Learning of network was performed using MR PDWI (Proton Density Weighted Images) and T2WI(T2 Weighted Images) independently. Image reconstruction tests were performed for the two situations; one is that test image and training image are the same type and the other is different. Furthermore, CNN based ADMM-Net was compared to iterative reconstruction based on ADMM in the sense of accuracy of reconstructed images and reconstruction time. Simulation studies showed that learning is effective when the type of test image and learning is the same, and ADMM-Net provides higher PSNR and SSIM images in a short time compared to conventional ADMM iterative reconstruction. These results indicate that deep learning reconstruction using ADMM-Net is superior to ADMM iterative reconstruction, and the accuracy of reconstruction depends on the coincidence of image type used in learning and testing.

Key words: Compressed Sensing, ADMM, Deep Learning

Electron-Tracking Compton Camera を用いた異なるエネルギ

ー帯でのリストモード MLEM 画像の画質評価

稻垣 将史*1 尾川 浩一*1 谷森 達*2

要旨

Electron-tracking Compton camera (ETCC)は機械的なコリメータを使用せず,ガンマ線を観測することが可能 であり,空間的に自由な位置にカメラを設置して計測し3次元画像を再構成することが可能である.この ため,放射線治療装置と組み合わせて治療を行いながら,リアルタイムで治療部位などを観測可能である. 本研究では異なるエネルギーの光子を使用したときに,得られる再構成画像の画質を比較する.光子の発 生および被検体内での光子輸送計算にはGeantコードを用い,発生光子エネルギーは300 keV,511 keV, 4438 keV とし,実験系とほぼ同等のジオメトリでデータ収集を行うものとした.ファントムとしては定量 性を評価できる数値ファントムを用い,リストモード ML-EM 法を適用し画像再構成を行った.この結果, 高エネルギーでの再構成結果の方が低エネルギーでの再構成結果に比べて高画質の結果となり,単純な放 射能分布であれば低エネルギーでも再構成可能であることが確認できた. キーワード:電子飛跡追跡型コンプトンカメラ,モンテカルロシミュレーション,画像再構成,リストモ ード ML-EM 法

1. はじめに

ETCC では機械的なコリメータを使用せず, ガンマ線を観測することが可能であり,装置 自体も小型であるため,空間的に自由な位置 にカメラを設置して3次元画像を再構成する ことが可能である.このため,放射線治療装 置と組み合わせて治療を行いながら,リアル タイムで治療部位などを観測することが可能 である.一方で,どのようなエネルギー帯の ガンマ線を利用し画像再構成を行えば所望の 画質を得ることができるかは詳しく分かって いない.本研究では異なるエネルギー帯のガ ンマ線を使用したときに得られる画質を評価 する.

*1 法政大学大学院 理工学研究科
〔〒184-8584 小金井市梶野町 3-7-2〕
e-mail: masafumi.inagaki.9d@stu.hosei.ac.jp
*2 京都大学大学院 理学研究科

2. 方法

ETCC(図 1)では検出器1で得た電子の進行 方向とエネルギー, コンプトン散乱が発生し た座標と検出器2で得た光子の検出座標とそ のエネルギーを使用することで、検出器に入 射する光子の進行方向を算出する[1]. 図1で は ETCC を 2 台設置したシステムのジオメト リを示す.本研究ではガンマ線のエネルギー として 67Ga から発するガンマ線の 300keV, PET で用いる消滅ガンマ線の 511keV, 陽子線 治療時にカーボンから発生するガンマ線の 4438keV を想定したシミュレーションを行い, 結果を比較した.検出器1は20×20×20 cm³, 3 気圧の CF4 ガス検出器であり、検出器 2 は ピクセルサイズ 0.1×0.1 cm², 200×200 ピク セルの Nal シンチレーション検出器である. ファントムはボクセルサイズ 0.1×0.1×0.1 cm³, 128×128×128 ボクセルから構成され, 原点を中心とした半径 1.5cm の球(水媒質)の 中に(0.5, 0, 0)を中心とした半径 0.5cm の球が 存在するものを使用した.外側の球からは 300,000 個/ボクセル,内側の球から 1,500,000

個/ボクセルの光子を発生させた. 検出器のエ ネルギー分解能は 10.2 % @300 keV, 7.8% @511 keV, 2.7 % @4438 keV とし, ガス検出 器内で 10 keV 以上電離したときに電子を測 定可能とした.

光子輸送シミュレーションには Geant コー ドを使用し,実験系とほぼ同様のジオメトリ で測定を行った.画像再構成には以下の式(1) で表されるリストモード ML-EM アルゴリズ ムを使用した[2][3].

$$\lambda_{j}^{k+1} = \frac{\lambda_{j}^{k}}{\sum_{i=0}^{N} c_{ij}} \sum_{i=1}^{k} \frac{c_{ij}}{\sum_{j'=1}^{M} c_{ij'} \lambda_{j'}^{k}}$$
(1)

ここで λ_j^k は反復回数 k 回のピクセル j の画素 値, C_{ij} はピクセル j から放出された光子が検 出器 i で検出される確率であり, N は検出器 数, M はピクセル数である.

吸収補正は行なっていない.評価方法としては再構成画像と原画像の中央のラインプロファイルでの比較と、半径 0.3cm の球領域(112 ボクセル)の ROI 内の値で評価を行った.図2に比較する領域を示す.

図2 半定量評価で使用する ROI 領域

3. 結果

図 3 はリストモード ML-EM 法を用いて再 構成した x-y 平面の再構成画像である. (a)は 光子の発生比率を示した原画像であり, (b) は 300 keV, (c)は 511 keV, (d)は 4438 keV の 光子を使用したときの再構成画像である. ま た, 図 4 は再構成画像の中央部分のラインプ ロファイルを比較した図である. さらに, 表 1 に ROI 内の値を示す.

(a)原画像, (b)300 keV, (c)511 keV, (d)4438 keV

干約値で計りた値					
	B/A	C/A	D/A	E/A	F/A
300 keV	4.6	3.8	3.1	3.3	3.0
511 keV	4.5	3.8	3.1	3.2	3.5
4438 keV	4.6	4.0	3.7	4.4	4.6
True	5.0	5.0	5.0	5.0	5.0

4. 考察

図3より(b)では外側の球の形は確認することができるが、内側の球が少し崩れた結果になった.(c),(d)では内側の球の形を確認することができた.また、図4のラインプロファイルでも300 keVのときには原画像の値から離れている値が多く,値が安定していないが、511 keV,4438 keVでは比較的値が安定していた.表1の結果より ROI 値の比較をするとエネルギーを大きくすればするほど理論値に近付く結果となった.コンプトン散乱後の電子を検出する際にエネルギーが低い光子を使用したときの方が10keV以上電離するまでに多重散乱が生じるため、光子の進行方向に推定に誤りが生じてしまうことが再構成画像の劣化原因だと考えられる.

5. まとめ

本研究では異なるエネルギーの光子を使用 してシミュレーションを行い,画像再構成を 行った.単純なファントムであれば低エネル ギーの光子を使用しても再構成が可能である が,高エネルギーの光子を使用した場合の方 がより高精度な結果を得ることができること が確認できた.

利益相反の有無

なし

文 献

- [1] Tanimori T, Hattori K, Kabuki S, et al.: Advanced Compton camera with the ability in electron tracking based on micro pixel gas detector for medical imaging. IEEE Nucl Sci Sympo Conf Rec, 3380-3874, 2006
- [2] Reader A, Manavaki R, Zhao S, et al.: Accelerated list-mode EM algorithm. IEEE Trans Nucl Sci 49: 42-49, 2002.
- [3] Kim Y, Lee T, Lee W, et al.: Double-layered CZT Compton imager. IEEE Trans Nucl Sci 64: 1769-1773, 2017
- [4] Koide A, Kataoka J, Masuda T, et al.: Precision imaging of 4.4MeV gamma rays using a 3-D position sensitive Compton camera. Sci Rep 8: 2018

Quality of list-mode ML-EM images of different energies acquired with an electron-tracking Compton camera(ETCC)

Masafumi INAGAKI*1, Koichi OGAWA*1, Toru TANIMORI*2

*1 Graduate School of Engineering, Hosei University

*2 Graduate School of Science, Kyoto University

An electron-tracking Compton camera(ETCC) is a new modality to acquire gamma rays with two detectors: one is used for detecting the direction of a recoiled electron that is generated at the Compton scattering, and the other is used for detecting the scattered photon. Thus, it is not necessary to use a mechanical collimator that is commonly used in a conventional gamma camera. In addition, we can locate ETCCs at an arbitral position, and so we can use this modality at a clinical situation in a heavy ion radiation therapy. In this study, we evaluated the quality of images acquired with two ETCCs as regard with gamma rays of different energies (300, 511, and 4438 keV). Image reconstruction was performed with a list-mode ML-EM algorithm and the Geant code was used for the transportation of photons and electrons in a simple numerical phantom and ETCCs. We assumed the geometry in reference to the actual ETCC detector developed by Tanimori et al. Simulation results showed that the quality of images was improved when we used high energy gamma rays.

Key words: electron-tracking Compton camera, Monte Carlo simulation, image reconstruction, list-mode ML-EM

コンプトン検出器を組み合わせた

部分リング PET ジオメトリの提案

田島 英朗*1 山谷 泰賀*1

要旨

リングの一部を開放化した部分リング PET は、リングの体軸方向のみならず開放部からも患者にアクセス でき、また、MRI コイルー体型の頭部用 PET インサートとして開放部を下にすれば、患者の頭部に被せる ようにセットアップができるなど利便性が向上する.一方で、測定可能な投影データには欠損が生じ、画 像に強いアーチファクトが生じてしまうという問題がある.本研究では、開放部と対向する部分の検出器 をコンプトン検出器とすることで、欠損方向の情報をコンプトンイメージングの原理を用いて補い、投影 データの欠損によるアーチファクトを低減可能な新しい部分リング PET ジオメトリを提案する.計算機シ ミュレーションとして、システムマトリクスを用いた順投影によって投影データを作成し、MLEM 法によ って画像再構成を行った.その結果、通常の部分リング PET で生じてしまうアーチファクトが、コンプト ン検出器を組み合わせることによって低減できることが示された.

キーワード: PET, コンプトンイメージング, 画像再構成, PET-MRI, ジオメトリ

1. はじめに

PET (Positron Emission Tomography) 装置は一 般的に,円筒状に隙間なく検出器を配置するこ とで,原理上完全な画像再構成を行えるように 構成されている.一方で,リングの一部を開放 化し,部分リング PET とすることで,リングの 体軸方向のみならず,開放部分からも患者にア クセスすることができるようになる.また,MRI のボア内で使用する MRI コイル一体型 PET イ ンサート [1,2] を部分リング化すれば,上から 被せるようにセットアップすることができ,よ り利便性が高まることが期待される.しかしな がら,測定可能な投影データには欠損が生じ, 完全再構成の条件が満たされなくなってしま うため,画像に強いアーチファクトが生じてし まう.部分リング PET のアーチファクトを低減

*1 量子科学技術研究開発機構 放射線医学総合研究所

する方法としては、これまでに Time-of-Flight 情報を用いた方法が検討されているが、非常に高い時間分解能が必要である [3].一方我々は、 散乱検出器と吸収検出器によって構成される コンプトン検出器を使い、エネルギー情報によ ってガンマ線を放出した放射性物質の位置を

図1 MRIの PET インサートとして応用した提案 ジオメトリの概念図

円錐表面上に限定することが可能なコンプト ンイメージングの手法に着目した [4,5].本研 究では、開放部と対向する部分をコンプトン検 出器とすることで、欠損方向の情報をコンプト ンイメージングの原理を用いて補い、アーチフ ァクトの低減が可能な新しい部分リング PET ジオメトリを提案する.

2. 方法

提案ジオメトリを MRI コイルー体型 PET イ ンサートとして構成した場合,図1に示すよう に下側を開放部とすることで,患者の頭に被せ るようにセットアップが可能となる.頭部に集 積した PET 薬剤から放出される消滅放射線対 は,横方向では同時計数により測定できるが, 上下方向に放出された場合,下側の開放空間の ため,同時計数はできず縦方向の投影データが 欠損する.そこで,散乱検出器を上側に配置し, 部分リング PET の検出器の上側をコンプトン 検出器の吸収検出器とすることで,消滅放射線 対の片方が検出できるようになり,横方 向の分解能を得ることができるようになる.

1) 計算機シミュレーション

提案ジオメトリの有効性を検証するために, 初期検討として計算機による2次元でのイメー ジングシミュレーションを行った.図2に検出 器配置と想定した数値ファントムを示す. 部分 リング PET の検出器は、ピクセルサイズ 3mm, 厚さ20mmとし、散乱検出器はピクセルサイズ 2mm, 厚さ 5mm とした. ノイズフリーの測定 データとして、システムマトリクスを用いた順 投影によって投影データを作成した.その際, 検出器素子の大きさの影響を考慮するために, 素子内をサブサンプリングして計算し平均化 した. また, コンプトンイベントの順投影では, 散乱検出器のエネルギーウィンドウを 50 keV から150 keV として1 keV ごとにサンプリング し、クライン-仁科の公式より求めた散乱角を半 頂角とし、 散乱検出器を頂点とした円錐表面に、 エネルギー分解能から換算した分散を持つガ

図 2 計算機シミュレーションで模擬した検出器 配置と数値ファントム

ウス関数による広がりを持つと想定した応答 関数を実装し、画素値に対する重みとして積算 した.散乱検出器のエネルギー分解能はエネル ギーウィンドウ内全体で均一とし、5%と2%の 2種類で検証した.

数値ファントムは直径 110mm のバックグラ ウンドの円の中にホットスポットがある構造 とした.ピクセルサイズは1.5mm×1.5mmとし, ホットスポットの大きさは 2×2 ピクセル,バ ックグラウンドに対して,5 倍の集積があるも のとした.なお,数値ファントム内での減弱や 散乱の影響は無視した.

2) 画像再構成

画像再構成は PET の投影データと, コンプト ンの投影データを合わせて1つのデータセット として MLEM (Maximum Likelihood Expectation Maximization)法 [6] を適用することで行った. 本検討では, 画像サイズもシステムマトリクス のモデルも投影データ作成と同じものを用い た.なお,検出器応答関数の空間的な広がり以 外の影響は計算機シミュレーションで考慮し ていないため,感度補正,偶発同時計数補正, 減弱補正,散乱補正等の補正法は適用していな い.

図3部分リングPETのみ(a),及び提案ジオメト リでエネルギー分解能を5%(b)と2%(c)として 得られた再構成画像

図4図3中の赤矢印で示す箇所のプロファイル

3. 結果

図3にシミュレーションで得られた投影デー タを画像再構成した結果を示す.部分リング PETのみでは画像の左右で斜め下方向への強い アーチファクトが発生していたのに対し,コン プトン検出器を組み合わせることでアーチフ ァクトが低減されている.また,エネルギー分 解能を5%から2%へさらに高めることで,横方 向への広がりを抑え,空間分解能が改善されて いることが分かる(図4).

4. まとめ

部分 PET リングにコンプトン検出器を組み 合わせることで,開放部の利便性を享受しつつ アーチファクトの少ない画像を得ることが可 能な新しいジオメトリの提案を行い,2次元で のイメージングシミュレーションによって有 効性の検証を行った.その結果,角度欠損によるアーチファクトを抑制することが可能で,さらにエネルギー分解能が高い散乱検出器が実現されれば,開放部に近い場所においても空間分解能の劣化も抑制することが可能であることが示唆された.

利益相反の有無

なし.

文 献

- [1] Nishikido F, Fujiwara M, Tashima H, et al.: Development of a full-ring "add-on PET" prototype: a head coil with DOI-PET detectors for integrated PET/MRI. Nucl Instr Meth Phys Res A 863: 55-61, 2017
- [2] Nishikido F, Suga M, Shimizu K, et al.: Second "add-on" PET prototype: a head coil with PET to upgrade existing MRI to PET/MRI. J Nucl Med 57 (supplement 2): 110-110, 2016
- [3] Surti S and Karp J S: Design considerations for a limited-angle, dedicated breast, TOF PET scanner. Phys Med Biol 53: 2911-2921, 2008
- [4] Phillips GW: Gamma-ray imaging with Compton cameras. Nucl Instr Meth Phys Res B 99: 674-677, 1995
- [5] Singh M: An electronically collimated gamma camera for single photon emission computed tomography. Part I: Theoretical considerations and design criteria. Med Imag 10: 421-427, 1983
- [6] Shepp LM, Vardi Y: Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag 1: 113-122, 1982

A proposed partial-ring PET geometry

combining with Compton detectors

Hideaki TASHIMA^{*1}, Taiga YAMAYA^{*1}

*1 National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences

Partial-ring PET where a part of the ring is open has accessibility to the patient not only from axial direction but also from the open part. In addition, partial-ring MRI-coil integrated brain PET insert will enhance convenience for patient setup by covering the patient head with a downward open part. On the contrary, measurable projection data of the partial-ring PET has limited directions causing strong artifacts in images. In this study, we propose a new partial-ring PET geometry having a Compton detector at opposing side of the open part, which compensate the missing direction information by the principal of the Compton imaging to mitigate the artifact. We conducted a computer simulation, in which we generated projection data by forward projection using a system matrix, and we reconstructed images by the MLEM algorithm. As a result, the artifacts caused in the conventional partial-ring PET could be mitigated by combining the Compton detector.

Key words: PET, Compton imaging, Image reconstruction, PET-MRI, geometry

被写体スキャン方式による

X線位相イメージング法の開発

堀場 日明*1 佐野 哲*1 和田 幸久*1 徳田 敏*1 池田 凡子*2

衛藤 翔太郎*2 中川 貴之*2 田邊 晃一*1 北村 圭司*1

要旨

Talbot 干渉計をはじめとする X 線位相イメージング法は、従来の X 線の吸収像では検出が困難であった軟 組織でも視認性良く描出できることから、リウマチや乳がんなどを早期発見するための有用な手法として 医療への応用が期待されている.しかしながら Talbot 干渉計の医療応用にあたっては、被写体の視野範囲 が回折格子のサイズによって制限されるという課題がある.そこで、我々は視野サイズを拡大するため、 Talbot 干渉計をベースとして被写体をスキャン撮影する光学系を開発した.本光学系は格子なしの吸収像 と位相イメージング画像を同時に取得することが可能であり、さらに格子方向に対して被写体を回転させ て撮影することで位相像を取得する方法も開発した.この光学系を用いて動物の乳がん検体を撮影し、従 来の吸収法では得られなかった腫瘍のコントラストが描出できることを確認した.

キーワード:X線位相イメージング、スキャン撮影、位相像、乳がん検体

1. はじめに

X線位相イメージング法は、従来のX線の 吸収像では検出が困難であった軟組織や軽元 素の部材でも視認性良く描出できることから、 リウマチや乳がんなどの早期発見、また炭素繊 維強化樹脂(CFRP)などの新素材を観察解析す るための有用な手法として、医療や非破壊検査 への応用が期待されている.従来、X線位相イ メージング法では可干渉性が高くかつ高強度 なX線を照射するため放射光施設を用いるこ とが主流であったが、近年回折格子を使用する

*1 株式会社島津製作所 基盤技術研究所 〔〒619-0237 相楽郡精華町光台 3-9-4〕 e-mail: a-horiba@shimadzu.co.jp *2 東京大学大学院 農学生命科学研究科 獣医外科学研究室 Talbot 干渉計の研究により, 医療や産業用の X 線源を使用する実験系での撮影が可能となった[1,2,3,4].

Talbot 干渉計の医療応用にあたっては,被写 体の視野範囲が回折格子のサイズによって制 限されるという課題がある.そこで,我々は視 野サイズを拡大するため,Talbot 干渉計をベー スとして被写体をスキャン撮影する光学系を 開発した.本光学系はスキャン撮影を行うこと で位相イメージング画像の視野サイズを拡大 するだけでなく,格子なしの従来の吸収像も同 時に撮影することが可能である.さらに格子方 向に対して被写体を回転させて撮影し,2軸方 向の解析を行うことで位相像を取得する方法 も開発した.本稿では,開発した位相イメージ ング法の概要と,本手法による動物乳がん検体 の撮影結果について報告する.

2. 被写体スキャン方式の概要

本光学系は, Talbot 干渉計に被写体スキャン 機構を加えた構成となっている.以下,光学系 概要と画像取得方法について説明する.

1) 光学系概要

本光学系では、管球、回折格子、検出器が縦 (Z軸)方向に配置されている.外観を図1に 示す.第1格子は管球から照射されるX線を可 干渉性のある複数のX線に変え、第2格子に照 射する.第2格子を透過したX線は、Talbot効 果により第2格子を同じ周期パターンを発生さ せる(自己像).この自己像と第3格子を重なる ように配置することで、モアレが発生する.格 子間に被写体を配置すると屈折や散乱によっ てモアレが変形するので、これを検出すること で一般的には解像が難しい小さな自己像の変 化を間接的に捉えることができる.

被写体は X 線照射中に X 軸方向に移動させ て撮影する(図 2). これにより,被写体の視野 サイズをスキャン方向に拡大することができ る.例えば,スキャン撮影を行わない光学系で は格子サイズの制約を受け視野は~5cm 幅程度 となるが,本光学系では最大 20cm 幅までの撮 影が可能である.

図 1 被写体スキャン方式による X 線位相イメージ ング法の光学系外観.

また,各格子には格子あり/なし領域を設けており,格子なしの従来の吸収像も同時に撮影することができる(図2,3).

図 2 スキャン方式による格子あり/なし領域の同時 撮影(格子,管球保持部省略).

図3各格子ホルダ内の配置と被写体スキャン方向. 位相像を取得するために被写体を回転させて撮影した.

2) スキャン方式による画像取得方法

本手法では, Talbot 干渉計で主に用いられる 縞走査法[1]をベースにし,スキャン撮影に対応 した解析方法で画像取得を行っている. 縞走査法では、第2または第3格子を走査し て検出器の各画素における強度変化(ステップ カーブ)を被写体あり/なしの2種類取得し、そ れらを解析して吸収像、位相微分像、暗視野像 を得るのが一般的である.これを被写体ありの 場合で考えると、被写体(固定)に対してモア レ空間を移動させながら撮影しているという ことになる.

これに対して、スキャン撮影ではモアレ空間 (固定)に対して被写体を移動させながら撮影 することとなる.いずれも被写体とモアレ空間 を相対的に移動させながら撮影を行っており、 原理的には同等の画像が得られると考えられ る.本手法では、モアレ空間において被写体を 一定速度で動かして取得した一連の画像に対 して、被写体が静止するように座標変換を行う. これにより、被写体に対してモアレが移動する ような画像が得られる.これらの画像から、各 画素における強度変化(ステップカーブ)を取 得し、編走査法と同様の解析を行う.

3) 位相像取得方法

本手法は位相像の取得にも対応している.通 常,位相像は位相微分像を1軸方向に積分する ことで取得できるが、1軸のみでは位相微分像 のノイズ成分を拾ってストリーク状のアーテ ィファクトが生成されやすい.そこで、2軸方 向の位相微分像をフーリエ変換し、周波数領域 で所定の演算をしてから逆フーリエ変換する 手法を導入した(式1)[5].

$$\Phi(x,y) = \mathcal{F}^{-1}\left[\frac{\mathcal{F}\left[\Phi_x + i\Phi_y\right](k,l)}{2\pi i(k+il)}\right](x,y) \qquad (1)$$

ここで、 Φ_x 、 Φ_y は被写体(X)方向と(Y)方向の位 相微分像、x、yは実空間上の座標、k、lは周波 数空間上の座標を表す。 $\Phi(x,y)$ が本手法で取得 できる位相像となる。2 軸方向の成分を合わせ て解析することで、アーティファクトを大幅に 低減することが可能となる(図4).この解析を 行うため、本手法では図3に示したように格子 方向に対して被写体を回転させて2回のスキャ ン撮影を行う.

なお,格子あり領域に2軸方向の格子を配置

することで、1回のスキャンで位相像取得に必要な画像を得ることも可能である.

図4位相像の1軸,2軸積分取得画像の比較(被写体:樹脂球).

3. 動物乳がん検体の撮影

X線位相イメージングによる乳がん撮影の優 位性を検討するため、動物乳がん切除検体の撮 影を行った.撮影条件は管電圧 40kV(格子なし 吸収像のみ30kV),管電流50mA,照射時間8sec, 被ばく線量は格子あり/なし領域においてマン モグラフィのガイドラインである3mGy以下と した.また、検体は劣化しないよう切除後生理 食塩水に浸漬し、撮影時を除いて冷蔵保存を行 った.

撮影結果の一例を図5に示す.この検体は乳 腺がん(乳腺混合腫瘍内腺がん)を含むイヌの 乳腺組織である.吸収像(格子なし)において は腫瘍にほとんどコントラストがついていな いのに対して,位相微分像では腫瘍の境界が描 出されていることがわかる.さらに,2軸積分 により取得した位相像においてはより明瞭に 腫瘍部分を描出することができた.また,石灰 化部分は吸収像(格子なし)でも見られるが, 暗視野像においてより明瞭に描出されている ことがわかる.この石灰化部分は位相像におい ても視認性良く描出されている.このように, スキャン方式による X 線位相イメージング撮 影の優位性を動物乳がん検体において示すこ とができた.

図5動物乳がん検体の撮影結果.位相像において腫 瘍部分を明瞭に描出することができた.(X),(Y)はそ れぞれ図3の被写体方向①,②に対応する.

4. まとめ

被写体スキャン方式による X 線位相イメー ジング法を開発した.被写体の視野サイズ拡大 に加え,格子なし吸収像と2軸積分による位相 像の取得も可能となった.本手法で動物乳がん 検体を撮影した結果,位相像において腫瘍と石 灰化部分を明瞭に描出することができ,スキャ ン方式による X 線位相イメージングの優位性 が示された. 今後はヒト乳房切除検体の撮影を 行い,同様の検証を進める予定である.

謝辞

研究遂行にあたり多大なるご協力を賜りま した昭和大学医学部乳腺外科の明石定子准教 授に深く感謝いたします.

利益相反の有無

なし

文 献

- Momose A, Kawamoto S, Koyama I, et al.:
 Demonstration of X-Ray Talbot
 Interferometry. Jpn J Appl Phys 42: L866-L868, 2003
- Pfeiffer F, Weitkamp T, Bunk O, et al.:
 Phase retrieval and differential phasecontrast imaging with low-brilliance X-ray sources. Nat Phys 2: 258-261, 2006
- [3] 百生敦: Talbot 効果を利用した X 線位 相イメージング.放射光 23:382-392, 2010
- [4] 土岐貴弘,白井太郎,佐野哲他:産業用 X線位相イメージング装置の開発.島津 評論 75:73-77,2018
- [5] Kottler C, David C, Pfeiffer F, et al.: A twodirectional approach for grating based differential phase contrast imaging using hard x-rays. Opt Express 15: 1175-1181, 2007

Development of an X-ray phase contrast imaging system using a subject scanning method

Akira HORIBA^{*1}, Satoshi SANO^{*1}, Yukihisa WADA^{*1}, Satoshi TOKUDA^{*1}, Namiko IKEDA^{*2}, Shotaro ETO^{*2}, Takayuki NAKAGAWA^{*2}, Koichi TANABE^{*1}, Keishi KITAMURA^{*1}

*1 Technology Research Laboratory, Shimadzu Corporation

*2 Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo

X-ray phase contrast imaging, Talbot interferometer representatively, allows to produce significant contrast of soft tissues that are difficult to detect with conventional X-ray absorption imaging, therefore it is expected to be applied to medical imaging for early detection of lesions such as rheumatism or breast cancer. However, in medical application of Talbot interferometer, there is a problem that the field of view of the subject is limited by the size of the diffraction gratings. In order to expand the field size, we have developed an X-ray phase contrast imaging system using a subject scanning method based on Talbot interferometer. This method also enables to acquire the conventional absorption image without gratings and phase contrast images, i.e., the differential phase contrast image, and the dark-field image simultaneously. In addition, a method of generating the phase image with rotating subject with respect to the grating direction is also developed. Using this system, mammal breast cancer sample images are acquired, and the contrast of the tumors are obtained that are difficult to image by the conventional absorption method.

Key words: X-ray phase contrast imaging, Scanning method, Phase image, Breast cancer sample

学習データセットを必要としない畳み込みニューラル

ネットワークを用いた Dynamic PET 画像のノイズ除去手法

橋本 二三生*1 大手 希望*1 寺本 篤司*2

要旨

深層学習を医用画像処理に応用する場合,多数の教師ラベル付き臨床データセットを用意する必要がある.しかし,症例数の不足や倫理的な制約等により,大規模で高品質な臨床データセットを構築すること は容易ではない.本研究では、学習データセットを必要としない畳み込みニューラルネットワーク(CNN) を用いることで、多数の教師ラベル付き臨床データセットを用意することなく Dynamic PET 画像のノイズ を除去する手法を提案する.本手法は、当該の計測 PET データのみを CNN の学習に利用する.まず、教 師ラベルとして Dynamic PET 画像を、入力画像として計測データすべてを用いて再構成した Static PET 画 像を用意する.これら一対のデータペアを Encoder-decoder 型の CNN を用いて逐次学習させることにより、 大幅にノイズが除去された Dynamic PET 画像を取得する.定量評価の結果、本手法を用いることで、従来 使用されていたノイズ除去手法と比較し、大幅なノイズ除去性能の向上がみられ、本手法の有効性が示さ れた.

キーワード: Dynamic PET, ノイズ除去, 深層学習, 畳み込みニューラルネットワーク, Deep image prior

1. はじめに

陽電子放射断層撮影(Positron emission tomography; PET)検査は、体内の薬剤動態をダ イナミックに計測できる非侵襲的なイメージ ングモダリティであり、がんのスクリーニング や神経変性疾患の早期発見に有効とされてい る [1]. ダイナミックな PET データ収集では、 時間分解能を高めるほど低カウントに起因す る統計ノイズが発生し、Signal-to-noise ratio (SNR)が低下する. そこで、ダイナミック PET 計測における画像の定量性を損なわないよう

に,統計的画像再構成法[2]が導入されているが,

画質改善の効果には限界がある.

畳み込みニューラルネットワーク (Convolutional neural networks; CNN) に代表さ れる深層学習 (Deep learning) が,近年様々な分 野で実応用され、医用画像処理においても急速 に普及しつつある.一般的に, CNN は大規模な 学習データセットを構築し学習を行う必要が あるが, 臨床現場で学習データセットを収集す るためには、倫理的な制約や患者数の確保など、 解決すべき課題が多数存在する. 例えば、PET 画像のノイズ除去に CNN を応用する場合,高 線量または長時間フレームと,低線量または短 時間フレームの画像対を用意する必要があり, 多大な労力を要する. そのうえ, 学習データセ ットに含まれていない未知の症例や、新規 PET 薬剤に対する処理は定量性が担保できず、堅牢 性が高いとはいえない.近年、学習データセッ トに高品質な正解ラベルを用意する必要のな いノイズ除去処理が提案されている[3-5].特に,

^{*1} 浜松ホトニクス株式会社 中央研究所 [〒434-8601 浜松市浜北区平口 5000] e-mail: fumio.hashimoto@crl.hpk.co.jp *2 藤田医科大学 医療科学部 放射線学科

図1提案手法の概要.

Deep image prior (DIP) とよばれる手法[3,4]は, ノイズ除去処理対象の画像のみを用意し, CNN を画像フィルタリングのように用いることが できる.

そこで本研究では, DIP を応用した Dynamic PET 画像のノイズ除去手法を提案する.本手法 は,高品質な正解ラベルを用意する必要がなく,当該の計測 PET データのみでノイズ除去可能 であることが最大の特徴である.

2. 方法

1)提案手法

提案手法の概要を図1に示す.提案するネットワークは,次式によって学習される.

 $\theta^{i^*} = \arg\min_{\theta} ||x_0^i - f(\theta^i | z)||, \ x^{i^*} = f(\theta^{i^*} | z) \ (1)$

ここで, ||·||は L2 ノルム, *f* は CNN, *θ* は CNN のパラメータを表している. 正解ラベル *xoⁱ* (*i* = 1,2,...,T)および入力*z* はそれぞれ, ノイズ除去 処理対象である Dynamic 画像, PET 計測開始か ら終了までの全計測データを用いて再構成し た Static 画像である.本研究では, U-net をベー スにした CNN 構造[6]を利用した.

2) 実験

提案手法の画質性能を従来手法と比較する ため、[¹⁸F]FDGを模擬したシミュレーション実 験による評価を行った.シミュレーション詳細 については文献[7]を参照されたい.また、定量 評価指標として、peak SNR (PSNR) および Structural similarity (SSIM)を使用した.

3. 結果および考察

シミュレーション実験による結果を図2に示 す.ここで、図中 Frame6,26 はそれぞれ PET 計 測開始から 120-160 秒,3900-4200 秒のフレーム に該当する.

図2より,提案手法は他手法と比較し,統計 ノイズを抑制しつつコントラストを保存でき ている.また,本手法を用いることで,他手法 と比較しPSNRおよびSSIMが大幅に改善した. これらの結果は,提案手法が Dynamic PET 画像 のノイズ除去に対して有効な手法であること

図2 提案手法のシミュレーション処理結果. 左から Ground truth (正解画像), GF (Gaussian filtering), NLM (Non local means filtering), IGF (Image guided filtering), DIP (Deep image prior) の

を示唆している.

4. まとめ

本研究では、DIP を応用した Dynamic PET 画 像のノイズ除去手法を提案し、ノイズ抑制効果 の向上をシミュレーション実験により評価し た.その結果、提案手法は統計ノイズを抑制し つつコントラストを保存できており、Dynamic PET 画像のノイズ除去に対して有効な手法であ ることが示唆された.

利益相反の有無

なし.

文 献

- [1] Phelps ME: PET: molecular imaging and its biological applications, Springer-Verlag, New York, 2004.
- [2] 小林哲哉:エミッション CT における 統計的画像再構成の基礎と展開. Med Imaging Technol 31: 21-25, 2013.
- [3] Lehtinen J, Munkberg J, Hasselgren J, et

al.: Noise2Noise: Learning image restoration without clean data. arXiv: 1803.04189, 2018.

- [4] Gong K, Catana C, Qi J, Li Q: PET image reconstruction using deep image prior. IEEE Trans Med Imaging, 2018. 10.1109/TMI.2018.2888491.
- Ulyanov D, Vedaldi A, Lempitsky V: Deep image prior. Proc IEEE CVPR: 9446–9454, 10.1109/CVPR.2018.00984, 2018.
- [6] Hashimoto F, Kakimoto A, Ota N, et al.: Automated segmentation of 2D low-dose CT images of the psoas-major muscle using deep convolutional neural networks. Radiol Phys Technol, 2019. 10.1007/s12194-019-00512-y.
- [7] Hashimoto F, Ohba H, Ote K, et al: Denoising of Dynamic Sinogram by Image Guided Filtering for Positron Emission Tomography, IEEE trans Radiat Plasma Med Sci 2: 541-548, 2018.

Noise Reduction Technique for Dynamic PET Images using Convolutional Neural Networks without Training Dataset

Fumio HASHIMOTO^{*1}, Kibo OTE^{*1}, Atsushi TERAMOTO^{*2}

*1 Central Research Laboratory, Hamamatsu Photonics K.K.

*2 School of health Sciences, Fujita Health University

Deep neural networks are needed to prepare the large size of training image datasets, however, it is not easy for clinical uses because of difficulty in preparing the large size of high-quality patient datasets. In this study, we proposed dynamic positron emission tomography (PET) image denoising using convolutional neural networks (CNN) without training datasets. The advantage of this study is that training datasets are not necessary, as the original PET data of its own is used to reduce the statistical noise. Static PET data were acquired for input to the network, with the dynamic PET images being handled as training labels, while the denoised dynamic PET images were represented by the network output. The proposed denoising method can improve the denoising performance compared with the other non-deep learning algorithms. These results indicate that the proposed method is a practical algorithm for dynamic PET data.

Key words: Dynamic positron emission tomography, Denoising, Deep learning, Convolutional neural networks, Deep image prior

畳み込みニューラルネットワークを用いた

低線量 CT 画像再構成法の多時相 CT イメージングへの拡張

森 和希*1 工藤 博幸*1

要旨

本論文では,画像再構成法を腹部 CT 撮影(4時相)に代表される多時相 CT イメージングに拡張した新手法 を提案する.提案手法では,M 時相の画像のうち M-N 枚を通常線量で撮影しそれ以外の N 枚を低線量で撮影 することで低被曝での CT 撮影を実現する.そして,M 時相全ての画像を入力とし低線量で撮影した N 枚の 画像を出力とする CNN を用いて,雑音を除去した高画質の再構成画像を得る.M 時相全ての画像を CNN の 入力とすることにより,CNN は通常線量画像を先験情報として低線量画像の画質を改善するように動作し て,1 入力 1 出力の CNN で各時相の画像を独立に処理する単純な手法と比較して,より上手く雑音除去する ことが可能となることがキーである.腹部 CT 実画像データセットを用いたシミュレーション実験により提 案手法の有効性を評価した.

キーワード:画像再構成,多時相,深層学習,低線量 CT

1. はじめに

CT(Computed Tomography)はエコー検査で 検出しにくい深部臓器を見ることができる利 点があり,現代の医療に不可欠な装置といえる. しかし,CT による撮像は被ばくによる健康被害 が問題とされ,より低線量で撮影を行うことが 望ましい.低線量での撮影は光子数のばらつき によりノイズが発生してしまうため,低線量 CT の実現にはノイズ除去技術の向上が不可欠で ある.

近年,低線量CTを目的とした深層学習画像再 構成法の研究が精力的に行われている.これら の研究では,フィルタ補正逆投影(FBP)法で再

*1 筑波大学システム情報系 〔〒305-8573 つくば市天王台 1-1-1〕 e-mail: shion06141016@gmail.com 構成した劣化画像をコンボリューション層と デコンボリューション層からなる畳み込みニ ューラルネットワーク(CNN)に入力してノイ ズを低減した高画質画像を得る画像再構成法 を提案している.本研究では,この画像再構成法 を腹部 CT 撮影に代表される多時相 CT イメー ジングに拡張した新手法を提案する.提案手法 では,M 時相の画像のうち M-N 枚を通常線量で 撮影し,それ以外の N 枚を低線量で撮影するこ とで低被爆での CT 撮影を実現する.そして,M 枚全ての画像を入力し,低線量で撮影した N 時 相の画像を出力する CNN を用いて,ノイズを除 去した高画質の再構成画像を得る.また,M 時相 の画像のうち M-N 枚のみを入力し,それ以外の N 枚の再構成画像を得ることも可能である.

CNN の学習は,74 名の CT 画像から CT イメ ージング過程をシミュレートしたデータセッ トを用いて行い,最適なノイズ除去を行う過程 を CNN に学習させた.腹部 CT 実画像データセットを用いたシミュレーション実験により,提 案手法の有効性を示す.

2. 方法

2-1 入力と出力

本研究では、複数枚の時相を低線量で撮影,も しくは全く撮影しないという問題設定を考え ている.ネットワークへの入力は従来の1入力1 出力の手法と異なり,低線量または通常線量で 撮影した複数の時相全てを入力する.出力はノ イズ除去を行った低線量時相画像または全く 撮影しなかった時相の画像である.通常線量画 像が先験情報として機能し,従来手法より上手 く雑音を除去することを期待している.

2-2 ネットワーク構造

ネットワーク構造は UNet[1]を用いてい る.UNet は入力データの特徴を抽出するための エンコーダ部と,特徴マップを拡大するための デコーダー部から構成される完全畳み込みネ ットワーク[2]の1つである.

ネットワーク構造を図 1 に示す.エンコーダ 部は,まず最初に 3×3 フィルタを用いてストラ イド 1 及びパディング 1 で畳み込みを行う.そ の後,CBR 構造を 5 回繰り返す.本稿における CBR 構造とは,4×4 フィルタを用いたストライ ド 2,パディング 1 の畳み込み,バッチノーマラ イゼーション[3],ReLU という手順のことである.

デコーダ部は,まず始めに CBR 構造を 5 回繰 り返す.ただし,エンコーダ部で畳み込みを行っ た部分を逆畳み込みに置き換えている.訓練の 際は最初の 2 回にドロップアウトをレート 0.5 で適用した.そして最後に 3×3 フィルタを用い てストライド1及びパディング1で畳み込みを 行う.また,図1に示すように,エンコーダ部の第 N 層目(N:1~5)をデコーダ部の第 6-(N-1)層目に スキップ結合している.

2-3 データセット

74 例の腹部 CT 画像(4 時相)を用い,内 58 例を 訓練用とし,残りの 16 例を評価用とした.各患者 の肝臓が最も大きく見えるスライス 1 枚を用 いた.画像サイズは 512×512 であった.用いた時 相は早期相,門脈相,遅延相,非造影の4 種である.

画像は患者の CT 実画像から FBP 法で CT イ メージング過程をシミュレートしており,劣化 過程はポアソン分布でシミュレートした.ま た,CNN に入力する際は,画像のコントラストの 範囲を 0.165~0.235 に絞った.

2-4 訓練方法

時相をチャンネルとして扱うことで M-N 枚 の通常線量画像と N 枚の低線量画像を入力と し,低線量で撮影した N 枚の画像を出力とした. バッチサイズは4とした.

図1 ネットワーク構造. 各層の数字はチャンネル数.

損失関数には劣化画像と非劣化画像の平均 二乗誤差を用い、係数 0.0001 で L2 正則化を適用 した.最適化法には Adam[4]を用いて 510epoch 更新した.学習率の初期値は 0.001 で,30epoch ご とに 0.8 倍した.実装には Chainer を用 い,GPU(GeForce GTX 1080)を用いて計算した.

2-5 評価方法

劣化画像と非劣化画像のピーク信号対雑音 比(peak signal to noise ratio; PSNR)と構造的類 似性(Structural similarity; SSIM)[5]で評価し た.SSIM のウィンドウサイズは7とした.

3. 結果

図 2,3 はノイズの強さ(再構成時の光線あた りの光子数)及び適用手法を変えた際の門脈相 における平均 PSNR と SSIM の推移である.光子 数 0 は,出力したい時相以外の 3 時相のみを CNN に入力する実装を行った.ノイズが小さい 場合(光子数 50000)は提案手法と従来手法の差 がほぼ無いが,ある程度ノイズが強くなると提 案手法が優位になることがわかる.また,従来手 法では光子数 0 で画像を作ることができないた め,その場合でも提案手法が優位と言える。.本 稿では省略するが,他の時相でも類似の結果が 得られる.

表1は光子が500個の場合の,各時相における提案手法の平均PSNR及びSSIMとその従来 手法との差である.提案手法は非造影画像では SSIMにおいて優位性が見られ,それ以外の時相 ではPSNR及びSSIMの両方で優位性が見られ た.

図4は原画像,ノイズ画像,提案手法の出力,従 来手法の出力,ノンローカルミーンフィルタ[6] による門脈相のノイズ除去画像の一例である. 従来手法と比べると,図中に赤枠で示した辺り が特に改善されていることがわかる.図5は非 造影のノイズ除去画像の一例である.門脈相と 同様に,従来手法と比べて特に改善されている 部分を赤枠で示す.また,光子0個の場合と光子 500個の場合で大きく異なる部分を緑枠で示す. 本稿では省略するが,他の時相でも類似の改善 が得られる.

表1 光子 500 個の場合の提案手法の平均 PSNR と SSIM 及び従来手法との差.

	PNSR	PSNR の差	SSIM	SSIM の差
早期相	25.4	1.0	0.82	0.04
門脈相	25.5	1.3	0.82	0.05
遅延相	25.8	1.1	0.82	0.04
非造影	25.7	0.1	0.82	0.02

図2 門脈相の平均 PSNR の推移.

図3 門脈相の平均 SSIM の推移.

4. 考察

図2と図3に示すように,ノイズが小さい場 合に従来手法と提案手法に大きな差が生じな かった.他の時相から得られる情報を用いるよ りも目的の時相から情報を得た方が画質改善 に繋がるため,ネットワークが他の時相を無視

図5 非造影の画像.

するように学習が行われたためだと考えられる.

表1に示すように,数値評価において提案手 法が最も有効だったのは門脈相だった.門脈相 は最もコントラストが大きいため,ノイズによ って失われる情報が相対的に大きく,他の時相 から得られる情報が有効に働いたのだと考え られる.反対に,最もコントラストが小さい非造 影画像では従来手法との違いが生まれ難かっ た.ただし,図5に示す通り,目視での評価では提 案手法の方が高品質であることがわかった.

図 5 の緑枠で示した箇所のように,目的の時 相の情報が皆無(光子数 0)の場合,明るさが原画 像から大きく乖離した部分が生じることがあ る.これは,他の時相の明るさに引きずられてい ることが原因だと考えられる.図 5 の下段中央 のように,目的の時相を入力に加えることで改 善されることがわかった.この際,図 5 のように, 目的の時相に強いノイズがかかっていても問 題ないと考えられる.

5. まとめ

本研究では,シミュレーションにより作成し た画像を用いて,複数の時相を入力する提案手 法と1時相のみを入力する従来手法及びノン ローカルミーンフィルタのノイズ除去効果を 比較した.さらに,コントラストが高い門脈相に おいて最も効果を発揮することがわかった.

今後,学習させるスライス数を増やすなど訓 練データの工夫によって得られる変化の調査 や,低線量ではなくスパースビューCT での調査 を行う予定である.

利益相反の有無

無し

文 献

- [1] Ronneberger O, Fischer P, Brox T : U-Net: convolutional networks for biomedical image segmentation. International Conference on MICCAI, 2015
- [2] Long J, Shelhamer E, Darrell T: Fully Convolutional Networks for Semantic

segmentation. International Conference on CVPR, 2015

- [3] Ioffe S, Szegedy C: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. International Conference on Machine Learning, 2015
- [4] Kingma D, Ba Jimmy: Adam: A Method for Stochastic Optimization. International Conference on Learning Representations, 2015
- [5] Wang Z et al: Image Quality Assessment: From Error Visibility to Structual Similarity.
 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL 13, NO.4, 2004
- [6] Buades A, Coll B, Morel J: A non-local algorithm for image denoising. In Proc IEEE Conf Comp Vis Patt Recogn 2: 60-65, 2005
- [7]

Extension of Low-Dose CT Image Reconstruction Method Using Convolutional Neural Network to Multi-Phase CT Imaging

Kazuki MORI*1, Hiroyuki KUDO*1

*1 Graduate School of Information and Systems, University of Tsukuba

In this paper, we propose a new method that extends the image reconstruction method to multi-phase CT imaging represented by abdominal CT imaging (four-time phase). In the proposed method, low-dose CT imaging is implemented by imaging M-N of the M phase images at a normal dose and imaging the other N at a low dose. Then, a high quality reconstructed image from which noises have been removed is obtained using a CNN that has as input an image of all M time phases and outputs N images taken at low dose. By using the images of all M phases as the input of the CNN, the CNN operates to improve the image quality of the low dose image, usually with the dose image as a priori information. The key is that it allows better denoising compared to the simple approach of independently processing each phase image with a 1 input 1 output CNN. The effectiveness of the proposed method was evaluated by simulation experiments using abdominal CT real image data sets.

Key words: Image Reconstruction, Multi-Phase CT, Deep Learning, Low-Dose CT

著者紹介

森和希(もりかずき)
 2018年広島大学理学部物理科学科卒、
 現在,筑波大学院・システム情報・博士前期課程在学中.

工藤 博幸 (くどう ひろゆき) 1985 年東北大・工・通信卒. 1990 年 同大学院博士課程了.現在,筑波大· システム情報・教授. 1990年電子情報 通信学会論文賞, 1991年・2001年・ 2006年·2008年日本医用画像工学会 論文賞,2006年・2008年国際雑誌 [Inverse Problems] High Lights 受賞, 2008 年国際雑誌『Physics in Medicine and Biology_ High Lights 受賞, 2018年文部科学大臣表彰科学技 術賞受賞.工博. CT と PET を中心とし た医用イメージング, 画像処理の研究 に従事. IEEE, SIAM, 各会員. 電子情 報通信学会フェロー. 日本医用画像工 学会副会長.

テンプレート(全ての原稿の種類に共通) Ver. 2.1 (2019.3.28 改訂)

FDTD による Shear wave elastography の不安定要因の検証

伊藤 大貴*1 山田 敦子*1 大栗 拓真*1,3 吉田 憲司*2 山口 匡*2

要旨

超音波で生体組織の硬さを評価する手法として,音響放射力によって組織内に発生させたせん断波の伝 播速度(shear wave velocity; SWV)を利用する Shear wave elastography (SWE)が臨床で実用化されている. しかし,伝播するせん断波の波形を判定する処理や解析に使用されるアルゴリズムの違いなどの技術的な 差異や,生体内の組織構造および物性の複雑性などの要因により,診断装置のメーカ間および設定条件に よって SWV の評価結果に差を有することや,計測部位によっては評価結果が不安定になることが示され ている.本稿では,SWE の標準化のアプローチのために,弾性 FDTD 法(Finite-Difference Time-Domain method; FDTD)を用いて,実際の診断装置から送信される音響放射力の分布を模擬した送信条件下におい て,任意の生体組織性状におけるせん断波の伝播をシミュレートし,各種の信号処理が SWV の評価に与え る影響について検証した.結果として,2つの信号処理方法により SWV の算出結果に違いが生じ,その違 いは組織構造が複雑になるにつれて顕著になることを確認した.

キーワード:超音波,エラストグラフィ,せん断波,弾性 FDTD,粘弾性

1. はじめに

Shear wave elastography (SWE)は,音響放射力 によって組織内に発生させたせん断波の速度 (shear wave velocity; SWV)を利用し,生体組 織の硬さを評価する手法である.しかし,診断 装置のメーカ間や設定条件によって SWV の評 価結果に差を有することや,計測部位によって は評価精度が低下することが示されている[1].

組織の硬さを表す係数は複数あり, SWE では 主に剛性率やヤング率が用いられるが[5],本稿 では、剛性率に着目し組織の硬さの評価を行う. 媒質のずり粘性を無視すると、弾性体内を伝播 するせん断波速度c_sは次式で表される.

*1	千葉大学大学院融合理工学府基幹工学
専	女医工学コース

〔〒263-8522 千葉市稲毛区弥生町 1-33〕 e-mail; d.ito@chiba-u.jp

*2 千葉大学フロンティア医工学センター
*3 GE Healthcare Japan 株式会社
投稿受付:2019年5月15日

$$c_s = \sqrt{\frac{G}{\rho}} \tag{1}$$

ここで、Gは剛性率であり、ρは密度である[5]. 生体組織の密度を1000kg/m³と仮定すると、式 (1)を用いて、生体組織に振動を与えて発生させ たせん断波の速度csから剛性率Gを算出し、生 体組織の硬さを評価することができる.しかし、 媒質の境界面ではせん断波の反射や屈折が発 生するため、生体組織などの不均一な媒質中で は伝播するせん断波が複雑になり、SWVの評価 結果が不安定なることが示されている[1-3].そ のため、弾性体内の音波伝播の時間変化を計算 する弾性 FDTD (Finite-Difference Time-Domain) 法[4]を用いて、様々な媒質内を伝搬するせん断 波を 2 次元(X-Y)シミュレーションで再現し、 その結果を用いて SWV を解析し、そのばらつ きの要因を検証した.

また,SWV を解析する際には,せん断波の波 形(波頭やピーク)を検出する処理が重要であ るが,メーカ毎に処理や解析に使用されるアル ゴリズムが違うことが示されている[1].本検討 では、せん断波の伝播速度を(i)せん断波形のピ ークを用いた解析と(ii)相互相関法を用いた解 析の2種類の方法で算出し、信号処理の違いが SWV に差を生じるかについて検討した.

2. せん断波の伝播シミュレーション 2.1. シミュレーション空間の設計

シミュレーション空間内に送信音圧を与え ることで、せん断波を励起させた. 与える音場 分布は、臨床装置のプローブからプッシュパル スを送信して発生する音響放射力の音場分布 を参考に作成した.模擬した音場分布を図1に 示す. 音場分布の最大音圧を 10 MPa, ビーム径 を 1.25 mm, ビーム長を 20 mm と設定した. こ の音場分布を図2に示すシミュレーション空間 の左端に与え、せん断波を生じさせた.本稿で は、Y方向の粒子速度の時間変化から伝播する せん断波を算出する.ここで、Y軸について対 称音場分布を与えた場合, 伝搬するせん断波も Y 軸について対称となるため、計算はシミュレ ーション空間の全面で行っているが, 以降の評 価については上半分(図2内の水色の領域)の みを解析範囲としている.

2.2. シミュレーション条件

グリッドの粗さにより発生する数値分散を 防ぐために、せん断波の周波数を数 kHz と仮定 し、その波長より十分細かくなるようなシミュ レーションの条件として、計算の空間グリッド を 100 µm と設定した.それに伴い、クーラン の安定条件[4]により時間グリッドを 2.375 ns に 設定した.また、FDTD シミュレーション空間 の端から発生する不要な反射を無くすために、 空間の終端には吸収境界条件として Beneger の PML 吸収境界条件[5]を用いた.

2.3. 生体組織モデル

図2の水色の領域に、図3に示す複数種の組 織モデルを置き、シミュレーションを行った. 図3の(a)は媒質Aのみの均質組織モデル、(b) は媒質Aの均質組織内に半径1.5mmの円状媒 質Bの組織を1つ配置したモデル、(c)は(b)と 同じ円状組織Bを複数個、無作為に配置したモ デルである.

周辺組織である媒質 A と円状組織である媒 質 B の物性値を表 1 に示す.表 1 の横波音速

は,表1の物性値と式(1)を用いて算出した理論 値である.

密	1000	kg/m ³	
媒質 A (書 色 部公)	体積弾性率	2.25	GPa
	剛性率	4	kPa
	横波音速	2	m/s
拔啠 Β	体積弾性率	2.25	GPa
(剛性率	16	kPa
	横波音速	4	m/s

表1 各組織のパラメータ

3. 伝播するせん断波の様子

図3のそれぞれの空間分布に対して送信音圧 を与え,発生したせん断波の振幅を一定時間毎 に検出し,各位置におけるせん断波の振幅を等 高線で結んで表示した結果を図4に示す.図中 の最左の線(緑色)は加振から5ms後の波形の 振幅を示し,それ以降1ms間隔で振幅を等高 線で示している.図4(b)において,円状組織を 見ると,円状組織内の速度だけではなく,円状 組織周辺の媒質Aの組織の速度が速くなって

いる様子がわかる.同様の傾向は図 4(c)でも確認されるが,剛性率の高い円状組織を複数配置することで等高線の不連続性が強く生じている.このことから,組織構造が複雑であるほどに,せん断波の伝播が複雑となり,SWVの評価も不安定になることがわかる.

4. SWV の解析法

図3のそれぞれのモデルについてせん断波の 時間変化を算出し,SWV を評価した.SWVの 算出には,(i)せん断波形のピークを用いた解析 と,(ii)相互相関法を用いた解析の2つの信号処 理法を適用した.FDTD シミュレーションにお けるせん断波のサンプリング周波数は約2MHz であり,SWV はシミュレーション条件から5 m/s以下となるため,せん断波が1フレームで 伝播する距離は2.5µm以下である.これは空間 グリッドより十分に小さいため,シミュレーシ ョンの時間分解能は担保されている.

(i) せん断波のピークを用いた解析

せん断波形のピーク値を用いて、せん断波の 伝播速度を算出した.解析領域内の1つの空間 グリッドの両端のX方向の座標 x_1 , x_2 にせん 断波のピーク値が通過する時間をそれぞれ t_1 , $t_1 + t_s$ とする.これらのパラメータから、式(2) を用いて1つの空間グリッド内のSWVを算出 する(図5).

SWV =
$$\frac{x_2 - x_1}{(t_1 + t_s) - t_1} = \frac{\Delta x}{t_s}$$
 (2)

ここで, Δxはシミュレーションの空間グリッドである.この処理を解析領域内の空間グリッド毎に行い, せん断波速度分布を推定した.

図5 せん断波のピーク値を用いた SWV 評価方法

(ii) 相互相関法を用いた解析

相互相関法を用いて SWV を解析した. X 方 向に連続する2点 x_1 および $x_1+\Delta x$ における Depth 方向の粒子速度をそれぞれ $v_1(t)$, $v_2(t)$ とすると, せん断波がこの2点間を伝播する時間 τ は式(3) の相互相関関数 $R(\tau)$ を用いて求めることができ る(図 6).

$$\mathbf{R}(\tau) = \int v_1(t)v_2(t+\tau) \, dt \tag{3}$$

この相互相関関数 R(τ)が最大となる時間差 τ が伝播時間となるため,2 点間を伝播するせん 断波の SWV は次式により算出される[2].

$$SWV = \frac{\Delta x}{2}$$
(4)

相互相関法についても,解析法(i)と同様に解 析領域全体に対し行うことでせん断波速度分 布を推定した.

5. SWV の解析結果

図3のそれぞれの空間分布に対して、せん断 波速度を算出し、その結果から SWV の2次元 分布を作成した.図7は解析法(i)によりせん断 波形のピーク追跡から解析した結果を,図8は 解析法(ii)により相互相関法による追跡から解 析した結果を示す. どちらの解析法においても, 図 7(b)および図 8(b)に示す通り円状組織が1つ 配置されている空間において, 媒質 B の付近で SWV が速くなっていることが確認できる.また, 媒質 B とせん断波の波面が交わる付近(図中の 黒枠部分)では、媒質の特性が異なることで発 生する反射波により, SWV が遅くなった. この 傾向は,多数の円状組織が混在しているモデル においてより顕著となっており,図7(c)および 図 8(c)のように組織構造が複雑な場合において は, せん断波音速の評価精度が低下し, 空間分 布として不安定となっていることが確認でき

る.

せん断波速度分布全体を見ると,2つの異な る信号処理法(i)と(ii)の結果において明確な違 いが確認できる.図7(a)および図8(a)に示した 媒質A(横波音速の理論値2m/s)のみの均質媒 質空間において,空間内のSWVの平均値は(i) せん断波形のピークを用いた解析において 2.024 m/s(設定値からの誤差:+1.1%),(ii)相 互相関法を用いた解析において2.080 m/s(誤差: +3.9%)である,どちらも理論値との誤差が小 さい結果となった.一方で,(ii)の誤差がやや大 きいのは,媒質空間の両端付近において窓幅の 影響などによるSWV評価値の段階的変化が生 じているためである.

媒質空間中に円状組織が1つ配置されている ケースである図 7(b)および図 8(b)においては, 2 つの信号処理法で大きな差異が生じている.媒 質 B (横波音速の理論値が 4 m/s)の領域に着目 すると、SWVの平均値は(i)せん断波形のピーク 値を用いた解析では 4.116 m/s (誤差: +2.9 %) となり誤差は小さいが、円形組織内の SWV 値 の分布としては極端に遅い領域が混在するば らつきが大きい状態となっている. また, (ii)相 互相関法を用いた解析においては, 円形組織内 の SWV の平均値は 2.993 m/s (誤差: -25.8 %) となり、理論値とは大きな乖離を有している. せん断波の伝播状況を動画上で確認したとこ ろ,異なる媒質の境界から強い反射が生じるこ とにより, せん断波が干渉を受けて波形の乱れ と信号レベルの低下が生じ、今回の SWV 算出 法においては評価結果に影響を与えることを 確認した.この傾向は、円状組織が多数配置さ れた場合(図7(c)および図8(c))において、より 顕著となっている.

6. まとめ

実際の超音波診断装置の送信音場を模擬し た弾性 FDTD 法を用いて,剛性率の異なる2種 の組織が混在した媒質におけるせん断波の伝 播を計算機シミュレーションで再現し,組織構 造と信号処理が SWV に与える影響を確認した. 微小組織の混在でも SWV は影響を受け,組織

構造の複雑性により影響の程度が変わること, また,その影響はせん断波の毎時の波形を検出 する信号処理法によって大きく異なることが 確認された.今回の検討では,せん断波は媒質 空間上を X 方向に伝播するものであると仮定 し,同一箇所の Y 方向変位を用いて SWV を評 価しているが,実際には円弧上に伝播している ため,その乖離によって SWV 分布に特異な結 果が表れていることも否めない.しかし,せん 断波の伝播方向や変位方向をどのように扱う かは臨床用装置でも多様であるため,今後はそ れらを考慮した追検討を行い,各種の処理条件 によって SWV の評価値にどの程度のばらつき が生じるかについて明確にし,SWV の標準化指 標策定に役立てる.

謝辞

本研究の一部は, JSPS Core to Core Program, JSPS KAKENHI Grant Number 15H03030, 17H05280, 19H04482, 千葉大学グローバルプロ ミネント研究基幹の支援を受けた.

利益相反の有無

開示すべき利益相反状態はない.

文 献

- [1] Mark L. Palmeri, et al.: Guidelines for Finite-Element Modeling of Acoustic Radiation Force-Induced Shear Wave Propagation in Tissue-Mimicking Media, IEEE T. Ultrason., 64(1), 78-92, 2017
- [2] 山川誠: せん断波伝播による超音波エ ラストグラフィの原理, Med. Img. Tech.
 32(2), 75-80, 2014
- [3] 山越芳樹: せん断波伝播による組織弾
 性計測, J. Med. Ultrason., 42(5), 589-597,
 2015
- [4] 佐藤雅弘: FDTD 法による弾性振動・波 動の解析入門,森川出版,2003
- [5] 宇野亨: FDTD 法による電磁界および アンテナ解析, コロナ社, 1998
- [6] 荒木力:エラストグラフィの徹底解説, 秀潤社,2011

Verification of instability factors of shear wave elastography by FDTD

Daiki ITO^{*1}, Atsuko YAMADA^{*1}, Takuma OGURI^{*1,3}, Kenji YOSHIDA^{*2}, Tadashi YAMAGUCHI^{*2}

*1 Graduate School of Science and Technology, Chiba University *2 Center for Frontier Medical Engineering, Chiba University

*3 GE Healthcare Japan Co.,Ltd.

Shear wave elastography (SWE), which utilizes the shear wave velocity (SWV) generated in tissue by acoustic radiation force, has been used in clinical practice as a method for evaluating the stiffness of tissues by ultrasound. However, SWV calculation dramatically depends on the diagnosis equipments because of the difference of the algorithms of pre and post signal prosessing, and the calculated SWV is also unstable in some observation targets due to the physical properties and the structure of the tissue. In this report, the relationship between the methods of signal processing and the calculated SWV was investigated by means of simulated shear wave propagation in tissue with the elastic Finite-Difference Time-Domain (FDTD) method. Propagation of shear wave in biological tissue was simulated under the transmission condition which mimicked the acoustic radiation force distribution of actual diagnosis equipment. The results show that the calculated SWV differs between the two signal processing, and this difference becomes remarkable as tissue structure becomes complicated.

Key words: ultrasound, elastography, shear wave, elastic FDTD, viscoelasticity

著者紹介

伊藤 大貴 (いとう だいき)

2019 年千葉大・工学部・メディカルシ

2018 年千葉大・工学部・メディカルシ ステム工学科卒.現在.千葉大学院・融 合理工学府・基幹工学専攻・医工学コー ス在籍中.日本音響学会会員

大栗 拓真(おおぐり たくま) 2015 年千葉大院・工学研究科・メディ カルシステムコース修了.現在,GE Healthcare Japan 超音波製品開発部, 千葉大学院・融合理工学府・基幹工学専 攻・医工学コース在籍中.汎用超音波診 断装置の開発に従事.日本超音波医学会 会員.

吉田 憲司 (よしだ けんじ) 2009 年 同志社大学大学院生命医科学 研究科・生命医科学専攻修了.博士(工 学).現在,千葉大・フロンティア医工 学センター・助教.医用超音波,特に造 影超音波の研究に従事.IEEE,日本音響 学会,日本超音波医学会,応用物理学 会,各会員.

山口 **匡** (やまぐち ただし) 2001 年千葉大・自然科学研究科・情報 科学専攻修了. 博士(工学). 現在, 千 葉大学フロンティア医工学センター・教 授. 医用超音波,特に組織性状診断と音 響特性評価の研究に従事. IEEE・Senior member, IEICE・Senior member、超音波 医学会・理事,音響学会・超音波/アコ ースティックイメージング委員など.

表現学習と SVM による胃壁マイクロ CT 像の

半教師ありセグメンテーション手法

御手洗 翠^{*1} 小田 紘久^{*1} 杉野 貴明^{*1} 守谷 享泰^{*1} 伊東 隼人^{*1} 小田 昌宏^{*1} 小宮山 琢真^{*2} 森 雅樹^{*3} 高帛 博嗣^{*4} 名取 博^{*5} 森 健策^{*1,6,7}

要旨

本稿では、Spherical K-means (SpK) による表現学習と SVM を用いた胃壁 μ CT 像から粘膜層、粘膜下層、 筋層及び腫瘍を半教師ありで抽出する手法について報告する. μ CT 画像は μ m オーダーで標本を 3 次元的 に観察可能であり、胃壁 μ CT 像から腫瘍及び層構造を抽出することで腫瘍の立体的構造把握が可能とな る.しかし、豊富なラベルデータを作成するのは容易ではないため、教師ありの抽出手法を用いるのは難し い.また、胃壁 μ CT 像はコントラストが低いことから、教師なしの抽出手法で精度良く抽出することは困 難である。そこで本手法では、対象画像とごく少量のラベルデータを利用する半教師ありの抽出手法によ り問題の解決、抽出精度の向上を図った.本手法は(1) SpK による表現学習、(2) 特徴抽出、(3) SVM を用い たラベルの割り当ての 3 段階から成る.本手法を胃壁 μ CT 像に適用した結果、粘膜層、粘膜下層、筋層及 び腫瘍の抽出の F 値の平均がそれぞれ 59.6%、41.9%、70%、32.3%であった.

キーワード:マイクロ CT, セグメンテーション, 胃壁, 半教師あり学習

1. はじめに

究センター

胃癌診断において,胃壁の顕微鏡画像を用い た診断はその後の治療方針の決定に重要であ る.顕微鏡画像では,μmオーダーで胃壁の微 細構造を2次元的に確認できる.しかし,圧挫

*1 名古屋大学大学院情報学研究科
〔〒464-8601 名古屋市千種区不老町〕
e-mail: mmitarai@mori.m.is.nagoya-u.ac.jp
*2 名古屋大学大学院医学系研究科
*3 札幌厚生病院
*4 札幌南三条病院
*5 恵和会西岡病院
*6 名古屋大学情報基盤センター
*7 国立情報学研究所医療ビッグデータ研

などの人工的な変化が加わることがあるので、 その診断,解釈は慎重でなければならない[1]. 胃壁のµCT 像では、胃壁の微細構造を非破壊 的に3次元で確認できるため, 腫瘍の立体的構 造把握が可能であると考えられる.しかし、胃 壁のマイクロ CT 像を読影できる医師が少ない ため、ラベルデータの作成が容易ではことから、 教師あり学習を用いることが難しい.また、粘 膜層,粘膜下層,筋層及び腫瘍の濃度値の差が 小さい、パラフィン領域と胃壁領域のコントラ ストが低いなどの点から教師なし抽出手法を 用いて精度良く各組織を抽出することは困難 である. そこで,本研究では Spherical K-means (SpK)による表現学習を用いた教師なし抽出手 法[2]とごく少量のラベルデータを利用し、粘膜 層,粘膜下層,筋層及び腫瘍を精度良く抽出す る半教師あり抽出手法を提案する.

2. 手法

本手法は、入力された胃壁マイクロ CT 像と 1スライスをアノテーションしたラベルから, 胃壁の各組織を抽出する. 前処理として異なる スライスの情報を用いたノイズ除去を行う. 前 処理後の画像からパッチを切り出し, SpK を実 行することで、各クラスの重心を算出する. 各 クラスの重心は特徴抽出フィルタとして利用 する[2]. 入力画像のクラス番号のラベルが存在 する領域からパッチを切り出し, SpK で得られ た重心をフィルタとして適用し,特徴抽出を行 う.得られた特徴量とパッチを切り出した位置 のラベルをSVMの訓練データとして入力する. 入力画像の全領域から切り出したパッチにフ ィルタを適用し、特徴量を抽出する. 訓練され た SVM に全てのパッチから得られた特徴量を テストデータとして入力し、分類結果をラベル としてパッチの切り出した位置に割り当てる.

3. 実験と結果

1人の胃癌患者から摘出した胃壁を固定した3つのパラフィンブロックのマイクロCT像に本手法を適用した.SpKに用いたパッチサイズ5×5×5 voxels,特徴抽出のパッチサイズ41×41×13 voxels,SVMの訓練に用いたパッチ数1500で実験を行った.粘膜層,粘膜下層,筋層及び腫瘍の抽出結果についてF値で評価を行った.評価値を表1に,抽出結果の例を図1に示す.

4. 考察

提案する手法ではマイクロ CT 像から濃度値 の差異が少ない胃壁の層構造を抽出すること が可能であった.しかし, Case2 (表 1)のよう に癌によって層構造が乱れている胃壁につい ては各組織抽出の精度が低い結果となった.こ れは粘膜下層が細くなり,濃度値の差が無い粘 膜層と筋層が接することで,それぞれの領域か ら抽出される特徴量が非常に類似し,識別が困 難になるためであると考えられる.また,ノイ ズの影響により組織の境界が曖昧になってい る症例に関しても精度が低くなった.

5. むすび

本稿では、SpK による表現学習と SVM を用

いて胃壁マイクロ CT 像から各組織を抽出する 手法を提案した.今後は層が乱れている胃壁の 抽出精度向上のため,胃壁の層構造をルールと して利用することを検討する.また,ノイズの 影響により境界が曖昧になっている症例への 対応として境界を強調する処理を追加するこ とで精度の向上を目指す.

謝辞

利益相反の有無 なし

本研究の一部は堀科学芸術振興財団, JSPS/MEXT 科研費 (26108006, 17K20099, 17H00867), AMED (19lk1010036h0001), ならび に JSPS 二国間交流事業によった.

文献

- [1] 日本胃癌学会(編):胃癌治療ガイドライン医師用.改訂第3版,2010
- Moriya T, Roth HR, Nakamura S, et al.: Unsupervised pathology image segmentation using representation learning with spherical k-means. SPIE Medical Imaging 2018 Digital Pathology 10581: 1058111, 2018

	粘膜層	粘膜下層	筋層	腫瘍
	[%]	[%]	[%]	[%]
Case1	69.1	49.7	77.3	40.4
Case2	39.9	21.9	65.0	24.2
Case3	69.8	54.1	67.8	-
平均	59.6	41.9	70.0	32.3

表1 提案手法による各組織の F 値

図1 胃壁マイクロ CT 像の例.粘膜層は緑色,粘膜 下層が青色,筋層が黄色,腫瘍が赤色のラベルであ る.(a)入力画像.(b)正解ラベル.(c)提案手法によ る抽出結果.

(b)

(c)

(a)

Semi-supervised Segmentation of Stomach Wall on Micro-CT Volumes

using Representation Learning and SVM

Midori MITARAI ^{*1}, Hirohisa ODA^{*1}, Takaaki SUGINO ^{*1}, Takayasu MORIYA ^{*1}, Hayato ITOH ^{*1}, Masahiro ODA ^{*1}, Takuma KOMIYAMA ^{*2}, Masaki MORI^{*3}, Hirotsugu TAKABATAKE ^{*4}, Hiroshi NATORI ^{*5} and Kensaku MORI ^{*1,6,7}

- *1 Graduate School of Informatics, Nagoya University
- *2 Nagoya University Graduate School of Medicine
- *3 Sapporo-Kosei General Hospital
- *4 Sapporo Minami-sanjo Hospital
- *5 Keiwakai Nishioka Hospital
- *6 Nagoya University Information Technology Center
- *7 Research Center for Medical Bigdata, National Institute of Informatics

In this paper, we report a semi-supervised segmentation method of the mucosa layer, submucosa, muscle layer and tumor from stomach wall μ CT volumes using representation learning by Spherical K-means (SpK) and SVM. μ CT scanner enables the 3D visualization in μ m order, and the three-dimensional structure of the tumor can be grasped by segmenting the tumor and layer structure from the stomach wall μ CT volume. However, application of supervised methods for segmenting them is not suitable. Because creating enough labeled data for training is difficult. In addition, it is difficult to segment the mucosa layer, submucosa, muscle layer and tumor and layer structure's by using unsupervised segmentation method because contrast of intensities between tumor and layer structure's is low. Therefore, in this method, we try to solve the problems and improve the segmentation accuracy by employing a semi-supervised segmentation method using a very small amount of label data. This method consists of three steps including (1) representation learning, (2) feature extraction and (3) label assignment. As a result of applying the proposed method to stomach walls in μ CT volumes, the averages of F-values of mucosa layer, submucosa, muscle layer and tumor segmentation results were 59.6%, 41.9%, 70%, and 32.3%, respectively.

Key words: Micro CT, Segmentation, Stomach wall, Semi-supervised learning

テンプレート(全ての原稿の種類に共通) Ver. 2.1 (2019.3.28 改訂)

MR 画像と病理画像の統合による

膵癌腫瘍の多重解像度モデルの構築

下村 智茂*1 マウリシオ クグレ*1 横田 達也*1

岩本 千佳*2 大内田 研宙*2 橋爪 誠*2 本谷 秀堅*1

要旨

本研究では膵癌腫瘍の多重解像度モデルを構築する. 膵癌は5年生存率が最悪であり、その機序の解明 の為に基礎研究が盛んに成されている.本研究で構築する多重解像度モデルは膵癌腫瘍のMRI 画像と対応 する顕微鏡病理画像との同時確率分布を表現するモデルである.この為に、低分解能だが非侵襲なMRI 画 像と、高分解能だが侵襲的にしか取得できない病理画像とを統合する.これによるMRI 画像と病理画像と の関係解明が本研究の目的である.本研究ではMRI 画像と病理画像との位置合わせにより作成されたデー タセットを用いる.Generative Adversarial Network によりMRI 画像の画素とHE 染色病理画像の同時確率分 布を推定し、MRI 画像の1ボクセルから病理画像のパッチ群を推定するシステムを構築したので、その結 果を報告する.

キーワード:病理画像, 膵癌, KPC マウス, 生成モデル, Generative Adversarial Networks

1. はじめに

膵癌は5年生存率が癌の中で最低で基礎研究 が盛んに成されており,我々は膵癌の成長や転 移などのマクロな機能と細胞レベルのミクロ な解剖構造との関係を表す膵癌の多重解像度・ 経時変化モデルを構築している.このモデルは 膵臓の経時 MRI 画像と摘出した膵臓の顕微鏡 病理画像より構築する.MRI 画像は非侵襲で膵 癌腫瘍の経時変化や体内における腫瘍外形を 観察可能となる.ただし空間分解能は 0.1536×0.1536×0.5mm/voxel で腫瘍内部の構造 の観察はできない.一方,顕微鏡病理画像は侵 襲的で膵臓を摘出後,薄切し顕微鏡を用いた撮 影により取得する.外形の観察は難しいが空分

*1 名古屋工業大学

解能は 1.47×1.47×4μm/voxel と高く各種染色よ り部位毎に異なるミクロ構造を観察できる. 本研究の目的は MRI 画像の各位置と対応す る病理画像との同時分布を表す多重解像度モ デルの構築である.これは MRI 画像からの対応 病理画像パターンの予測に有用であり,各ボク セルから病理画像を一意に推定する代わりに, 観察されうる病理画像分布を予測する.図1に 示す MRI 画像の腫瘍領域と対応付けした病理 画像を用いてモデルを構築する.このモデルは ボクセルを指定すると確率分布に従い病理画 像パッチ群を取得可能である為, MRI 画像から の病理画像群の生成モデルでもある.

図1 MRI 画像(左)と対応付けをした病理画像(右)

^{*2} 九州大学

2. Conditional α-GAN による膵癌腫瘍の多重 解像度モデルの構築

本研究では多重解像度モデル構築の為に α-GAN[1]を利用する. 隠れ変数を利用した生成モ デルには Variational Auto Encoder(VAE)[2] や Generative Adversarial Network(GAN)[3] がある が, VAE はボケた画像が生成されやすく GAN は mode collapse が生じる. α-GAN では VAE と GAN を組み合わせこれらの欠点に対処する.

α-GAN は真だが未知の分布 $p^*(x)$ に従う観測 データxを隠れ変数 $z \sim p(z)$ に写像する $q_\eta(z|x)$ を表す Encoder と隠れ変数よりデータを生成す る Generator G_{θ} , データが $p^*(x)$ に従うか Generator より生成されたかを識別する Discriminator D_{ϕ} , 隠れ変数が Encoder かp(z)よ り生成されたかを識別する Code Discriminator C_{ω} の4つのネットワークから成る.また,それ ぞれパラメータ η , θ , ϕ , ω を持つ.本研究では 条件変数yを導入した Conditional α -GAN を利用 し, 誤差関数を次のように定義する.

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\eta}) = \mathbb{E}_{q_{\boldsymbol{\eta}}(\boldsymbol{Z}|\boldsymbol{X}, \boldsymbol{y})} \left[-\lambda \parallel \boldsymbol{X} - \mathcal{G}_{\boldsymbol{\theta}}(\boldsymbol{Z}|\boldsymbol{y}) \parallel_{1} + \log \frac{\mathcal{D}_{\boldsymbol{\theta}}(\mathcal{G}_{\boldsymbol{\theta}}(\boldsymbol{Z}|\boldsymbol{y}))}{1 - \mathcal{D}_{\boldsymbol{\theta}}(\mathcal{G}_{\boldsymbol{\theta}}(\boldsymbol{Z}|\boldsymbol{y}))} + \log \frac{\mathcal{C}_{\boldsymbol{\omega}}(\boldsymbol{Z}|\boldsymbol{y})}{1 - \mathcal{C}_{\boldsymbol{\omega}}(\boldsymbol{Z}|\boldsymbol{y})} \right]$$
(1)

本研究では膵癌の MRI 画像の各位置から病 理画像を推定する生成モデルを作成する. MRI 画像の lvoxelに対し病理画像の 104×104pixelの 領域が対応しており、膵癌腫瘍は中心に近づく につれて構造が変化する為、輝度値と各スライ スでの腫瘍外縁部からの距離をボクセルから 得られる情報として使用する.

3. 実験結果

学習データは約 200 万個のサンプルからなり, この内 8 割を訓練に 2 割をテストに使用した. 訓練時は病理画像に回転,反転, 32x32pixel の クロップをランダムに行い学習係数 0.0008 の Adam を用いて 10 エポック学習を行った. 隠れ 変数は 64 次元で標準正規分布に従うとした.

図2に無作為に選択した目標画像と学習した モデルによる復元結果を示す.擬似画像はボケ てはいるが大凡の構造は復元できている.次に 同じボクセル条件の下で画像を並べ分布を視

図3 目標病理画像分布(左)と擬似病理画像分布(右)

覚的に比較し,結果を図3に示す.どちらの分 布でも薄桃色と紫色の病理画像が同量ずつ含 まれ,MRI 画像と病理画像の分布は完全ではな いが捉えられている.擬似生成モデルは大まか な特徴を獲得できている為,MRI 画像と病理画 像の同時確率分布の記述が可能となった.

4. まとめ

本研究は MRI 画像と病理画像の同時分布を 表現する多重解像度モデルの構築を目的とし た.この為に MRI 画像のボクセルから病理画像 パッチを推定する生成モデルを作成し視覚的 な同時分布の確認により評価を行った.今後は 精度向上や定量評価方法の検討が課題となる. **謝辞**

本研究は JSPS 科研費 26108003 の助成を受けたものです.

利益相反の有無

なし

文献

[1] M. Rosca, B. Lakshminarayanan, D. Warde-Farley, et al: Variational Approaches for Auto- Encoding Generative Adversarial Networks, arXiv e-prints, p.arXiv:1706.04987, June 2017.

[2] D.P. Kingma and M. Welling: Auto-Encoding Variational Bayes, arXiv e-prints, p.arXiv:1312.6114, Dec. 2013.

[3] I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, et al: Generative Adversarial Networks, arXiv e-prints, p.arXiv:1406.2661, June 2014.

Construction of a Multiscale Model of Pancreatic Tumors by

Integration of MR and Pathological Images

Tomoshige SHIMOMURA^{*1}, Mauricio KUGLER^{*1}, Tatsuya YOKOTA^{*1}, Chika IWAMOTO^{*2}, Kenoki OHUCHIDA^{*2}, Makoto HASHIZUME^{*2}, and Hidekata HONTANI^{*1}

*1 Nagoya Institute of Technology

*2 Kyushu University

In this paper, we construct a multiscale model of pancreatic tumors. Pancreatic tumors are the worst five-year survival rate and have been researched to clarify its mechanism. Our multiscale model is a model that represents the joint distribution between MRI images of pancreatic tumors and the corresponding microscopic pathology images. For constructing the model, we integrate low resolution but non-invasive MRI images and pathology images with high resolution but invasively. The purpose of this study is to clarify the relationship between MRI images and pathological images of pancreas tumors by this model. In this study, we use a data set created by alignment of MRI images and pathological images. We construct a system that predicts pathological image pathces from 1 voxel of MRI images by estimating the joint distribution of voxel values of MRI images and HE stained pathological images with generative adversarial networks, and report the result.

Key words: Pathology images, Pancreas Tumors, KPC mouse, Generative model, Generative Adversarial Networks

著者紹介

下村 智茂 (しもむら ともしげ) 2017 年名古屋工業大学・工学部・情報 工学科卒. 2017 年同大大学院博士前期課 程・工学研究科・情報工学専攻修了.現 在,同大大学院博士後期課程・工学研究 科・情報工学専攻在籍. 2018 年電子情報 通信学会医用画像処理研究会奨励賞受 賞
機械学習を用いた人工膝関節画像からの機種の同定 ~マハラノビス距離による識別効果と CNN の適用~

岸野 万由子*1 山崎 隆治*1,2 冨田 哲也*3

佐藤 嘉伸*4 菅本 一臣*3

要旨

現在, 我々は, 1 方向 X 線透視画像と人工膝関節 CAD (Computer Aided Design) モデルを用いた 2D/3D レ ジストレーションに基づく人工膝関節 3 次元運動計測の全自動化に向けていくつかの要素技術の開発を行 っている. その一つとして, X 線画像から人工膝関節の種類(タイプ)を識別,同定することは重要であ る. そこで本研究では,多種類の人工膝関節のシルエット画像(シミュレーション画像)を用いて機械学 習による識別性能の基礎的な検討を行った. 具体的には,マハラノビス距離による識別効果と,畳み込み ニューラルネットワーク (CNN: Convolutional Neural Network) による識別性能について検証を行った. 結 果として,2つの特徴量を用いたマハラノビス距離による識別では,ユークリッド距離による識別に比べ, 誤識別が減少,識別性能が向上することが分かった.また,CNN による識別では,さらに識別率が向上し, その効果が確認された.

キーワード:人工膝関節画像,パターン認識,マハラノビス距離, CNN

1. はじめに

術後人工膝関節の3次元的な運動情報を正 確かつ定量的に把握することは,最適な人工 膝関節の開発や手術手技の評価等を行う上で

*1 埼玉工業大学大学院工学研究科情報 システム専攻

〔〒369-0293 埼玉県深谷市普済寺 1690〕 e-mail: f9004mxm@ sit.ac.jp

*2 埼玉工業大学工学部情報システム学 科

e-mail: yamazaki@ sit.ac.jp

*3 大阪大学大学院医学系研究科運動器 バイオマテリアル学

*4 奈良先端科学技術大学院大学情報科 学研究科

非常に重要である.我々はこれまでに、術後 人工膝関節の正確な3次元運動計測を実現 するため、1 方向 X 線透視画像と人工膝関節 CAD (Computer Aided Design) モデルを用い た2D/3Dレジストレーション手法を開発して きた[1,2]. 現在, その 3 次元運動計測の全自 動化に向けていくつかの要素技術の開発を行 っており,その一つとして X線画像から人工 膝関節の種類(タイプ)を識別,同定するこ とは重要である.近年,機械学習・AI(人工 知能) 技術を用いて画像中の対象物体を識 別・分類する研究が盛んに行われている. そ こで本研究では、多種類の人工膝関節のシル エット画像(シミュレーション画像)を用い て(図1),機械学習による識別性能の基礎的 な検討を行う.具体的には、学習データのク ラス分布を考慮したマハラノビス距離による

Fタイプ Nタイプ Pタイプ Vタイプ
 図1様々なタイプの人工膝関節シルエット
 画像(大腿骨コンポーネント).

識別効果, 畳み込みニューラルネットワーク (CNN: Convolutional Neural Network) に よる識別性能について検証を行ったので報告 する.

2. 方法

以下,本研究で使用されるマハラノビス距離,および機械学習法の一つである CNN について述べる.

1) マハラノビス距離

マハラノビス距離とは、学習データのクラ ス分布を考慮した識別を行う際に有効な距離 である.正規分布を用いており広がりの大き い分布に対して距離が短くなるので、一般的 に用いられるユークリッド距離に比べ、精度 の良い結果が得られる.以下にマハラノビス 距離の求め方について示す.

マハラノビス距離を求めるには、まず、ク ラスごとの学習のための入力画像群の分布か ら平均値と分散・共分散を求める. クラス *c* に属し、*K*次元の $N^{(c)}$ 個の学習用入力画像群 を $x_n^{(c)} = (x_{n1}, x_{n2}, ..., x_{nK})^T, n = 1, ..., N^{(c)}$ とす ると、クラスの平均ベクトル $M^{(c)}$ と分散共分 散行列 $S^{(c)}$ は以下の式になる[3].

$$M^{(c)} = \left(M_1^{(c)}, M_2^{(c)}, \dots, M_K^{(c)}\right)^T$$
(1)

ただし,
$$M_1^{(c)} = \frac{1}{N^{(c)}} \sum_{n=1}^{N^{(c)}} x_{ni}$$

$$S^{(c)} = \begin{bmatrix} S_{11}^{(c)} & S_{12}^{(c)} \cdots & S_{1K}^{(c)} \\ S_{21}^{(c)} & S_{22}^{(c)} \cdots & S_{2K}^{(c)} \\ \vdots & \vdots & \ddots & \vdots \\ S_{K1}^{(c)} & S_{K2}^{(c)} \cdots & S_{KK}^{(c)} \end{bmatrix}$$
(2)

ただし,

図 2 CNN の概要図.

$$S_{ij}^{(c)} = \frac{1}{N^{(c)}} \sum_{n=1}^{N^{(c)}} (x_{ni} - M_i^{(c)}) (x_{nj} - M_j^{(c)})$$

式(1)および式(2)より,マハラノビス距離は以下の式になる.

$$d_m^{(c)}(x) = \left(x - M^{(c)}\right)^T \left(S^{(c)}\right)^{-1} \left(x - M^{(c)}\right) \quad (3)$$

2) CNN

CNN は,通常のニューラルネットワークと は違い,全結合層だけでなく,畳み込み層と プーリング層から構成されるニューラルネッ トワークである.指定されたフィルタと呼ば れる小領域を畳み込み,特徴量とするため, ニューラルネットワークのように1ピクセル に対する特徴量よりも,画像の傾向を知るこ とができる(図 2).

3. 実験および結果

本実験では、図1に示す4タイプ(F.N.P.V) の人工膝関節のシルエット画像(シミュレー ション画像) を生成,使用した.実際の人工 膝関節 X 線画像と同様のシルエット画像(姿 勢画像) を得るために, X 線撮影空間をコン ピュータ内に再現し(図3),人工膝関節 CAD モデルをX軸およびY軸回りに±5°および± 10°の2パターンの範囲について,各範囲で1° ごとに回転、中心投影描画することにより生 成画像を得た.X,Y軸回りに±5°の範囲で 回転させた場合には、各タイプに対して121 枚の画像を生成,実験には計484枚(4×121) を使用した. また, X, Y 軸回りに±10°の範 囲で回転させた場合には、各タイプに対して 441 枚の画像を生成,実験には計 1764 枚(4 ×441)を使用した.

図 3 コンピュータ内に再現した X 線撮影空間と生成画像.

1) マハラノビス距離による識別効果

本実験では、人工膝関節シルエット画像の 識別に役立つと予想される特徴量として、"複 雑度"および"外接長方形に占めるシルエ ットの領域比"の2つの特徴量を用いた.図 4および図5に±5°、±10°の範囲で回転させ たときに生成した画像の各タイプにおける特 徴量の分布をそれぞれ示す.

図 4 ±5°の範囲で回転させたときに生成した画像の各タイプにおける特徴量の分布.

図 5 ±10°の範囲で回転させたときに生成した画像の各タイプにおける特徴量の分布.

484枚(±5°の範囲で生成)および1764枚 (±10°の範囲で生成)の画像に対して,一つ 抜き交差検証 (leave-one-out cross validation) を行い,ユークリッド距離およびマハラノビ ス距離を用いた場合の識別性能,効果を検証 した.結果として,マハラノビス距離による 識別では,ユークリッド距離に比べて誤識別 が減少し(±5°の範囲で回転させたときには Nタイプの7枚のみ,±10°の範囲で回転させ たときには4タイプ合わせて271枚が誤識別), 識別性能がそれぞれ 94.4%から 98.6% (± 5°の範囲の場合),71.0%から 84.6% (±10° の範囲の場合) に向上することが分かった (表 1).

表1 ±5°, ±10°の回転範囲における生成画 像を用いたユークリッドおよびマハラノビス 距離による識別性能.

2つの特徴量("複雑度"および "外接長方形に占めるシルエットの		各タイプで 誤識別された枚数				識別率
領域比")	F	N	P	V	(%)	
±5°の回転範囲	ユークリッド距離	5	8	6	8	94.4
における生成画像	マハラノビス距離	0	7	0	0	98.6
±10°の回転範囲	ユークリッド距離	73	146	208	84	71.0
における生成画像	マハラノビス距離	31	96	131	13	84.6

2) CNN による識別性能

前述の実験結果をもとに、本実験では、2 つの特徴量に基づくマハラノビス距離を用い て誤識別された画像(±5°の範囲で回転させ たときには7枚,±10°の範囲で回転させたと きには271枚)に対して CNN による識別が 可能かどうか調査した.ネットワークとして は、畳み込み層からプーリング層の階層数を 1とした単純なネットワークを構築、使用し た(フィルタサイズは5×5,フィルタ数は2 を適用).

表2に結果を示す.上段2つが,それぞれ ±5°および±10°の回転範囲における生成画 像を用いた場合の一つ抜き交差検証の結果を 示し,表1のマハラノビス距離を用いて誤識 別された全ての画像に対して識別が成功する ことが分かった. また,下段2つは,参考 として,±10°の回転範囲の生成画像を用いた 場合の5-fold cross validation における,単純 なネットワークおよび AlexNet[4]を使用した ときの識別性能を示す.本研究で構築した単 純なネットワークでは全ての画像に対して識 別が成功したが (100%), AlexNet を用いた場 合,誤識別される画像が存在した.

表 2 \pm 5°, \pm 10°の回転範囲における生成画 像を用いた CNN による識別性能. 上段 2 つ は leave-one-out cross validation, 下段 2 つは 5-fold cross validation による性能を示す.

CNNによる識別		各タイプで 誤識別された枚数				識別率	
			F	Ν	Ρ	V	(%)
	leave-one-out	単純なネットワーク (±5°)	0	0	0	0	100
	cross validation	単純なネットワーク (±10°)	0	0	0	0	100
	5-fold cross	単純なネットワーク (±10°)	0	0	0	0	100
	validation	AlexNet (±10°)	0	2	0	0	99.9

利益相反の有無

なし

4. 考察

本研究では、ユークリッド距離を用いた識 別に比べ、マハラノビス距離を用いた識別で は識別率が向上することが分かった.本実験 で用いた各タイプの2つの特徴量の分布は正 規分布に近いために,分布を考慮したマハラ ノビス距離を用いることで、誤識別が減少し たと考えられる. また, CNN による識別にお いて,単純なネットワークを用いた識別では, マハラノビス距離による識別で用いた特徴量 と同じ数のフィルタ数を用いたが,その結果, 識別率が 100%となる興味深い結果が得られ た.これにより、ヒトの感覚とは異なる最適 な特徴量が存在, 選択されることが示唆され た. 一方で AlexNet を用いた識別では誤識別 された画像が数枚存在した. これはネットワ ークの構成上, 畳み込みが多いために画像の 解像度が小さくなりすぎて,各タイプの画像 の特徴が減ってしまい、識別が難しくなった ためであると考えられる.このことから, CNN による識別において識別率の向上を図 るためには、最適なネットワークを構築、選 択する必要があると考えられる.

文 献

- [1] Yamazaki T, Watanabe T, Nakajima Y, et al.: Improvement of depth position in 2-D/3-D registration of knee implants using single-plane fluoroscopy. IEEE Trans Med Imag 23: 602-612, 2004
- [2] Yamazaki T, Futai K, Tomita T, et al.:
 3D kinematics of mobile-bearing total knee arthroplasty using X-ray fluoroscopy. IJCARS 10: 487-495 2015
- [3] 奥富正敏,他:ディジタル画像処理(改 定新版).公益財団法人 画像情報教育 振興協会(CG-ARTS 協会), 2015
- Krizhevsky A, Sutskever I, Hinton GE: ImageNet classification with deep convolutional neural networks. In Proc. Advances in Neural Information Processing Systems 25:1090–1098, 2012

Identification of type from total knee arthroplasty images using machine learning ~Discrimination effect

by Mahalanobis distance and application of CNN~

Mayuko KISHINO^{*1}, Takaharu YAMAZAKI^{*1,2}, Tetsuya TOMITA^{*3}, Yoshinobu SATO^{*4}, Kazuomi SUGAMOTO^{*3}

*1 Department of Information Systems, Saitama Institute of Technology Graduate School of Engineering

*2 Department of Information Systems, Saitama Institute of Technology

*3 Division of Orthopaedic Biomaterial Science, Osaka University Graduate School of Medicine

*4 Graduate School of Information Science, Nara Institute of Science and Technology

We have developed some elemental techniques for full automation of 3D knee kinematic measurement based-on 2D/3D registration using a single-plane fluoroscopic image and computer assisted design (CAD) model of the knee implant. As one of them, to identify the type of knee implant from X-ray image is important. In this study, we basic examined the discrimination performance by machine learning, using silhouette (simulation) images of many kinds of artificial knee implant. Specifically, we verified about the identification effect by Mahalanobis distance and the discrimination performance by CNN. As a result, it was found that misclassification was reduced and discrimination performance was improved in identification by Mahalanobis distance compared to identification by Euclidean distance using two feature quantities. In addition, for identification by CNN, the identification rate was further improved, and its effect was confirmed.

Key words: Total knee arthroplasty images, Pattern recognition, Mahalanobis distance, CNN

所見テキスト解析を用いる H&E 染色病理画像からの

免疫染色群推定

黄 果葡*1 橋本 典明*1 横田 達也*1 中黒 匡人*2

高野 桂^{*2} 中村 栄男^{*2} 竹内 一郎^{*1} 本谷 秀堅^{*1}

要旨

本研究では、悪性リンパ腫のサブタイプ同定に用いる免疫染色群を HE 染色画像より推定する手 法を提案する。サブタイプの同定には多種類の免疫染色を施した病理画像を観察しなければなら ず、サブタイプ同定に必要な免疫染色群は症例ごとに異なる。病理医はまず HE 染色画像を観察 し、その結果に基づきサブタイプの同定に必要な免疫染色群を定めている。本研究では、HE 画 像より悪性リンパ腫同定に必要な免疫染色群を推定する機械を構築するために、HE 画像と所見 テキストの組を利用する。同一サブタイプの悪性リンパ腫であっても、HE 画像に依存してサブ タイプ同定に用いる免疫染色群が異なる症例がある.このことに注目することにより、HE 染色 画像からの免疫染色群推定の容易さを症例ごとに定量評価する試みについても紹介する.

キーワード:悪性リンパ腫、免疫染色, CNN、決定木, 数量化Ⅲ類

1. はじめに

悪性リンパ腫は血液細胞に由来する癌の一 つであり、全身のいずれの場所にも病変が発 生する可能性があり、形態や性質によって70 種類以上のタイプに分類される[1].悪性リン パ腫の治療はどのタイプに分類されるかによ って、大きく治療方針が異なるため、正確な 診断には病理顕微鏡検査による腫瘍の観察が 必要となる.病理顕微鏡検査では、H&E 染色 による観察結果に基づいて.更に110 ある免 疫染色のうち幾つかを選択して染色を行うこ とで腫瘍の性状評価を行い、病気のタイプの 決定を行う.本研究では、HE 染色画像から

*1 名古屋工業大学

〔〒466-8555 名古屋市昭和区御器所町〕 e-mail: <u>k.ko.212@nitech.jp</u> e-mail: hontani@nitech.ac.jp

*2 名古屋大学医学部附属病院

の免疫染色群を推定し、サブタイプと免疫染 色群の組から症例ごとに「典型度」を評価し た.悪性リンパ腫の診断では、サブタイプが 同じでも免疫染色群は症例ごとに異なる.な ぜなら、診断が容易であるかによって、用い る免疫染色の組が異なり、染色組間の距離が 変化するためである.したがって、症例の免 疫染色の組と組の間の距離を数量化Ⅲ類によ り求め、各サブタイプの確率密度関数をカー ネル密度推定により求めることで「典型度」 を定義し、予測器への入力に用いることで免 疫染色群予測の容易さを定量評価した.

2. 決定木による免疫染色の予測対象決定

所見データから得られた患者の病名と免疫 染色の結果を用いて決定木の構築を行う.決 定木学習アルゴリズムには C4.5[2]を使用し た.構築された決定木は H&E 染色病理画像 が根ノードとなり,その下に木が複数構築さ れる.木のノードは免疫染色となっており, 子ノードへと伸びる枝は当該免疫染色での染 色結果を示し,葉ノードは病名となっている. 本研究では H&E 染色病理画像から推定でき る免疫染色は根ノードにより近い免疫染色で あると推定できる.構築された決定木の結果 から,6種類の免疫染色を推定対象とする.

3. 数量化皿類による症例の典型度評価

数量化Ⅲ類を用いて症例間と免疫染色間の 距離評価を行った.結果から,3 種類の腫瘍 な病気タイプに分かれる図1のような散布図 が得られた.

図1免疫染色の組により定めた距離に基づく症例 の散布図.各点が症例を表し、色が病型を表 す.

腫瘍な病気タイプ3種類について散布図か らカーネル密度推定を行い,病気毎の確率密 度関数を計算する.各病気の確率密度関数に 症例の座標を代入することで症例の出現しや すさを算出することができる.散布図から, 中心部は様々な病気タイプが混在しているた め,中心部以外の症例につては H&E 染色病 理画像からの免疫染色群の予測が容易である と考えられる.本研究では,予測のしやすさ を典型度とし,確率密度関数を用いた典型度 の定義を行った.各病気のタイプの確率密度 関数を $f_{\rm B}$, $f_{\rm T}$, $f_{\rm H}$ とすると, B 細胞リンパ腫 である症例xの典型度は,

$$\frac{f_{\rm B}(\mathbf{x})}{f_{\rm B}(\mathbf{x}) + f_{\rm T}(\mathbf{x}) + f_{\rm H}(\mathbf{x})} \tag{1}$$

として定義される.他の病気タイプについて も同様の計算を行うことで症例の典型度が定 義できる.

4. 畳み込みニューラルネットワークによ る免疫染色の推定

悪性リンパ腫の H&E 染色病理画像をパッ チに切り出した画像を入力とし,決定木学習 によって定めた免疫染6種類を出力とする畳 み込みニューラルネットワークを構築する. また,症例の典型度と免疫染色群予測の難易 度の関係を表すために実験を行った.

5. 実験

病理画像のパッチを入力とした予測器によ る学習結果を示す.学習データとして典型度 の低いものを使用する学習と,高いものを使 用した学習の二種類を行い,精度の比較を行 った.テストデータは共通のものを使用して いる.実験のエポック毎の精度を図2に示す.

図2 症例の典型度の違いによる免疫染色群推定の 実験結果. 左図は典型度の低いデータを用いた学 習結果. 右図は典型度の高いデータを用いた学習 結果を表す.

利益相反の有無

「なし」

文 献

- [1] 悪性リンパ腫 基礎知識:[国立がん研究センター がん情報サービス].
 https://ganjoho.jp/public/cancer/ML/ind
 ex.html. (2019 年 5 月 5 日閲覧)
- [2] J. Ross Quinlan. C4.5: Programs for machine learning. Morgan Kaufmann Publishers, San Mateo, California, 1993.

Immunostaining group estimation from H&E stained pathology images

using findings text analysis

Kaho KO^{*1}, Noriaki HASHIMOTO^{*1}, Tatsuya YOKOTA^{*1}, Masato NAKAGURO^{*2}, Kei KOHNO^{*2}, Shigeo NAKAMURA^{*2}, Ichiro TAKEUCHI^{*1}, Hidekata HONTANI^{*1}

*1 Nagoya Institute of Technology

*2 Nagoya University Hospital

In this study, we propose a method to estimate immunostaining groups used for subtype identification of malignant lymphomas from HE staining images. In order to identify subtypes, it is necessary to observe pathological images subjected to many types of immunostaining, and the immunostaining group required for subtype identification differs from case to case. The pathologist first observes the HE staining image, and based on the result, the immunostaining group necessary for identification of the subtype is defined. In this study, in order to construct a machine to estimate the group of immunostainings necessary for the identification of malignant lymphoma from HE images, we use a set of HE images and findings text . Even in the case of malignant lymphomas of the subtype, there are cases where the immunostaining groups used for subtype identification differ depending on HE images. By focusing on this, we introduce an attempt to quantitatively evaluate the ease of immunostaining group estimation from HE staining images for each case.

Key words: Malignant lymphoma, Immunostaining, CNN, Decision tree, Quantification III,

深層学習を用いた術野映像内肺領域抽出

今西 勁峰*1 武 淑瓊*2 中尾 恵*2 松田 哲也*2

要旨

外科手術の安全性向上のためには血管および腫瘍の三次元構造の正確な把握が必要不可欠である.近年, 術中臓器の変形推定技術が広く研究されており,カメラ画像内における二次元臓器領域が抽出できれば, 臓器の三次元変形推定が可能であることが示されている.しかし,手術時において形状が大きく変化する 肺などの臓器についてはカメラ画像内の臓器領域を精度よく自動抽出する手法が確立されていない.本研 究では,深層学習を用いて,胸腔鏡下肺がん切除術の術中カメラ画像に対し,肺領域を自動抽出可能なモ デルを構築した.過去に実施された肺がん切除術の術中カメラ画像を用いて本モデルを訓練し,検証用症 例の画像を用いて有効性を検証した結果,初期画像に対する肺領域の自動抽出精度,および時系列的な領 域変化を伴う連続画像に対しての自動抽出精度がともに良好であったので報告する.

キーワード:深層学習,手術映像,領域抽出,セグメンテーション,U-Net

1. はじめに

近年,カメラ解像度の向上や手術用ロボットの高性能化により,低侵襲である内視鏡下 での外科手術が一層幅広い診療科で実施され ている.内視鏡下手術の安全性向上において, 関心領域の血管および腫瘍の三次元構造を把 握することが不可欠である.しかし,内視鏡 の狭い術野を通して臓器の一部を視認しなが ら手術を進めなければならず,これを支援す る研究が進められている[1][2][3].

これまでに腹腔鏡画像における肝臓の輪郭 を視覚的な手がかりとしてバーチャルモデル と手術映像との姿勢合わせを目指した研究 [4]が報告されているが,特に肺がんを対象と した呼吸器外科手術等においては,肺内圧の 変化に伴って肺実質が大きく虚脱し,その変 形量が 50%以上と大きいため,腫瘍位置の正

*1 イーグロース株式会社

〔〒604-8006 京都市中京区下丸屋町 403 番地〕

e-mail: k.imanishi@egrowth.co.jp

*2 京都大学大学院 情報学研究科

確な同定には変形推定が必要不可欠である. 近年,1 枚の術中カメラ画像における臓器の シルエットから変形推定が可能であることが 実験的に示されているが[5],臨床利用におい てはカメラ画像内の肺領域の認識が必要であ る.Wuら[6] はグラフカット法とオプティカ ルフロー法を組み合わせることで時系列的に 変化するカメラ画像内の肺領域をトラッキン グする手法を開発した.しかし,開始フレー ムやトラッキングが失敗した際には手動設定 が必要で,自動化には課題が残っている.

本研究では、肺手術の術中カメラ画像に対 し、深層学習を用いて、術野映像内の肺領域 を自動抽出可能なモデルを構築することを目 的とする.深層学習では二次元画像に対する 領域抽出・分割用モデルが多く提案されてお り、医用画像に対してはセグメンテーション モデルとして U-Net[7]が広く用いられている. 術中映像に対しては、U-Net 構造を応用した モデルを用いてリアルタイムで術具領域を抽 出可能な研究[8]も提案されているが、変形量 が大きく、表面模様の個人差の大きい臓器領 域の抽出については対応できていない.本研 究では U-Net を応用した領域抽出モデルを構 築し,実際の肺がん切除術の術中カメラ画像 を用いて本モデルを訓練した上で,検証用画 像に対し良好な精度で肺野領域を抽出するこ とを確認したので報告する.

2. 術野映像内の臓器領域抽出モデル

本研究では、U-Net 構造を用いて、臓器抽 出モデルを2個構築した.モデル1はU-Net 構造をそのまま採用し,予測対象フレーム画 像(256×256×3)を入力とし、予測対象フレー ムにおける肺野領域を出力とするモデルであ り, モデル 2 は[予測対象フレーム(256×256 ×3),参照フレーム+参照フレームにおける 肺野領域(256×256×4)]の2入力から,予測対 象フレームにおける肺野領域を出力とするモ デルである(図1). つまり, モデル1は初期画 像における肺野領域の抽出を目的とするモデ ルであり、モデル2は連続的なフレームの差 異情報を考慮した肺野領域抽出を目的とする モデルである.ただし、初期画像以降の抽出 結果については、2 モデルの出力をアンサン ブル処理した結果を採用する.

図1U-Net構造を持つ映像トラッキング用モデル

3. 学習実施および結果

京都大学医学部附属病院呼吸器外科から胸 腔鏡下肺がん切除術を受けた 25 例の手術動 画の提供を受けて,術具が含まれていないシ ーンを 20~50 フレーム程度ピックアップし,

フレーム画像を抽出した後、手作業によって 各フレームにおける肺野領域の教師データを 作成して学習した.また、学習する際はデー タ拡張手法として,平行移動,アフィン変換, ズーム,コントラスト変更等の処理を行った. なお、ダイス係数を学習および評価に用いた. 2つのモデルを用いて,各症例動画から抽出 した教師データに対し、 交差検証を実施した 結果, ダイス係数は平均 0.954, 最小 0.768, 最大 0.992 であった(表 1). Model2 のみを用 いた方がアンサンブル処理よりも精度が高か ったが、カメラ視点が大きく移動した際や継 続的なトラッキングによる誤差の拡大を抑制 するため、アンサンブル処理を行ったほうが 頑健性は高い傾向にあった. 抽出結果例を図 2 に示す. 抽出結果の傾向として, 変色の少 ない肺に対しては精度良く抽出できているが, 変色や癒着の多い肺については抽出精度は低 かった.抽出精度が低かった症例については,

表1 各モデルおよびアンサンブル処理によ ろ抽出結果(ダイス係数)

31世山加水(ノーイバ)()						
	Model1	Model2	Ensemble			
Average	0.946	0.969	0.954			
Min	0.758	0.897	0.768			
Max	0.991	0.993	0.992			

図1 抽出結果例. (a)良好な抽出結果例および(b)
 精度の低かった抽出結果例. 右:元画像. 左:
 抽出された肺領域(ハイライト部)

他の症例に類似した変色や癒着部がなかった ため、学習パターンが不足し、これらの症例 に対する汎化性能が向上しなかったためと考 える.

4. まとめ

本研究では,術野映像内の肺領域を自動抽 出可能な深層学習モデルを開発した.実際の 手術動画から教師データを生成・学習した結 果,良好な抽出結果が得られることが分かっ た.変色や癒着の多い症例に対しての抽出結 果は低かったが,今後はさらなる症例画像を 追加して学習を行うことで抽出精度を改善可 能であると考える.

謝辞

本研究は, AMED 産学連携医療イノベーション創出プログラム (ACT-M) 「脱気変形肺 に対応した微小結節の術中同定法」の助成に よる.

利益相反の有無

なし.

文 献

- Lin MW, Chen JS: "Image-guided techniques for localizing pulmonary nodules in thoracoscopic surgery", Journal of Thoracic Disease, 8(9): S749-S755, 2016
- [2] Nickel F, Kenngott HG et al.: "Computer tomographic analysis of organ motion caused by respiration and intraoperative pneumoperitoneum in a porcine model for navigated minimally invasive esophagectomy". Surg Endosc 32(10),

pp. 4216-4227, 2018.

- [3] Nakao M, Oda Y, Taura K and Minato K: "Direct Volume Manipulation for Visualizing Intraoperative Liver Resection Process", Computer Methods and Programs in Biomedicine, Vol. 113, No. 3, pp. 725-735, 2014.
- [4] Koo B, Ozgur E, Le Roy B, et al.: "Deformable registration of a preoperative 3D liver volume to a laparoscopy image using contour and shading cues", MICCAI, 2017
- [5] Nakao M, Akira S, Matsuda T: "A simulation study on deformation estimation of elastic materials using monocular images", Int. J. Computer Assisted Radiology and Surgery, 12(1), S257-258, 2017
- [6] Wu S, Nakao M, Matsuda T:
 "Continuous Lung Region Segmentation from Endoscopic Images for Intra-operative Navigation", Computers in Biology and Medicine, Vol. 87, No. 1, pp. 200-210, 2017
- [7] Ronneberger O, Fischer P, Brox T :
 "U-Net: Convolutional Networks for Biomedical Image Segmentation", MICCAI, Vol. 9351, pp234-241, 2015
- [8] Garcia-Peraza-Herrera, L.C., Li W, Fidon L, et al.: "ToolNet: holistically-nested real-time segmentation of robotic surgical tools", IROS, pp5717-5722, 2017

Lung region segmentation of intraoperative images using deep learning

Keiho IMANISHI^{*1}, Shuqiong WU^{*2}, Megumi NAKAO^{*2}, Tetsuya MATSUDA^{*2}

*1 e-Growth Co., Ltd.

*2 Graduate School of Informatics, Kyoto University

Accurately understanding the three-dimension (3D) geometry of vascular structures and tumors is essential for improving the safety of surgery. Recently, techniques for online estimation of organ deformation have been widely studied. Although latest studies have shown that estimation of the 3D deformation of organs is possible from 2D organ regions of intraoperative camera images, segmentation of organ regions that are greatly deformed during treatment from camera images with high accuracy is a technical challenge. This study propose a model that can automatically segment the lung region from intraoperative camera images of endoscopic lung cancer resection using deep learning. We trained and verified the accuracy of the model using intraoperative camera from the initial image and continuous intraoperative images.

Key words: Deep learning, Intra-operative image, segmentation, U-Net

高難易度画素用の損失関数を用いた

セマンティックセグメンテーション

松月 大輔*1 堀田 一弘*1

要旨

セマンティックセグメンテーションは画像中の1 画素ずつを識別し、ラベル付けを行う.当然、画像の 画素毎に識別の難易度の高い箇所もあれば、簡単な箇所もある.通常、セマンティックセグメンテーショ ンのラベル付けは、出力層で出力したいチャンネル数まで次元削減した後に softmax 関数を適用し、各クラ スの確率に変換する.その際、各クラスの確率値が均等に与えられるような箇所は、一般的に識別が難し い箇所であることが多い.そこで我々は、各クラスの確率の最大値に基づき、識別の難しい箇所を強く学 習するような学習法を提案する.評価実験では、「細胞膜」、「細胞核」、「細胞質」を含むデータセットを用 い、従来の学習方法と我々の提案する学習方法の精度比較を行った.その結果、Intersection over Union を 用いた精度評価において提案手法が従来法を上回ることを確認した.

キーワード:細胞画像,セグメンテーション,画素難易度,Deep learning

1. はじめに

近年, Deep Learning の発展と共に様々な業 界において人的労力削減の為に AI による自 動化が行われている. 医療分野では人間には 判断することの難しい CT 画像からの異常検 知を行うことにより, 医師の診断援助が期待 されている. また, 細胞分野においては細胞 画像から「細胞膜」,「細胞核」などを自動分 類するセマンティックセグメンテーションが 注目されており, 研究者が目で見て行ってき た大きな負担を軽減することが可能である. そこで本論文では細胞画像のセマンティック セグメンテーションの精度向上を目指す.

セマンティックセグメンテーションは

*1名城大学 理工学研究科 電気電子工学 専攻〔〒468-8502 愛知県名古屋市天白区 塩釜口 1-501〕〕

e-mail: {140442123@ccalumni, kazuhotta@}. meijo-u.ac.jp Convolutional Neural Network(CNN)[1]の登場 により, Deep Learning を用いた手法が主流と なっており、CNN 構造に基づいた Fully Convolutional Network(FCN)[2]の登場を機に エンコーダー・デコーダー構造を持つアーキ テクチャが多く提案されてきた. SegNet[3]で は FCN のエンコーダー構造に VGG16[4]を応 用しており、車載カメラにおけるセグメンテ ーションにおいて大きな精度向上を示した. 医療画像の分野では、エンコーダー・デコー ダー間に Concatenation を含むことにより, デ コーダー部分で失われる特徴をエンコーダー 部分が補正し、 セグメンテーション精度向上 を実現した U-net[5]が高い有効性を示してい る. 近年ではエンコーダー・デコーダー構造 のうち、エンコーダー部分の特徴抽出を、物 体分類の分野で非常に高い精度を示した ResNet[6]やResNext[7], DenseNet[8]などの非 常に深いネットワークを採用するモデルが多 くみられる. PSPnet[9]ではエンコーダー部分 に ResNet101 を, FC-DenseNet[10]は DenseNet を採用しており,深い特徴抽出がセマンティ ックセグメンテーションにおいても有効性が あることを示した.しかし,これらの手法は セグメンテーション精度を大きく向上させた がその反面,内部パラメータの増加により, 計算コストが非常に大きくかかってしまう問 題点がある.その問題を解決するためには, 学習を効率的に行うことが重要である.

セマンティックセグメンテーションは画像 を1画素ずつ識別, ラベル付けを行う. 当然, 画像の画素毎に識別の難易度の高い箇所もあ れば, 簡単な箇所もある. 通常, セマンティ ックセグメンテーションのラベル付けは, 出 力層で出力したいチャンネル数まで次元削減 した後に softmax 関数を適用し, 各クラスの 確率に変換する. その際, クラス毎の確率値 が均等に与えられるような箇所は, 一般的に 識別が難しい箇所であることが多い. そこで 我々は, 確率の最大値に基づき, 識別の難し い箇所を強く学習することにより学習を効率 的に行う手法を提案する.

本論文の構成は以下の通りである.まず,2 節で関連研究について述べる.次に,3節で 提案手法を示し.4節で実験結果を示す.最 後に結論として,まとめと今後の課題を5節 で述べる.

2. 関連研究

学習を効率的に行うことにより精度向上を 目指す手法は物体分類問題においては様々な 研究が行われている.Curriculum Learning[11] では、識別の簡単な所から学習を実施し、そ の後難しい箇所を学習することにより、人間 の学習に近い形を実現し分類精度向上を示し た.また近年では人間の注意構造をモデル化 した Attention 機構が注目されている.画像分 類コンテストである ILSVRC2017 で優勝した SENet[12]は Residual Attention[13]に channel 毎の注意構造を導入することにより、学習に 重要な箇所をより重点的に学習でき、高い分 類精度を示した.しかし、これらの Attention 機構は複数回の畳み込み処理や全結合層を含 んでおり,注意構造による重点的な学習は可 能であるが,パラメータ数は増加してしまう ため,計算コストの増加が問題となる.

セマンティックセグメンテーションの分野 では Inception Resnet[14]に階層的に簡単な箇 所から学習を行う機構を加え,ステージ毎に 損失関数を算出する Deep Layer Cascade[15] や,クラス毎の出現画素数を基にしたクラス 難易度によるタスク分類を行った後に学習を 行う方法 [16]では,識別の難易度に注目した 構造の有効性を示している.しかし,これら の手法は難易度毎に事前に正解画像を用意す る必要がある.

3. 提案手法

多くのセマンティックセグメンテーション を行うネットワークは, テスト時において出 力層に softmax 関数を使用し,各クラスの確 率に変換する. その際, クラス毎の確率値が 均等に与えられるような箇所は、一般的に識 別が難しい箇所であることが多い. 図1は3 クラスの細胞画像において、学習時の出力層 に softmax 関数を適用後,確率の最大値を画 素毎に抽出して可視化した確率マップである. 確率マップは青色に近い箇所ほど確率の最大 値が1に近く,赤色に近い箇所ほど確率の最 大値が0に近づくことを示している.図1で は3クラスの細胞画像なので,確率の最大値 が50%付近を示している黄色い箇所は識別が 難しい箇所であることを示している. 図1を 見ると、学習回数の少ない Epoch = 5~ Epoch =40付近では黄色を示す領域が多々見られる ことが分かる. 逆に Epoch = 200 のように学 習が進んでいく毎に黄色を示す領域は細かい エッジ情報のみとなっていき,ほとんどの領 域は青色領域となり外形やクラスが決定して いることを示している. 当然, 青色領域も正 解と異なる箇所も多々存在する. つまり, 学 習に有効な外形やクラスを特定する情報は, 少ない学習回数に集中しており、黄色領域な どの難しい箇所が重要となる. そこで我々は 確率の最大値に基づき,確率的に難しい箇所

図1 細胞画像の確率マップ

を強く学習することにより,効率的な学習を 行う手法を提案する.

我々の提案手法は医療分野のセマンティッ クセグメンテーションにおいて高精度を示し, 計算コストの軽いネットワークである U-net[5]をベースにしている.図2に我々の提 案手法のモデルを示す.我々の提案手法では エンコーダー・デコーダー共に3×3の畳み込 み処理後に Batch Renormalization[17]を採用 している.Batch Renormalization では細胞画 像のように少ない学習画像の際にも大きく依 存しないように学習を行える.我々の提案手 法は主に2つの工程で実装される.

- 通常のセマンティックセグメンテーションと同様に Softmax cross entropy 誤差 (loss)を算出する.
- (2) 出力層に Softmax 関数を適用後,確率の 最大値が閾値 α を超えた箇所のみ Softmax cross entropy で誤差(loss_hard)を 算出する.

(2)について詳しく説明すると、出力層に Softmax 関数を適用することによりクラス毎 の確率が埋め込まれる.その確率の最大値を 画素毎に抽出したマスク画像を作成し、その 確率の最大値が閾値αを超えた画素のみ学習 を行う. 閾値 α はマスク画像の画素平均によ り決定する.

$$\alpha = \frac{1}{y * x} \sum_{\substack{0 \le i \le y \\ 0 \le j \le x}} f(x, y)$$
(1)

ここで x,y はマスク画像の x 軸, y 軸方向の 画素数を示しており, f はマスク画像を表す.

最終的にネットワークが学習を行う損失関 数は(1)(2)の工程にハイパーパラメータλを かけた値とした.本実験においては,経験的 法則からλ=0.5 に固定して実験を行う.

 $loss_{All} = loss + \lambda * loss_{hard}$ (2)

4. 評価実験

本節では2種類の細胞画像を用いた評価実験の結果を示す.本実験の評価指標は Intersection over Union(IoU)を採用した. IoU は各クラスに対して画素毎に重なり率を導出 するので,セマンティックセグメンテーショ ンにおいて適している. IoU は次のような式 で表すことができる.

$$IoU = \frac{TP}{FP + FN + TP} \qquad (3)$$

ここで FP は False Positive, FN は False Negative, TP は True Positive を表す.

4.1 節ではマウスの細胞画像のデータセットに対する評価実験について、4.2 節ではショウジョウバエの細胞画像のデータセットに対する評価実験の結果を示す.

4.1. マウスの細胞画像データセット

マウスの細胞画像データセットは顕微鏡に 「細胞核」,「細胞質」に蛍光マーカーが発現 するマウスの肝臓の 50 枚の蛍光画像である. また画像サイズは最小 161×161 画素,最大 657×657 画素の不均一の画像サイズとなっ ている.本実験では画像サイズを統一するた めに全 50 枚の画像を 256×256 画素にリサイ ズした.また,50 枚のうち 35 枚を学習画像 として選択し,5 枚を検証及び 10 枚をテス ト用に分類し,テスト実験は,従来法及び提 案手法共に3回評価実験を行い,その平均値 により評価を行った.

図2提案手法モデル図

図 3 に本実験においての検証画像による mean IoU と学習回数の関係を表すグラフを 示す.図3を見ると、従来法では学習が収束 するのに必要な学習回数が多いことが確認で きるが、我々の提案手法では学習回数が 50 回以内という、少ない学習回数で従来法では 確認できなかった mean IoU が 60%を超える 結果が確認できる.

図6にテスト時においての, 高難易度画素 の学習を行わない従来法のセグメンテーショ ン結果と、我々の提案手法のセグメンテーシ ョン結果を示す.また図6の白丸部分を拡大 した画像を図4に示す. 図4をみると,従来 法では捉えることのできなかった細胞核の検 知が可能になったことや,より鮮明に細胞膜 を捉えることができるようになっていること がわかる.また,提案手法と同等の学習回数 で一番良い検証結果が得られた従来法による テスト結果と提案手法を比較してみると,従 来法では未検出の細胞膜、細胞核があること に加え,細胞膜がより太く検出されてしまう ことがわかる.学習回数を重ねた従来法では, 細胞膜の太さを制限できている点から、学習 が不十分であるということが確認できる.

最後に表1に IoU での評価実験結果を示す. 表1から,我々の提案手法は IoU において, 細胞膜,細胞核,細胞質すべてのクラスで従 来法より 1%以上精度が向上していることが わかる.また、学習回数が少ない場合の従来 法では、細胞膜において提案手法よりわずか に精度が高く検出されている.これは少ない 学習回数の従来法では図4に示す通り、細胞 膜が通常より太く検出されているため、細胞 膜の IoU が高くなったからである.

図4 セグメンテーション結果拡大図(左から,入 力画像,正解画像,学習回数20回~40回で 検証結果が最もよかった従来法の結果,従来 法の結果,提案手法)

表1 IoU 実験結果

	細胞膜	細胞核	細胞質	Mean IoU
従来法	37.5	66.1	74.0	59.2
提案手法	38.9	68.7	76.9	61.5
従来法 (20~40epoch)	39.2	62.6	72.5	58.1

4.2. ショウジョウバエの細胞データセット

ショウジョウバエの細胞画像データセット [18]では、「細胞膜」、「細胞核」、「細胞質」、 「シナプス」を含む全20枚のデータセットで ある.また画像サイズは917×917であり、本 実験では512×512にリサイズ処理を行い、20 枚の画像のうち12枚を学習画像として選択 し、0度、180度、270度及びそれぞれ左右反 転を加えることにより96枚とした.そして3 枚を検証、5枚をテスト用画像として分類し、 また同様に従来法及び提案手法共に3回評価 実験を行い、その平均値により評価を行った.

図6に高難易度画素の学習を行わない従来 法のセグメンテーション結果と,我々の提案 手法のセグメンテーション結果を示す.また 図6の白丸部分を拡大した画像を図6に示す. 図5を見ると,従来法ではシナプスを多く誤 検出してしまっていたが,我々の提案手法で は誤検出を軽減していることがわかる.また, 形状を捉えることが難しいような細胞膜にお いても,画素毎に難しい箇所を重点的に学習 する我々の手法では正確に細胞膜の形状を捉 えることに成功している.しかし,まだ細胞 核に似ている細胞質などの誤検出を抑制する 傾向はみられたが,精度が不十分であり,今 後の研究課題である.

最後に表2に IoU での評価実験結果を示す. 表2から,細胞膜,細胞核,シナプスそして 細胞質すべてのクラスにおいて IoU による精 度が向上していることがわかる.特に,我々 の提案手法と同等の学習回数である,epoch = 50 付近で従来法と比較してみるとシナプス では約15%もの精度向上が確認できる.これ は我々の提案手法が,高難易度画素を重点的 に学習することにより,シナプスなどの難し いクラスにおいても非常に効率的に学習する

ことができていることを示している.

図5 セグメンテーション結果拡大図(左から, 入力画像,正解画像,学習回数50回付近で検 証結果が最もよかった従来法の結果,従来法 の結果,提案手法)

表2 IoU 実験結果

	細胞膜	細胞核	シナプス	細胞質	Mean IoU
従来法	80.8	79.2	29.0	92.7	70.2
提案手法	80.9	82.8	32.9	93.6	72.6
従来法 (epoch = 50付近)	78.8	72.3	18.0	91.1	65.1

5. おわりに

本論文では、セマンティックセグメンテー ションにおける各画素の識別の難しさに注目 し、難しい画素を重点的に学習することによ り、効率的な学習且つセグメンテーション精 度の向上を実現した.

今後の展望として,損失関数を求める際の ハイパーパラメータ λ を学習的に決定するこ とと共に,様々なセマンティックセグメンテ ーションのモデルに我々の提案手法を適用し, 更に有効性を確かめていきたい.

利益相反の有無

なし

文 献

 Krizhevsky A. Sutskever I. Hinton G E.: ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 25: 1097-1105, 2012

- [2] Long J. Shelhamer E. Darrell T.: Fully convolutional networks for semantic segmentation. Proc. IEEE Transactions on Pattern Analysis and Machine Intelligence 39: 3431-3440, 2017
- Badrinarayanan V. Kendall A. Cipolla
 R.: SegNet: A Deep Convolutional
 Encoder-Decoder Architecture for Image
 Segmentation. IEEE Transactions on
 Pattern Analysis and Machine
 Intelligence 39: 2481-2495, 2017
- [4] Simonyan K. Zisserman A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. Computer Vision and Pattern Recognition, 2014
- [5] Ronneberger O. Fischer P. Brox T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. Proc. Medical Image Computing and Computer-Assisted Intervention: 2015, pp234-241.
- [6] He K. Zhang X. Ren S. et al.: Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.
- [7] Xie S. Girshick R. Dollár P. et al.: Aggregated residual transformations for deep neural networks. Computer Vision and Pattern Recognition, 2017
- [8] Huang G. Liu Z. Van D M. et al.: Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, pp4700-4708.
- [9] Zhao H. Shi J. Qi X. et al.: Pyramid

scene parsing network. IEEE Conf. on Computer Vision and Pattern Recognition, 2017.

- [10] Jégou S. Drozdzal M. Vazquez D.: The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. Computer Vision and Pattern Recognition Workshops, 2017
- [11] Bengio Y. Louradour J. Collobert R. et al.: Curriculum learning. Proceedings of the 26th annual international conference on machine learning. ACM, 2009.
- [12] Hu J. Shen L. Sun G.: Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, pp7132-7141.
- [13] Wang F. Jiang M. Qian C. et al.: Residual attention network for image 1classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 3156-3164, 2017
- [14] Szegedy C. Ioffe S. Vanhoucke V. et al.: Inception-v4, inception-resnet and the impact of residual connections on learning. AAAI, 2017.
- Li X. Liu Z. Luo P. et al.: Not all pixels are equal: Difficulty-aware semantic segmentation via deep layer cascade.
 IEEE Conference on Computer Vision and Pattern Recognition, 2017.
- [16] Matsuzuki D. Hotta K.: Semantic Segmentation by Integrating Classifiers for Different Difficulty Levels. International Symposium on Visual Computing, 2018, pp607-615.

- [17] Ioffe S.: Batch renormalization: Towards reducing minibatch dependence in batch-normalized mdels. In Advances in neural information processing systems, 2017, pp1945-1953.
- [18] Gerhard S. Funke J. Martel J. et al.:Segmented anisotropic ssTEM dataset of neural tissue. Retrieved, 16, 09, 2013

図6 セグメンテーション結果(左から,入力画像,正解画像,少ない学習回数での従来 法の結果,従来法の結果,提案手法.また上3つがマウスの細胞画像での実験結果, 下3つがショウジョウバエの細胞画像での実験結果)

Sematic Segmentation Using Loss Function for Difficult Pixels

Daisuke MATSUZUKI¹, Kazuhiro HOTTA¹

1 Meijo University

Semantic segmentation recognizes each pixel in an image. In general, an image includes pixels that are easy to recognize and difficult to recognize. At the final layer, we apply softmax function to convert the output of network to probability. At that time, pixels that have small maximum probability are often difficult to recognize. Therefore, we propose a method to learn pixels that are difficult to recognize according to maximum probability of each pixel. In the evaluation experiment, we compared the accuracy of the conventional method with our proposed method on datasets including "cell membrane", "cell nucleus" and "cytoplasm". By the evaluation using Intersection over Union, we confirmed that the proposed method outperformed the conventional method.

Key words: Cell image, Segmentation, Pixel difficulty, Deep Learning

著者紹介

松月 大輔 (まつづき だいすけ) 平成 30 年 3 月名城大学理工学部卒業, 平成 32 年同大学大学院博士前期課程 修了予定.現在,細胞画像及び車載カ メラ画像のセマンティックセグメンテ ーションの研究に従事.現在は、セマン ティックセグメンテーションの様々な 難易度に注目し、平成 30 年に International Symposium on Visual Computing で研究発表を実施.

堀田 一弘 平成9年埼玉大学工学部 卒.平成14年同大学院博士後期課程修 了.博士(工学).平成11年[~]平成14 年日本学術振興会特別研究員(DCI).平 成14年電気通信大学情報通信工学科 助手,平成19年同大学助教,平成22 年から名城大学理工学部電気電子工学 科准教授.平成30年から同大学教授. 平成24年メリーランド大学 Visiting Scholar.パターン認識,コンピュータ ビジョンの研究に従事.情報処理学会, 映像情報メディア学会, IEEE Computer Society 各会員.

Template (Common to all types of submissions) ver. 2.0 (Revised 2019.3.28) Polyp size classification in colorectal cancer using a Siamese network

Benjamin VILLARD*1, Yuichi MORI*2, Masahi MISAWA*2, Shin-ei KUDO*2, Hayato ITOH*1, Masahiro ODA*1, Kensaku MORI*1,3,4

^{*1}Department of Intelligent Systems, Graduate School of Informatics, Nagoya University, Japan.

^{*2}Digestive Disease Center, Showa University Northern Yokohama Hospital, Japan.

*3Information Technology Center, Nagoya University, Japan.

^{*4}Research Center for Medical Big data, National Institute of Informatics, Japan.

Abstract

Colorectal cancer is one of the leading cause of cancer related deaths with increasing prevalence. One key factor in the likelihood of adenomatous cell differentiation is polyp diameter. Much research has shown polyp size to be a major contributor to the risk of colorectal cancer. There exist a significant cut-off value of 10 mm which clinicians use regarding their treatment diagnosis and patient surveillance. However, polyp measurement is highly variable and there exist high variance between clinician measurements surrounding this threshold value. We propose a novel method to classify polyp size into above or below 10 mm classes based on a Siamese network. In a first step, a Siamese networks is trained to build a high dimensional embedding of features extracted for each polyp size. In as second step, we use a k-NN approach that classifies the polyp size based on the distance between the feature embedding of the input image, and the whole embedding space learned by the Siamese network. This method allows for better binary classification of the polyp size classes. Our data consist of around 13,434 images from 115 movies classified into various polyp sizes ranging from 1-14 mm. We trained our model on 10,746 images, and tested on 2,688 images equally split into each binary category. We obtained 70.2 in feature embedding classification and 95.7% on binary classification.

Keywords : Colorectal cancer, Polyp size classification, Siamese Network, Medical Imaging

1. Introduction

Colorectal polyp size is a critical biomarker in colorectal cancer diagnosis and management, with larger polyp size having been associated with a greater likelihood of adenocarcinomatous cell differentiation [1-4]. The majority of colorectal cancer arise from pre-existing adenoma, with small initial polyps gradually growing into adenocarcinoma over several years. There exists many factors that can effect the transition into a malignant stage, such as genetics, growth rate, and most importantly size [2]. Polyp diameter can be assessed by endoscopist or pathologists, with endoscopist using visual estimation of the diameter, and pathologists assessing the size using ruler measurements after removal of the polyps from formalin. It has been shown that endoscopist assessment can be highly variable. Summers et al [1] report that 20% of endoscopist measurements had a 3mm over- or underestimation of polyp size compared to the reference standard. Furthermore, typical endoscopes operate using a wide-angle lens, which can further increase the measurement bias.

There exists two significant thresholds in the clinical decision making process, which occur at 5 mm and 10 mm. Polyps 10mm and above are considered to have the most likely risk of cancer proliferation and a such should be removed. However, due to the human bias, endoscopist tend to either over or under estimate polyp sizes surrounding these particular thresholds. This can be observed in our data, shown in Fig. 1 *left*, where the distribution of polyp size can be seen to be significantly skewed to be under 10 mm (representative of clinical occurrence), with almost no annotations made at the 10mm threshold. There thus is a need for an automatic classification system that can aid clinicians in their estimations.

Polyp classification is an active field of research. Most of the current research focus on polyp detection [5-8]. However, we have found few works that focus on polyp size classification [4,9], most of which achieve the classification using depth estimation. The work in [9] use pre-trained monocular depth estimation neural networks, which they train using an unsupervised approach. However, the pre-trained model was trained on computer vision based features and is therefore not adept at classifying medical imaging features.

In this work we propose a binary classification model based on Siamese networks, first used in [10] to

classify signatures. By training a convolutional neural network (CNN) to learn high dimensional descriptive features for the above or below 10mm polyp classes, new instances can be classified into the appropriate class. In the training step, we train a Siamese network - an identical pair of CNN working in parallel with shared weights, to learn this embedding. Once the networks have been trained, and the weights known, we pass a query image to the trained network, obtaining a high level feature embedding. We then use the k-Nearest Neighbors (k-NN) algorithm to compute the closest class cluster to the feature embedding of the query image. To the best of our knowledge, we present one of the first use of Siamese networks in the field of medical imaging as well as to classify polyp sizes. Furthermore, our method allows to build a high dimensional understanding of polyp features that ultimately can be used not only for binary classification, but to build a high level embedding for each polyp size class. As the query process relies only on the distance computation between the feature embedding, we believe that this methodology could be ultimately used in real time.

Fig.1 Data information. *Left*: Percentage of polyp size occurrences in all 115 cases. *Right*: Number of polyp images per movie case, for all 115 cases. The orange bars represent the above class, while the blue bars represent the below class.

2. Data and Methodology

Our data consist of 115 colonoscopic movies of different patients, each roughly lasting around 15 minutes. Each movie was annoted by clinical experts. Segments containing polyps where selected and clinicopathologic information, such as the polyp size, as well as imaging conditions, such as white light, chromo or near blue infrared, where recorded. For each segment in all the movie cases, all the movie frames for that segment were extracted and saved as individual images, belonging to the above or below class. Only segments belonging having been acquired under white light conditions were used. The number of frames saved and classified into above or below can be seen in Fig. 2 *right*. In total, our data consisted of 4, 478 and 51, 845 images belonging to the above and below class, respectively. In order to train our network on a balanced dataset, we randomly selected the same amount of images from the below class as the above class. As we had very few cases belonging to the above class (6 cases), representing a total of 8 different polyps, we split our data into training and testing datasets using an 80/20% split, and report our accuracy on the 20% split. In such a manner, our training data consisted of 10,746 pairs of images of class: same above, same below, and different. Our testing data consisted of 2, 688 image pairs corresponding to

Fig. 2 Overview of our approach. The green box (top left) represents the training stage that builds a high dimensional feature embedding space. Network 1 and 2, based on VGG16, are identical and work in parallel. In the training stage, two images are fed though the networks and the contrastive loss is used such that images belonging to the same category are clustered together in the embedding space, show in the top left. The network with the trained weights is then used on a new image, to convert it to a 4,096 dimensional embedding and the k-NN algorithm (k = 100) is used to compute the closest class cluster.

the same classes.

The framework for our methodology can be seen in Fig.2. The green box (top left) represents the training stage that builds a high dimensional feature embedding space. Network 1 and 2, based on VGG16, are identical and work in parallel. Each image is converted to grayscale and resized to be 200x200 to be the input to the network. Pairs of images are given to the network as input, belonging either to the category same above, same below, or different. Each image goes through a series of convolutions and max pooling operators before being encoded in a 4,096 embedding vector. The contrastive loss function is then used to map the distance between the feature embeddings and is given by:

$$\mathcal{C}(\mathcal{W}, \mathcal{Y}, \mathcal{X}_1, \mathcal{X}_2) = (1 - \mathcal{Y})\frac{1}{2} \left(\mathcal{D}_{\mathcal{W}}(\mathcal{X}_1, \mathcal{X}_2) \right)^2 + (\mathcal{Y})\frac{1}{2} \left\{ \max(0, m - \left(\mathcal{D}_{\mathcal{W}}(\mathcal{X}_1, \mathcal{X}_2) \right) \right\}^2$$

where C represents the contrastive loss function, W the network weights, *m* is an arbitrarily chosen margin, X_1 and X_1 the feature embeddings of the image pairs, with $\mathcal{Y} = 1$ if they are similar (same-above or same-below category) and $\mathcal{Y} = 0$ if they are dissimilar (above-below or below-above category). \mathcal{D}_W represents the l_2 norm used in mapping the distance in the feature space, as a functions of the weights \mathcal{W} , such that $\mathcal{D}_W(X_1, X_2) = ||X_1 - X_2||_2$. Computing the contrastive loss allows to map the distance \mathcal{D}_W between the feature vectors to be small if the embeddings belong to the same class, or high if they belong to different classes. A t-SNE plot showing a 2D representation of the 4,096 feature embedding space can be seen in Fig.1 *top right*.

3. Results and Conclusions

We validated the discriminative power of the network on the feature embedding space, as well as for the binary classification. With regards to the first evaluation, our methodology was evaluated on 2,688 image pairs corresponding to the categories same-above, same-below, and dissimilar. Our network was able to classify pairs of images as similar or dissimilar with a 70.2% accuracy. As for the binary classification, we evaluated our algorithm on 1,792 images belonging to the above or below category. Using a k-NN, with k=100, we obtained a 95.7% accuracy. Fig. 3 shows some example of images having been correctly or incorrectly classified as above or below 10mm.

As mentioned previously, it should be noted that although there is a clear separation between the training and validation data, the testing images also belong to the 115 movie cases which can cause some classification bias. In the future we aim to obtain more cases, in particular belonging to the above category, having multiple polyps per case, as to present a more accurate representation of the methodology accuracy.

Fig. 2 Example of the binary classification results having been correctly or incorrectly classified as above or below 10mm.

Competing interests

The Authors acknowledge collaboration with the company CYBERNET.

Acknowledgement

The authors would like to acknowledge AMED grant numbers 18hk0102034h0103 (2018), and 18hs0110006h0002 (2018).

References

- [1] Summers RM. Polyp size measurement at ct colonography: What do we know and what do we need to know? Radiology, 255:707–720, 2010.
- [2] Hofstad B, Vatn M H, Andersen S N, Huitfeldt HS, Rognum T, Larsen S, Osnes M. Growth of colorectal polyps: redetection and evaluation of unresected polyps for a period of three years. Gut, British Society of Gastroenterology, Vol. 39. 1996, pp449-456.
- [3] Klein JL, Okcu M, Preisegger K, Hammer H. Distribution, size and shape of colorectal adenomas as determined by a colonoscopist with a high lesion detection rate: Influence of age, sex and colonoscopy indication. United European Gastroenterology Journal, 4(3):438–448, 2016.
- [4] Fabio Martínez, Josué Ruano, Martín Gómez, and Eduardo Romero. Estimating the size of polyps during actual endoscopy procedures using a spatio-temporal characterization. Computerized Medical Imaging and Graphics, 43:130– 136, 2015.

[5] Pu Wang P, Glissen B J R Brown Jeremy R. Xiao, Xiao, Tyler M. Berzin, Mengtian Tu, Fei Xiong, Xiao Hu, Peixi Liu, Yan Song, Di Zhang, Xue Yang, Liangping Li, Jiong He, Xin Yi, Jingjia Liu, and Xiaogang Liu. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nature Biomedical Engineering, Vol.2. 2018, pp741-748.

[6] Gregor Urban, Priyam Tripathi, Talal Alkayali, Mohit Mittal, Farid Jalali, William Karnes, and Pierre Baldi. Deep learning localizes and identi_es polyps in real time with 96% accuracy in screening colonoscopy. Gastroenterology, Vol.155(4). 2018, pp1069-1078.

[7] Misawa Masashi, Kudo Shin-ei, Mori Yuichi, Cho Tomonari, Kataoka Shinichi, Yamauchi Akihiro, Ogawa Yushi, Maeda Yasuharu, Takeda Kenichi, Ichimasa Katsuro, Nakamura Hiroki, Yagawa Yusuke, Toyoshima Naoya, Ogata Noriyuki, Kudo Toyoki, Hisayuki Tomokazu, Hayashi Takemasa, Wakamura Kunihiko, Baba Toshiyuki, Ishida Fumio, Itoh

Hayato, Roth Holger, Oda Masahiro, and Mori Kensaku. Arti_cial intelligence-assisted polyp detection for colonoscopy: Initial experience. Gastroenterology, Vol.154. 2018, pp2027-2029.

[8] R. Zhang, Y. Zheng, T. W. C. Mak, R. Yu, S. H. Wong, J. Y. W. Lau, and C. C. Y. Poon. Automatic detection and classification of colorectal polyps by transferring low-level cnn features from nonmedical domain. IEEE Journal of Biomedical and Health Informatics, Vol.21(1) 2017. pp41-47.

[9] Hayato Itoh, Holger R. Roth, Yuichi Mori, Masashi Misawa, Masahiro Oda, Shin-ei Kudo, and Mori Kensaku. Polypsize classification with rgb-d features for colonoscopy. Proc. SPIE 10950, Medical Imaging 2019: Computer-Aided Diagnosis, 1095015, 2019.

[10] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard S • ackinger, and Roopak Shah. Signature verification using a "siamese" time delay neural network. In Proceedings of the 6th International Conference on Neural Information Processing Systems, NIPS'93, 1993, pp737-744.

テンプレート(全ての原稿の種類に共通) Ver. 2.1 (2019.3.28 改訂)

病変検出アルゴリズムにおける局所画像特徴量の

汎用的な自動生成

-健常データのみの学習による特徴量生成の検討-

牛房 和之*1 根本 充貴*2 木村 裕一*1 永岡 隆*1 山田誉大*1

林 直人*3

要旨

様々な病変検出支援(CADe)アルゴリズムにおいて適用が可能な,局所画像特徴量の汎用的自動生成法について検討する.特に,不十分量の病変データで深層学習を用いた CADe アルゴリズムの研究が行われることを想定し,健常部の局所画像パッチデータのみで学習が可能な手法を検討する.本稿では,教師無し学習法である深層畳み込みオートエンコーダと主成分分析を用いた特徴量生成手法を提案する.特徴量は,局所画像パッチのアピアランスベクトルから得られる潜在変数と,潜在変数から再現した画像パッチと入力局所画像パッチとの誤差とする.抽出特徴量の識別における有用性を確認するために,胸部 CT および頭部 MR アンギオグラフィ上の病変検出実験を行ったので,その結果を報告する.

キーワード:コンピュータ検出支援システム,特徴量抽出,オートエンコーダ,主成分分析

1. はじめに

近年, CT や MRI 画像などの医用画像の撮像 技術が向上し,それに伴い大量かつ高精細な医 用画像が撮像可能になったことで,放射線診断 医の画像読影における負担が増加している.そ の負担軽減のために,病変部位候補の識別を行 うコンピュータ検出支援(CADe: computer aided

*1 近畿大学大学院 生物理工学研究科 〔〒649-6433 和歌山県紀の川市西三谷 930〕

e-mail: k.ushifusa@gmail.com

*2 近畿大学 生物理工学部

*3 東京大学医学部附属病院 22 世紀医療センター

detection) システムの必要性が高まっている^[1,2].

CADe システムによる病変候補識別では,画 像内の局所の濃淡や形状などを定量化した特 徴量という値を用いる.この特徴量が病変候補 識別に有用であるかどうかによって CADe の病 変検出性能は左右される.特徴量の生成法には 大別して2つの方法がある.1つは,医学的知 識や工学的知識に基づいて手作業で関数を設 計・実装する方法である^[3].もう1つは機械学 習を用いた自動生成法である.特に後者の手法 では,深層学習を用いたものが,近年パターン 認識分野で好成績を収めたことで,注目を集め ており,研究が各所で盛んに行われている^[4].

また,深層学習による特徴量の生成では過去 の実測データなどの具体的な事象が学習デー タとして用いられる.その際,十分な量の学習 データが確保できないと適切な学習が行われ ず,抽出される特徴量が識別処理に有用な値と ならない.

しかし、とりわけ病変データの収集は容易な ことではない上、個人情報保護の問題や収集デ ータの標準化の問題などがある^[4].よって、 CADe システムの研究開発において常に十分な 量の病変学習データが準備できるとは限らな い.一方で、病変部位は有病症例データの中で 病変の領域はわずかであり、大部分は健常な領 域である.すなわち、有病症例データから得ら れる局所画像パッチデータのほとんどが、健常 クラスのデータである.

本稿では、病変データの有無に性能が左右されない特徴量の自動生成法について提案する. 提案法では、病変データに比べ収集が容易で、 かつ病変領域ラベルデータを作成する必要が ない健常データのみを用いる.このことにより、 病変データの量に依存しない安定した特徴量 自動生成法となることが期待できる.我々はデ ータドリブンな CADe システムの自動生成、自 動最適化に関する研究^[5]を行っており、本研究 はその一部である.

2節では提案法で用いられる手法について, 3節では提案法の有用性を確認するための実験・結果について,4節では実験結果から考察 できることと今後の展望についての説明を行い,5節にて本稿のまとめを述べる.

2. 手法

2.1. 学習・検出処理モデル

想定する病変検出処理モデルと、検出処理に 用いる特徴量抽出器の学習モデルを図 1,2 に 示す.特徴量の学習モデルは、①前処理、②病 変候補検出、③健常データセットのみを用いた 特徴量抽出器の学習の3つの処理で構成される. 前処理および病変候補検出は、検出処理モデル で用いられるものと共通とする.

前処理では、画像の等方化や標準化、病変候 補画像パッチの抽出領域の限定が行われる.病 変候補検出処理は、前処理での抽出領域につい て、16 voxels 間隔で 32×32×32 voxels の 3 次 元領域に複数分解切り出しを行う処理とする.

図1. 病変検出処理モデル

図 2. 特徴量抽出器学習モデル

2.2. 特徴量抽出器およびその学習

提案法では,教師無し学習法である深層畳み 込みオートエンコーダ(Deep CAE: Deep Convolution Autoencoder)^[6,7]と主成分分析 (PCA: Principal Component Analysis)^[8]を用い て特徴量の自動生成を行う.以下では,それぞ れの処理の詳細について説明する.

2.1.1. Deep CAE

提案法で用いる Deep CAE は,自動検出した 32×32×32 voxels の3 次元病変候補画像を 2.5 次元化^[9]した画像 (32×32 voxels の3 チャネル 画像)を入力とする. Deep CAE の構成は,2 層 の Convolution 層,1 層の Full Connection 層から なる(図3). 潜在変数ベクトルの次元数は, 健 常クラス学習画像(2.5D)の画素値に PCA を適 用した際に累積寄与率が 95%となる次元数と 同数とする.また,活性化関数は ReLU とする.

Deep CAE により抽出される特徴量は,潜在 変数ベクトルと,潜在変数ベクトルから再現し た画像パッチと入力画像パッチとの画素値の 平均二乗誤差とする.

Deep CAE の学習では、健常データのみを用 いる. 学習のハイパーパラメータは、Mini Batch サイズは 256, Epoch 数は Early stopping によっ て決定,損失関数は交差エントロピー誤差とし た. これらのパラメータは、予備実験の結果か ら手動にて決定した.

図 3. Deep CAE の構造

2.1.2. PCA

PCA を用いた特徴量抽出法は, 顔画像認識な どで以前より用いられていた手法と同様の手 法^[7]である.

PCA の学習で、学習用の3次元病変候補tの
 2.5 次元画像の各画素値を要素とするベクトル
 x_tの集合であるX

$$X = \{x_1, x_2, x_3, \dots, x_M\}$$
 (1)

に対して算出される平均ベクトル**μ**と共分散行 列 **S**

$$\boldsymbol{\mu} = \frac{1}{M} \sum_{t=1}^{M} \boldsymbol{x}_t \tag{2}$$

$$S = \frac{1}{M} \sum_{t=1}^{M} \sum_{u=1}^{M} (\mu - x_t) (\mu - x_u)^T$$
(3)

から,固有値問題

$$\boldsymbol{S} = \lambda \boldsymbol{v} \tag{4}$$

を解くことで得られる複数の固有ベクトル v_e を得る.

任意病変候補 *i* の画素値ベクトル *xi* から抽出 される特徴量は,*xi* の主成分ベクトルの要素と, *xi* を主成分ベクトルに投影した際の残差とする. 主成分ベクトルの次元数は予備実験の結果か ら得た累積寄与率 95%の次元数とする.

2.3. 検証法について

提案法の有用性を評価するために, 胸部 CT データセット上の肺結節検出および頭部 MR ア ンギオグラフィ (MRA) データセット上の脳動 脈瘤検出を例題とした検証実験を行う. 病変検 出処理の流れは共に図1の検出処理モデルに従 い,特徴量抽出器の学習処理の流れは図2の学 習モデルに従う.

肺結節検出の検証実験における前処理には, Nomura らの肺野領域抽出法および血管領域抽 出法^[10]を採用する. 脳動脈瘤検出の検証実験 における前処理には, Nomura らの画素値正規 化および血管抽出法^[11]を行う. 検出病変候補 の識別器としては, Decision stump を弱識別器 とした Adaboosted ensemble^[12]を用いる.また, 予備実験の結果から弱識別器数=500 とした.

3. 実験および結果

実験には東京大学医学部附属病院にて撮影 された胸部 CT 450 例および頭部 MRA450 例を 使用した.いずれの画像も1個以上の肺結節/ 脳動脈瘤を含む.450 例の画像データは学習用 300 例と検証用 150 例に分割して検証実験を行 った.

胸部 CT 上の肺結節検出の処理では,前処理 にて0.78×0.78×1.25[mm³] 解像度の CT を0.78 mm 等方解像度にスケーリングする.学習用 300 例からは健常候補 478,525 パッチ,病変候補 3916 パッチが自動検出され,検証用 150 例から は健常候補 234,386 パッチ,病変候補 1,589 パ ッチが自動検出された.また,予備検討から Deep CAE, PCA にて算出される潜在変数特徴 量の次元数を 99 とした. 頭部 MRA 上の脳動脈検出の処理では,前処 理にて 0.47×0.47×0.60[mm³]解像度の MRA を 0.47mm 等方解像度にスケーリングする. 学習 用 300 例からは健常候補 127,257 パッチ,病変 候補 2553 パッチが自動検出され,検証用 150 例 からは健常候補 84,591 パッチ,病変候補 1,328 パッチが自動検出された.また,予備検討から Deep CAE, PCA にて算出される潜在変数特徴 量の次元数を 122 とした.

実験には、Intel Core i7-7700, 64GB RAM, NVIDIA GeForce 1080Ti を搭載し、Windows10 Pro OS のコンピュータを用いた.各種病変検出 処理および特徴量自動生成器は、C/C++および Python (Tensorflow ver.1.3.0) により実装した.

3.1. 胸部 CT 上の肺結節候補識別実験

Deep CAE の学習過程での認識誤差の推移を 図 4 に示す. また, loss は学習時の損失誤差, val_loss は検証時の損失誤差である. loss および val_loss がともに減少しており, 学習が適切に 行われたことが読み取れる.

次に,抽出特徴量を用いた病変識別の FROC 曲線を図 5 示す. 肺結節候補の識別感度は 5FPs/ 症例のとき 84.2%, 10FPs/症例のとき 86.6%, 15FPs/症例のとき 87.8%となった. また,図 6 に 5FPs/症例時, 識別結果が True Positive (TP) と なった画像と, True Negative (TN) となった画 像, FP となった画像, False Negative (FN) とな った画像を示す.

Deep CAE によって抽出された特徴量(CAE 特徴量) と PCA によって抽出された特徴量 (PCA 特徴量)が識別器学習時に選ばれた回数 の割合は CAE 特徴量が 17.8%, PCA 特徴量が 82.2%となった.また,弱識別器の重みを観察す ると CAE 特徴量由来の弱識別器に付与された 重みは全体の 36.6%, PCA 特徴量由来の弱識別 器には 63.4%の重みが付与されていた.各特徴 量に付与された弱識別器重みは, PCA による第 1 主成分特徴量に付与されたものが最大(全体 の 37.4%), 次に大きかったのは PCA 残差誤差 特徴量(全体の 31.7%), その次に大きかったの は PCA 第 3 主成分(全体の 3.66%)であった.

図 4. Deep CAE 学習識誤差曲線 (肺結節候補識別)

図 6. 肺結節候補識別結果画像例 (5 FPs/症例)

CAE 特徴量の中で弱識別器重みが最大であったのは第12目の特徴量であった.

3.2. 頭部 MRA 上の脳動脈瘤候補識別実験

Deep CAE の学習過程での認識誤差の推移を 図 7 に示す. loss および val_loss がともに減少 しており、学習が適切に行われたことが読み取 れる.

次に、抽出特徴量を用いた病変識別の FROC
曲線を図 8 示す. 脳動脈瘤候補の識別感度は
5FPs/症例のとき 17.7%、10FPs/症例のとき
28.1%、20FPs/症例のとき 43.3%となった.また、
図 9 に 5FPs/症例時、識別結果が True Positive
(TP) となった画像と、True Negative (TN) と
なった画像、FP となった画像、False Negative
(FN) となった画像を示す.

Deep CAE によって抽出された特徴量(CAE 特徴量) と PCA によって抽出された特徴量 (PCA 特徴量)が識別器学習時に選ばれた回数 の割合は CAE 特徴量が 36.8%, PCA 特徴量が 63.2%となった.また,弱識別器の重みを観察す ると CAE 特徴量由来の弱識別器に付与された 重みは全体の 36.6%, PCA 特徴量由来の弱識別 器には 63.4%の重みが付与されていた.各特徴 量に付与された弱識別器重みは, PCA による第 1 主成分特徴量に付与されたものが最大(全体 の 19.5%), 次に大きかったのは PCA 残差誤差 特徴量(全体の 7.25%), その次に大きかったの は CAE 特徴量の第 116 番目の特徴量(全体の 5.20%) であった.

4. 考察

胸部 CT上の肺結節識別実験および頭部 MRA 上の脳動脈瘤識別実験を行った.実験の結果か ら,提案法によって Deep CAE 特徴量および PCA 特徴量を健常データのみから学習できた ことと,提案法にて得られる特徴量の有用性を 確認した.

胸部 CT 上の肺結節候補識別実験については, Deep CAE 特徴量と PCA 特徴量がともに識別器 の学習で選択されており,互いの特徴量が相補 的な役割を果たしたと考える.特徴量の選択回

(d) FN 図 9. 脳動脈瘤候補識別結果画像例 (5 FPs/症例)

数や弱識別器の重みから,画素値を線形に次元 圧縮した PCA 特徴量が識別において主に用い られる特徴量となり,Deep CAE によって抽出 できる非線形な特徴量は PCA では表現できな い特徴を補完する働きをしたと考えられる.識 別結果画像より,TN や TP は肺野内部の低 CT 値領域を多く含んだものが多く,FP や FN は胸 壁外を多く含んだ領域が多いことが分かった. このことから,本手法は胸壁外を多く含んだ候 補領域からの特徴量抽出が効果的に行われず, これらの FP,FN が多く発生したと考える.

頭部 MRA 上の脳動脈瘤候補識別実験につい ても, Deep CAE 特徴量と PCA 特徴量がともに 識別器の学習で選択されており、互いの特徴量 が相補的な役割を果たしたと考える.ただし, 脳動脈瘤候補の識別精度は肺結節候補と比べ て低かった.肺結節・脳動脈瘤候補の TP 画像 を比較確認すると, 脳動脈瘤については病変部 分が候補画像サイズに対してかなり大きいこ とが分かる.このことは、脳動脈瘤候補識別に 有用な特徴量の抽出を困難にした要因の一つ と考える.マルチスケール処理などを採用し, 各病変で最適なスケールでの候補領域を解析 することを可能にすることで,識別精度の改善 が期待できる.また,識別結果画像を確認する と、TN となった領域は血管ではない領域が主 であった. 一方, TP, FP, FN 画像はいずれも 血管領域であった.血管領域以外には脳動脈瘤 は発生しないので, 候補識別器が血管領域か否 かを識別することを主に学習したと考える.こ のことから,脳血管領域抽出処理の内容は候補 識別精度を大きく左右することが分かった.

今後は、入力データをマルチスケールにする ことにより、血管の全体を見てから局所を見る という医師の画像診断のプロセスに沿った特 徴量生成を検討する.また、健常データセット の潜在変数ベクトル群からの特徴量空間にお けるマハラノビス距離など、その他の特徴量生 成も検討する.

5. まとめ

健常データのみの学習による特徴量の自動

生成法について提案した.提案法の有用性の確認のため胸部 CT 上の肺結節検出および頭部 MRA 上の脳動脈瘤の病変候補に対する識別実験を行った.胸部 CT を用いた実験では、感度は5FPs/症例で84.2%、10FPs/症例で86.6%となった.頭部 MRA を用いた実験では感度は5FPs/症例で17.7%、10FPs/症例と28.1%となった.これらの結果から、提案法の有用性が確認された.

謝辞

本研究を行うにあたりご討論頂いている近 畿大学生物理工学部医用工学科・根本研究室の 学生諸氏,近畿大学大学院生物理工学部システ ム生命工学科・木村研究室および永岡研究室の 諸氏に感謝します.そして,貴重な臨床データ をご提供頂いた,東京大学医学部附属病院放射 線科,同 22 世紀医療センターコンピュータ画 像診断学/予防医学講座(CDRPM)の先生方に 深く感謝します.

利益相反の有無

なし

文 献

- [1] Ronald A Castellino: Computer aided detection (CAD): an overview: Cancer Imaging 5-1: 17-19, 2005
- [2] 尾上守夫:ME 技術の進歩 医用画像処
 理.医用電子と生体工学 20-7:532-535, 1982
- [3] Van Ginneken B, Schaefer-Prokop CM, Prokop M: Computer-aided diagnosis: how to move from the laboratory to the clinic. Radiology 261-3: 719-32, 2011
- [4] 大江和彦:これからの医療における AI の活用と課題. 医薬品情報学 19-3: N1-N3, 2017
- [5] Nemoto M, Hayashi N, Hanaoka S, et al.:
 Feasibility Study of a Generalized
 Framework for Developing ComputerAided Detection Systems-a New Paradigm.
 J Digit Imaging 30-5: 629-639, 2017

- [6] 瀧雅人:これならわかる深層学習入門. 講談社,2017,pp136-148
- [7] 瀧雅人:これならわかる深層学習入門. 講談社, 2017, pp153-176
- [8] 坂野鋭:パターン認識における主成分 分析 顔画像認識を例として:統計数
 理: Vol. 49: No. 1:23-42:2001
- [9] Holger R. Roth, Le Lu, Ari Seff, Kevin M. Cherry, et.al.: A New 2.5D Representation for Lymph Node Detection using Random Sets of Deep Convolutional Neural Network Observations. Proc MICCAI 2014: 520-527, 2014
- [10] Yukihiro Nomura, Mitsutaka Nemoto, Yoshitaka Masutani, et.al: Reduction of

false positives at vessel bifurcations in computerized detection of lung nodules. Journal of Biomedical Graphics and Computing **4-3**: 36-46, 2014

- [11] Yukihiro Nomura, Yoshitaka Masutani, Soichiro Miki: Performance improvement in computerized detection of cerebral aneurysms by retraining classifier using feedback data collected in routine reading environment. Journal of Biomedical Graphics and Computing 4-4: 12-21, 2014
- [12] 平井有三:はじめてのパターン認識.森 北出版株式会社, 2017, pp137-141

Generalized generation of local image features for

computer-aided detection algorithm

-A study of feature generation by learning only normal data-

Kazuyuki USHIFUSA^{*1}, Mitsutaka NEMOTO^{*2}, Yuichi KIMURA^{*1}, Takashi NAGAOKA^{*1}, Takahiro YAMADA^{*1}, Naoto HAYASHI^{*3}

*1 Graduate School of Biology-Oriented Science and Technology, Kindai University.
*2 Faculty of Biology-Oriented Science and Technology, Kindai University.
*3 Department of Computational Diagnostic Radiology and Preventive Medicine, 22nd Century Medical and Research Center, The University of Tokyo Hospital

We propose a generalized generation of local image features that can be applied various computer-aided detection (CADe) algorithms. The clinical datasets for developing CADe algorithms are often small-scale and not easy to apply deep learning for multi-class classification. The proposed feature generation method is based on unsupervised learning with only normal class data that can be collected easier than lesion class data. A deep convolutional autoencoder and a principal component analysis are used in the proposed method. These encoders extracted the latent variable features from an appearance vector of a local image patch. The reconstruction error between an original image patch and an image from the latent variables is also calculated as an image feature. We evaluated the proposed method with the experimental results of lung nodule detection on chest CT and aneurism detection on head MRA.

Key words: computer-aided detection, feature extraction, Autoencoder, principal component analysis

X線単純投影と流体構造連成解析を用いた

狭窄柔軟管内流れにおける造影剤濃度勾配の評価

金子 凌太朗*1 高本 聡*1 波田野 明日可*1 泉 聡志*1

要旨

冠動脈の狭窄の機能的重症度を低侵襲かつ簡易に診断する方法として造影剤濃度勾配を指標とする TAG (Transluminal Attenuation Gradient)が挙げられるが、精度の向上が求められている.狭窄後に生じる再循 環領域における造影剤の拡散は、TAG に大きく影響すると考えられる.そこで本研究では造影剤拡散動態 を明らかにするため、狭窄血管を模擬した柔軟管に流した造影剤をX線単純投影により撮影した.流体は 水及び血液を用い定常流及び拍動流の条件で流した.また実験を模した流体構造連成解析を行い比較した. 定常流で流体に水を用いた実験では、狭窄後の造影剤は管断面全体に広がり一様に拡散する様子が観察さ れた.一方、定常流で血液を用いた実験では、造影剤濃度の高い領域が管壁を伝いらせん状に回転しなが ら流れていた.血液を想定した解析では狭窄率が高い場合に噴流が軸中央を外れ管壁を伝う様子が観測さ れ傾向は一致したが、拡散に伴う濃度勾配の定量的な一致には課題が残った.

キーワード:造影剤,狭窄柔軟管,流体構造連成解析,TAG,X線単純投影

1. 緒言

日本人の死因の多くを占めるものとして、心筋梗塞が挙げられる.この病気は、冠動脈に狭窄病変が起こり、心臓壁が壊死することで発生する.心筋梗塞の適切な治療方法を選択するためには、狭窄の機能的重症度を正確に評価する必要がある.現在基本となっている評価方法として、心臓カテーテル検査が挙げられる.これは、血管にカテーテルを挿入し狭窄部前後の圧力を計測してその比 FFR (Fractional Flow Reserve)を取ることで、狭窄の程度を評価する方法である.この方法では、精度の高い評価を期待できる[1]が、侵襲性を伴うという点で問題がある.そこで、低侵襲で簡易な方法として、CT 画像の CT 値の勾配から狭窄率を推定するTAG (Transluminal Attenuation Gradient) や、

*1 東京大学大学院工学系研究科機械工 学専攻

〔〒113-8656 東京都文京区本郷 7-3-1〕

CCTA (Coronary Computed Tomography Angiography)で得た形状データをもとに数値解 析をすることで狭窄病変のある冠動脈の入り 口の圧力と狭窄より下流の圧力の比 FFR を推 定することで狭窄による虚血の程度を評価す る FFR-CT などの方法が考案されている[2]が, 計算負荷や精度の観点では問題がある.そのた め,CT 画像から狭窄の機能的重症度を評価す る際の計算負荷の軽減および精度の向上が求 められている.

解析による狭窄の度合いの評価としては,実 測した FFR に対する精度は CCTA のみから評 価するより CCTA を数値解析した FFR-CT から 評価する方が良いとされている[3]. そこで, FFR-CT からのアプローチとして,Yoon らの論 文が挙げられる[4]. この論文によると,侵襲的 な方法で実測した FFR に対し,FFR-CT は感度 81%,特異度 94%と良い結果が得られているが, モデリングの手間や人的労力がかかることが 問題である [2]. そこで,より計算負荷の小さい 方法として TAG が注目されている. TAG につ いては, Wong らによると実測した FFR に対し 320 列 CT を用いた TAG は感度 77%, 特異度 74%と FFR-CT には劣るが近い値となっている [5]. しかし, この値について流体力学の見地か らの説明は不十分であり, 狭窄と TAG 値の関 係は不明である.

当研究室では,狭窄と TAG 値の関係の考察 のため,流体構造連成解析と造影剤動態の解析 を行ってきた.流体構造連成解析については, 冠動脈を想定した分岐システムモデルにおい て,実験との比較により流量や圧力の計算結果 について妥当性を確認した[6].一方,造影剤動 態の解析の妥当性確認も必要であるが,狭窄の ある管における造影剤動態を撮影する実験は 行われてこなかった.本研究では,柔軟管の狭 窄が造影剤動態に与える影響を明らかにする ため,狭窄血管を模擬した狭窄のある柔軟管を 用いて造影剤動態を撮影する実験を行った.ま た,現象を明らかにするため,実験を模した流 体構造連成解析を行った.

2. 手法

2-1. 実験手法

現象解明およびシミュレーションの妥当性 確認のため、血管を模擬した狭窄柔軟管を用い た実験を行った.本研究では,狭窄のある冠動 脈を想定し、以下の図1のような装置を組んだ. 流体がポンプから吐出され、狭窄管を通って容 器へ排出される. 流路にはシリコンチューブを 用い, 圧力計 (KEYENCE, AP-12S) および流量 計(KEYENCE, FD-XS8)を図1に示す配置で 設置した.流量計は校正が必要であり,予め流 量計の値と実際の流量の関係を調べた.ポンプ にはギアポンプ (ツカサ電工, TG-85E-PU-DB4-KA,24V) を用い, 直流可変電源 (テクシオ, PFR-100L50)からポンプに印加する電圧を変化させ ることで,柔軟管入口の圧力変化を制御した. 造影剤はポンプの直後に作った分岐からイン ジェクタを用いて注入した.

図1 実験装置の概略図

流体には、水およびブタの血液を用いた.柔 軟管には、流体に水を用いた実験では内径3mm, 外径5mm,厚さ1mm,長さ70mmのシリコン ゴム製のゴム管(ヤング率0.3 MPa)に、流体入 口側から26mmの位置に釣り糸を縛って狭窄 を作ったものを用いた.また、流体に血液を用 いた実験では、内径3mm、外径5mm、厚さ1 mm、長さ60mmのポリビニルアルコール製の 柔軟管(水で濡れている状態でヤング率0.1 MPa)に、流体入口側から24mmの位置に釣り 糸を縛って狭窄を作ったものを用いた.流れの 時間変化の条件については、ポンプに印加する 電圧を一定にした定常流の条件および1Hz, duty比50%で矩形波状に変化させた拍動流の 条件とした.

造影剤の撮像には X 線循環器診断システム (キャノンメディカル, Infinix Celeve-i INFX-8000C)を使用した.この装置では,30 fps で透 過画像を取得可能であり,また静止物であれば 3 次元再構築が可能である.

2-2. 解析手法

血管を模擬した柔軟管は柔らかいため,流体 カによって変形する.一方,管が変形すれば, 流体の流れの境界条件が変わるため,影響を受 ける.そのため,柔軟管内の流れ場の解析を行 うためには,このような流体と構造体の相互作 用を考慮した流体構造連成解析が必要である. 本研究では,先行研究[6]にて開発された ALE 有 限要素法による一体型流体構造連成解析プロ グラムを用いた.その支配方程式は,流体領域 では連続の式(1)と Navier-Stokes 方程式(2),構 造領域では平衡方程式(3)である.

$$\frac{\partial v_i}{\partial x_i} = 0 \tag{1}$$

$$\rho_f \left\{ \frac{\partial \boldsymbol{v}}{\partial t} \Big|_{\boldsymbol{x}} + (\boldsymbol{v}_i - \hat{\boldsymbol{v}}_i) \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{x}_i} \right\} = \nabla_{\boldsymbol{x}} \cdot \boldsymbol{T}_f \tag{2}$$

$$\rho_{0s} \left(\frac{\partial^2 \boldsymbol{u}}{\partial t^2} \Big|_{\boldsymbol{X}} \right) = \nabla_{\boldsymbol{X}} \cdot (\boldsymbol{S} \cdot \boldsymbol{F}^T) + \rho_{0s} \boldsymbol{g}$$
(3)

ここで、xは Euler 座標, Xは Lagrange 座標, χ は ALE 座標, vは流速, \hat{v} は ALE 座標の Euler 座標に対する速度, uは変位, ρ_f は流体の密度, ρ_{0s} は固体の基準配置での密度, Tは Cauchy 応 カテンソル, Sは第 2Piola-Kirchhoff 応力テンソ ル, Fは変形勾配テンソルである. 流入口, 流出 口において単純に自然境界条件を与えると, 流 速の乱れなどを生じ解析が困難になるため, 境 界面の流速と圧力は代表流速, 代表圧力とそれ ぞれそのプロファイル関数で表している.

造影剤動態の解析では、Particle-trace 解析を 用いた.これは、造影剤動態の解析を高い精度 で行うためには、造影剤の移流と拡散の両方を 考慮した移流拡散方程式を解くべきであるが、 本研究においては、造影剤動態は流体の流れ場 に影響を及ぼさず、造影剤の移動は拡散効果に 比べ移流効果が支配的であると考えられるた めである.

解析モデルには、図 2 のような管を用いた. 実験における柔軟管のうち取り付け冶具の部 分を除いたものを想定し、内径 3 mm,外径 5 mm,長さ 60 mm,ヤング率 0.3 MPa,ポアソン 比 0.45,密度 $9.7 \times 10^2 \text{ kg/m}^3$ とした.狭窄部は、 先行研究 [6][7]でも使用されている、上流から 17 mm~23 mmの間に cos カーブで表現された ものとした.流体の物性値は、水を想定したも のでは密度 $9.982 \times 10^2 \text{ kg/m}^3$ 、粘性係数 0.001 と して、血液を想定したものでは密度 $1.055 \times 10^3 \text{ kg/m}^3$ 、粘性係数 0.0038 とした.

図2 解析モデル

3. 結果と考察

3-1. 実験結果

X線循環器診断システムを用いて実験に用い た柔軟管の 3D 画像を撮影した.シリコンゴム 製のゴム管の面積狭窄率は 74%,ポリビニルア ルコール製の柔軟管の面積狭窄率は 78 %だと 分かった.

まず,流体に水を用い上流圧力が5kPaの定 常流の条件とした実験について,造影剤が流れ 始めてから0.5秒後の撮影結果を示す.なお, 時刻は造影剤濃度が徐々に上がっている途中 の時刻を選んだ.

 (\mathbf{B})

図3 水の定常流での造影剤濃度勾配

この結果から,狭窄後において造影剤は管全体に一様に広がっていたことが分かった.以下 に管軸に垂直な方向の造影剤濃度勾配を示す. これは,撮影結果から上図のAB線上(幅5ピ クセル)の明度を取得し,流体の流れていない 部分から単位厚さ当たりの柔軟管による明度 変化を計算して,流体の流れている部分の明度 変化から柔軟管による影響を除いた後,流体部 の単位厚さ当たりの明度変化を計算したもの である.「位置」とは,管軸を0として管軸に垂 直な方向に撮影結果の下方向を正とした軸で ある.また,直線でこの断面における平均値を 示している.

図4 水の定常流での狭窄後の造影剤濃度勾配平均値は 7.5 /mm だった.

次に,上流圧力が 0~6 kPa 拍動流の条件での 実験について,造影剤が流れ始めてから 1.2 秒 後の撮影結果および管軸に垂直な方向の造影 剤濃度勾配を示す.

図5 水の拍動流での造影剤濃度勾配

図6水の拍動流での狭窄後の造影剤濃度勾配

平均値は 9.8/mm だった. 拍動流においても, 狭窄後において造影剤は管全体に一様に広が っていたことが分かった.

次に,流体に血液を用い上流圧力が20kPa定 常流の条件とした実験について,造影剤が流れ 始めてから1.5秒後の撮影結果および管軸に垂 直な方向の造影剤濃度勾配を示す.

図7 血液の定常流での造影剤濃度勾配

図8 血液の定常流での狭窄後の造影剤濃度勾配

平均値は 23.4/mm だった.血液を用いた実験 では,狭窄後の造影剤は管壁付近が濃くなって いることが分かった.明度を測定した地点より 後ろでは,造影剤濃度の高い領域がらせん状に 回転しながら流れていた.

3-2. 流体構造連成解析

流体が水で定常流を想定した解析を,入口・ 出口圧力と流量について実験と比較すると,以 下の図のようになった.

図9実験と解析の圧力・流量の比較

図9より, 圧力については概ね一致している ものの流量は差があり, 定量的な一致には課題 が残った. 解析モデルは実験で用いた柔軟管と 狭窄部の形状が異なり, それが影響している可 能性がある.

0.0 0.4 0.8 1.2 1.6 2.0 [m/s]

図10 狭窄部付近の流速ベクトル可視化(水)

図 10 は狭窄部付近の流速ベクトルを大きさ に比例した矢印で可視化したものである.狭窄 後は流体が管全体に広がる流れになっていた と考えられる.

一方,流体を血液と想定した 5 kPa 定常流の 解析では,解析の狭窄率を 95%とすると圧力損 失が実験と一致した.この狭窄率の解析での流 速ベクトルは以下の図のようになった.

0.0 0.2 0.4 0.6 0.8 1.0 [m/s]

図11 狭窄部付近の流速ベクトル可視化(血液) 狭窄後に管壁を伝う噴流は,造影剤の濃い領 域に相当している可能性がある.しかし,血球 が影響している可能性も考えられるので,原因 の特定には更なる実験が必要である.

3-3. 造影剤動態の解析結果

流体を水とし定常流を想定した造影剤動態 解析の結果のうち,狭窄部付近を図12に示す.

図12 水の定常流におけるパーティクルの分布 図10と図12を併せ考えると、狭窄後に造影 剤は管全体に広がっているという解析結果で あり、実験と一致する傾向が得られた.

4. 結言

狭窄柔軟管に水及び血液を流し造影剤動態 を撮影する実験とそれを模した流体構造連成 解析及びパーティクルトレース解析を行った. 実験では,流体が水のとき狭窄後の造影剤は管 全体に拡散したが,血液のときは造影剤濃度の 高い領域が管壁を伝ってらせん状に流れると いう違いがあった.解析については,血液かつ 定常流の条件において狭窄後に噴流が管壁を 伝っており定性的には一致したが,定量的な一 致には課題が残った.

謝辞

実験においてご協力を賜った東京大学医学 部附属病院の月原弘之先生,井野賢司先生,東 京大学大学院工学系研究科の藤澤彩乃先生に 心より感謝いたします.本研究は JSPS 科研費 15K17932 の助成を受けたものです.

利益相反の有無

なし

文 献

P.Tonino, B.D.Bruyne, N.Pijls, et al.:
 Fractional Flow Reserve versus
 Angiography for Guiding Percutaneous
 Coronary Intervention. The NEW

ENGLAND JOURNAL of MEDICINE, Vol.360, No.3: 213-224, 2009

- [2] A. J. Einstein: TAG-Is It It? Improving Coronary Computed Tomography Angiography With the Isotemporal Transluminal Contrast Attenuation Gradient. Journal of the American College of Cardiology, Vol.61, No.12: 1280-1282, 2013
- B.-K. Koo, A. Erglis, J.-H. Doh, et al.: Diagnosis of Ischemia-Causing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms. Journal of the American College of Cardiology, Vol.58, No.19: 1989-1997, 2011
- Y. E.Yoon, J. -H. Choi, J. -H. Kim, et al.: Noninvasive Diagnosis of Ischemia-Causing Coronary Stenosis Using CT Angiography. CARDIOVASCULAR IMAGING, Vol.5, No.11: 1088-1097, 2012
- [5] D. T. Wong, B. Ko, J. Cameron, et al.: Transluminal Attenuation Gradient in Coronary Computed Tomography Angiography Is a Novel Noninvasive Approach to the Identification of Functionally Significant Coronary Artery Stenosis. Journal of the American College of Cardiology, Vol.61, No.12: 1271-1279, 2013
- [6] 波田野明日可,住吉谷淳,鈴木一真他: 分岐狭窄柔軟ファントム実験と ALE 流体構造連成解析による造影剤動態解 明.日本機械学会論文集, Vol.84, No.863:1-12, 2018
- [7] S. A. Ahmed , D. P. Giddens: Pulsatile poststenotic flow studies with laser Doppler anemometry. Journal of biomechanics, Vol.17, No.9: 695-705, 1984

X-ray projection and fluid structure interaction analysis of contrast agent dynamics through an elastic stenosis

Ryotaro KANEKO^{*1}, So TAKAMOTO^{*1}, Asuka HATANO^{*1}, Satochi IZUMI^{*1}

*1 The University of Tokyo

Transluminal attenuation gradient (TAG) is one of noninvasive assessments of the functional significance of a stenosis and its diagnostic performance should be improved for practical use. TAG is the gradient of contrast from the ostium when contrast agent first passes; therefore, diffusion of contrast agent at downstream of a stenosis can affect the diagnostic performance. In this study, the diffusion of the contrast agent in fluid flowing through a flexible tube simulating a stenotic blood vessel was radiographed. Water or blood was used as the fluid, flowing under steady flow or pulsatile flow condition. ALE fluid-structure interaction finite element simulation was also conducted in order to estimate flow distribution. In the experiment using water under steady flow condition, the contrast agent diffused uniformly over the entire tube at downstream of the stenosis. On the other hand, in the experiment using blood under steady flow condition, the contrast agent flowed helically along the tube wall. The simulation with blood showed the jet flowed off the center and along the tube wall when the narrowing rate was high, which agreed the experiment. However, concentration gradients associated with diffusion did not agree quantitatively.

Key words: Contrast agent, Flexible tube, Fluid-structure interaction, Stenotic flow, X-ray projection

著者紹介

金子 凌太朗 (かねこ りょうたろ

う)
 2019年東京大・工学部・機械工学科
 卒.現在,東京大大学院修士課程・工
 学系研究科・機械工学専攻・1年.

高本 聡 (たかもと そう) 2012 年東京大・工学部・機械情報工 学科卒.2017 年同大大学院博士課程・ 工学系研究科・機械工学専攻了.現 在,東京大・工学系研究科・機械工学 専攻・助教.

波田野 明日可(はたの あすか) 2007 年東京大・工学部・機械工学科 卒.2012 年同大大学院博士課程・新領 域創成科学研究科・人間環境学専攻 了.現在,東京大・工学系研究科・機 械工学専攻・講師.

泉 聡志 (いずみ さとし) 1994年東京大大学院・工学系研究 科・機械情報工学専攻了.現在,東京 大・工学系研究科・機械工学専攻・教 授.

Classification of histological subtypes of NSCLC

using Coxnet and NMF

Masahiro YAMADA^{*1}, Hidetaka ARIMURA^{*2}, Kenta NINOMIYA^{*1}

Abstract

Histological classification of non-small cell lung cancer (NSCLC) affects the decision making of treatment policies. However, histological subtypes, i.e. adenocarcinoma (AC) and squamous cell carcinoma (SCC), identified from a single biopsy occasionally differ from actual subtypes decided by surgical resections for NSCLC. We aim to explore classification approaches of histological subtypes of NSCLC using three support vector machines (SVMs) with radiomic signature sets (sets of significant image features) determined by Coxnet and non-negative matrix factorization (NMF). Classification models of Gaussian, linear and polynomial SVMs constructed with radiomic signatures achieved the areas under the curves (AUCs) of 0.7021, 0.6803, 0.7131 using Coxnet, and 0.7128, 0.6660, 0.7143 using NMF, respectively. The polynomial SVM with the radiomic signature determined by NMF could more correctly classify histological subtypes of NSCLC into AC and SCC.

Keywords: Histological subtypes, Radiomics, Classification, NSCLC, SVM

1. Introduction

The most common histological subtypes of non-small cell lung cancer (NSCLC) are adenocarcinoma (AC), squamous cell carcinoma (SCC) and large cell carcinoma (LCC) [1]. AC accounts for 38.5% of all lung cancer, with SCC accounting for 20% and LCC accounting for 2.9% [2]. Histological classification of lung cancer provides important information about tissue characteristics and anatomical location [3], which is utilized for determination of treatment policies [4].

The recent advancements in the therapy for lung cancer are discovery of targetable mutations for molecular targeted drugs and development of histology-based therapeutic regimen selection [4,5].

In clinical practice, the most common way of classifying histological subtypes is the biopsy, in which specimens are sampled. This method is clinically limited by the invasive procedures as well as prolonged time and cost efficiency [5]. Furthermore, histological subtypes identified from specimens sampled by the single biopsy occasionally differ from those from surgical resection [6].

Radiomics based on medical images, which are routinely acquired in noninvasive, lower cost and fast way, has been proposed [7]. For increasing the classification accuracy in the biopsy or without the biopsy, we aim to develop an automated approach for classifying histological subtypes of NSCLC using support vector machines (SVMs) with radiomic features.

^{*1} Department of Health Sciences, Faculty of Medical Sciences, Kyushu University [3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan]

e-mail: masahiro19940622@gmail.com

^{*2} Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University

2. Materials and frameworks

2.1. Clinical cases

Computed tomography (CT) images of 205 lung cancer patients (male: 152, female: 53, age: 43-87 (mean: 69)) were selected from the datasets of NSCLC-Radiomics and NSCLC-Radiogenomics in The Cancer Imaging Archive (TCIA) database [8]. The patients were categorized into two histological subtypes of AC (n=103) and SCC (n=102), and into four overall stages I (n=80, 39.0%), II (n=45, 22.0%), III A (n=43, 21.0%) and III B (n=37, 18.0%). The CT images of NSCLC-Radiomics were acquired with a scanner (SOMATOM Sensation-16, Siemens), with an in-plane pixel size of 0.98×0.98 mm², a slice thickness of 3 mm and 16-bit gray levels. The patients of NSCLC-Radiomics data treated with radiotherapy or chemoradiotherapy. The CT images of NSCLC-Radiogenomics were acquired with several CT machines, with in-plane pixel sizes of 0.6-1.37 mm, slice thicknesses of 0.63-7.00 mm and 16-bit gray levels.

2.2. Overall procedure

Figure 1 shows an overall procedure of our proposed approach.

Fig. 1. An overall procedure of our proposed approach. A left flow shows the calculation of ICCs of radiomic features. A right flow shows the stratification of tumor regions into AC and SCC.

In the first step, we calculated intraclass correlation coefficients (ICCs) of radiomic features which were extracted from CT images.

In the second step, high stability features were extracted from CT images (n = 205) of NSCLC, and we constructed signatures using Coxnet and NMF (non-negative matrix factorization). Finally, the areas under the curves (AUCs) were evaluated to investigate the most appropriate kernel function in SVMs.

2.3. Feature extraction

In this study, 486 radoimic features which included statistical features, texture features and wavelet features, were calculated. Statistical features describe the image histograms within GTV (gross tumor

volume). Texture features were derived from gray-level co-occurrence matrix (GLCM) [9], gray-level run length matrix (GLRLM) [10], gray-level size zone matrix (GLSZM) and neighborhood gray-tone difference matrix (NGTDM). Wavelet features were extracted on the images which were transformed by coiflet wavelet function at three dimensions. These features were computed in MATLAB 2015b.

2.4. Assessment of stability features

Thirty-one stable radiomic features were selected by calculating ICCs using RIDER dataset and multiple delineation dataset [8,11]. We used 19 patients in RIDER dataset to assess stable features between the test and the retest scans, and 30 patients in RIDER, LIDC-IDRI and QIN-Lung-CT datasets [8] to evaluate the stability of radiomic features against variation in manual delineations which nine oncologists delineated. The ICC is a statistical measure that assesses the degree of agreement (consistency) [12]. In our study, the multiplication of the ICCs of temporal and multisegmentation (mICC) are calculated as

$$mICC = \overline{ICC}_{temporal} \times \overline{ICC}_{segmentation}$$
(1)

where $\overline{ICC}_{temporal}$ and $\overline{ICC}_{segmentation}$ indicate the mean ICC (Eq. (2)) computed for the features of temporal stability and multisegmentation stability, respectively. The mean ICCs for each feature across the whole dataset were calculated by

$$\overline{ICC_j} = \frac{1}{M} \sum_{k=1}^{M} ICC_{j,k}$$
(2)

where j (= 1, ..., M) is the feature number, N is the number of radiomic features, k (= 1, ..., M) is the patient number and M is the number of patients. Following the classification of the ICC [13], features with higher agreement (i.e. $\overline{ICC} \ge 0.9$) were considered high-stability features, whereas features with lower agreement (i.e. $0 \le \overline{ICC} < 0.9$) were considered low-stability features. Consequently, features with mICC ≥ 0.81 were considered high-stability features. The ICC was calculated by using the IRR package in R Ver. 3.4.1 [14].

2.5 Feature selection

2.5.1 Coxnet algorithm

Simon et al studied the relationship between predictor variables and survival time, and developed the Coxnet alogorithm [15,16]. The Cox proportional hazard model $h_i(t|\mathbf{x}_i)$ for a patient *i* at a time *t* can be expressed by

$$h_i(t|\mathbf{x}_i) = h_0(t)e^{\boldsymbol{\beta}^T \mathbf{x}_i} \tag{3}$$

The Lagrangian formulation is constructed as follows

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmax}}[kl(\boldsymbol{\beta}) - \lambda P_{\alpha}(\boldsymbol{\beta})]$$
⁽⁴⁾

where

$$l(\boldsymbol{\beta}) = \sum_{i=1}^{n} d_i \left\{ \boldsymbol{\beta}^T \boldsymbol{x}_i - \ln\left(\sum_{t_j \ge t_i} e^{\boldsymbol{\beta}^T \boldsymbol{x}_j}\right) \right\}$$
$$P_{\alpha}(\boldsymbol{\beta}) = \alpha \|\boldsymbol{\beta}\|_1 + \frac{1-\alpha}{2} \|\boldsymbol{\beta}\|_2^2$$
$$d_i = \begin{cases} 1, \text{ event occured at } t_i \\ 0, \text{ censored at } t_i \end{cases}$$

and *i*, *j* are the patient number, \boldsymbol{x} is the feature vector, $\boldsymbol{\beta}$ is the coefficient vector, $h_0(t)$ is the baseline hazard function, t_i, t_j are the survival time of a patient *i*, *j* ($t_i \leq t_j$), *k* is the scaling factor, λ is the Lagrangian multiplier and α ($0 \leq \alpha \leq 1$) is a blending parameter.

2.5.2 NMF algorithm

Non-negative matrix factorization (NMF) aims to obtain a linear representation of multivariate data under nonnegativity constrains. These constraints lead to a part-based representation because only additive, without any subtractions, combinations of the original data are allowed [17]. Given a positive matrix X of size $N \times M$ and desired rank K (number of bases), the NMF algorithm iteratively computes an approximation

$$X \sim WH$$
(5)
subject to $w_{ik} \ge 0, h_{kj} \ge 0$

where X is the data, W is the basis matrix with elements w_{ik} (*i* is the feature number, k is the rank number), H is the coefficient matrix with elements h_{kj} (*j* is the patient number), N is the number of features and M is the number of patients. W and H are nonnegative matricies with respective sizes N × K and K × M.

3. Results

3.1 Feature selection

In this study, the parameter $\alpha = 1$ (LASSO penalty) was used in Coxnet and performed a 10-folds cross validation method to decide the Lagrangian multiplier λ . An optimal λ was determined at the point of minimum mean cross validation error. Five significant features (LHL_RLN, LHL_SZE, HLH_Strength, LHH_SZE and HHH_Strength) with non-zero coefficients were selected as a radiomic signature.

In NMF, the rank k was decided with considering about RSS (residual sum of squares) curve. The RSS curve had been adopted to determine the optimal rank k from 6. Five significant features (HLL_Busyness, LHL_LRE, LHL_Busyness, HHH_Busyness and HHH_Strength), which were the highest magnitude of basis matrix *W*, were selected.

3.2 Stratification of tumor regions

SVMs were used for classifying histological subtypes of NSCLC in this study. We used three kernel functions; Gaussian, linear and polynomial. Optimal parameters were decided in each kernel function. Figure 2 shows the ROC curves using a signature of Coxnet (left) and NMF (right).

Fig. 2. ROC curves using a signature of Coxnet (left) and NMF (right).

Classification models of Gaussian (G), linear (L) and polynomial (P) SVMs achieved AUCs of 0.7021 (G, sigma : 1.19), 0.6803 (L, slope : 0.5, intercept : 5), 0.7131 (P, slope :0.5, intercept : 380, dimension : 5) using Coxnet, and 0.7128 (G, sigma : 1.26), 0.6660 (L, slope : 1.2, intercept : 335), 0.7143 (P, slope : 0.15, intercept : 140, dimension : 9) using NMF, respectively.

4. Discussion and conclusion

An emerging field radiomic quantifies phenotypic characteristic of tumor tissues using medical images. In this study, we investigated the association of radiomic features and histological subtypes of NSCLC and achieved relatively higher prediction accuracy, especially when using polynomial functions.

According to Matsuda et al, the true diagnosis of histological subtypes of lung cancer cannot be made of a small biopsy fragment, because of the lack of cell differentiation [18]. Our study, which is classification of histological subtype using image features, might be useful for not only increasing the classification accuracy but also patients who do not prefer a biopsy.

The performance of classifiers can be enhanced if we incorporate the clinical information like tumor grade, location, smoking history and obesity [19]. For example, a recent study showed body mass index was inversely associated with SCC, and the association was positive for AC [20].

In conclusion, histological subtypes of NSCLC could be classified into AC and SCC using a polynomial support vector machine with radiomic features.

Acknowledgement

The authors would like to express their appreciation to all of members of the Arimura laboratory who provided precious comments and advices for this study.

Conflict of interests

The authors do not have any conflict of interests to disclose.

References

[1] Travis WD, "Pathology of lung cacner." Clin Chest Med, 32(4):669-92 (2011).

[2] Charles S, Lynn T, Richard A, "Lung Cancer: Epodemilogy, Etiology and Prevention." Clin Chest Med, 23(1):1-25 (2002).

[3] Wu W, Parmar C, Grossmann P et al, "Exploratory Study to Identity Radiomics Classifiers for Lung Cancer Histology." Front Oncol, 30;6:71 (2016).

[4] Manegold C, "Treatment algorithm in 2014 for advanced non-small cell lung cancer: Therapy s selection by tumour histology and molecular biology." Adv Med, 59(2):308-13 (2014).

[5] Cufer T, Ovcaricek T, O'Brien ME, "Systemic therapy of advanced non-small cell lung cancer: major-developments of the last 5-years." Eur J Cancer, 49(6):1216-25 (2013).

[6] Cataluna JJ, Perpina MD, Greses JV et al, "Cell Type Accuracy of Bronchial Biopsy Specimens in Primary Lung Cancer." Chest, 109(5):1199-203 (1996).

[7] Aerts HJ, Velazquez ER, Leijenaar RT et al, "Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach." Nat Commun, 5:4006 (2014).

[8] The Cancer Imaging Archive, December 2010, http://www.cancerimagingarchive.net/

[9] Haralick RM, Shanmugan K, Dinstein I, "Texture features for image classification." IEEE Trans Syst Man Cybern, 3:610-21 (1973).

[10] Peto R, Peto J, "Asymptotically efficient rank invariant test procedures" J R Stat Soc Ser A 135:185-207 (1972).

[11] Zhao B, James LP, Mosknowitz CS et al, "Evaluating variability un tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer." Radiology 252:263-72 (2009).

[12] Soufi M, Arimura H, Nakamoto T et al, "Exploration of temporal stability and prognostic power of radiomic features based on electronic portal imaging device images" Physica Medica, 46:32-44

[13] Koo Tk, Li MY, "A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research." J Chiropr Med, 15(2):155-63 (2016).

[14] Gamer M, Lemon J, Fellows I, et al, "irr: Various Coefficients of Interrater Reliability and Agreement.", https://www.r-project.org

[15] Simon N, Friedman H, Hastie T et al, "Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent." Journal of Statistical Software, 39(5):1-13 (2011).

[16] Mazen S, Arimura H, Nagami N, "Identification of optimal mother wavelets in survival prediction of lung cancer patients using wavelet decomposition-based radiomic features." Medical Physics, 45(11):5116-28 (2018).

[17] Zdunek R, Cichocki, "Nonnegative matrix factorization with constrained second-order optimization." Signal Processing, 87(8):1904-16 (2007).

[18] Matsuda M, Horai T, Nakamura S et al, "Bronchial brushing and bronchial biopsy: comparison of diagnostic accuracy and cell typing reliability in lung cancer." Thorax 41(6):475-78 (1986).

[19] Bufill JA "Colorectal cancer: evidence for distinct genetic vatefories based on proximal or distal tumor location."Ann Intern Med, 15;113(10):779-88 (1990).

[20] Zein EI M, Parent ME, Nicolau B et al, "Body mass index, lifetime smoking intensity and lung cancer risk." Int J Cancer, 1;133(7):1721-31 (2013).

CNN を用いた CAD 開発における段階的学習法の提案

安倍 和弥*1 武尾 英哉*1 永井 優一*2 縄野 繁*3

要旨

近年, CAD の研究分野にも CNN が積極的に用いられるようになった.一般的に,機械学習には様々な バリエーションを有する症例画像を網羅的に与えて学習することで,汎用的で高性能な判別器を設計する. しかし, CNN の学習データを構成する中で,データを一様に与えるのではなく,複数のサブセットに分け, その比率を調整することで効果的な学習ができる可能性が確認できた.本論では,このサブセットを使用 して CNN の学習を段階的に繰り返し行う学習法について提案する.

本研究では、乳がん腫瘤の学習データを腫瘤の大きさと濃淡をもとに個々のサブセットを作成し、学習 した CNN を評価用として複数用意したデータセットを用いて最適比率を検討し、実際の未知データで性能 評価を行う.そして、評価データで検出ミスの多かったサブセットの比率を上げて再学習を行う.これを AUC の上昇が見られる間複数回繰り返し、性能の高い CNN を設計した.この CNN を未知データへ適用し た結果、単純に網羅的に学習データを与えた CNN と比べて AUC が高いことが確認でき、本学習法の有効 性が確認できた.また、本学習法を肝腫瘍にも適用したところ、同様の結果が得られ、この学習法の汎化 性も確認できた.

キーワード: CNN, CAD, 学習法, 乳がん腫瘤, 肝腫瘍

1. はじめに

近年, 医療の現場では CT や MRI など撮影装置の高精細化により生成される医用画像の量が増大している.撮影される画像の枚数は患者一人あたり数百枚にもおよび,それを読影する医師の負担も急増している.そのため診断の補助を行うコンピュータ画像支援診断(Computer Aided Diagnosis/Detection: CAD)の開発が非常に重要視されている.

その CAD の研究分野においても人工知能, AI を用いた研究が進められている. その中でも 画像認識手法である CNN (Convolutional Neural Network) は積極的に用いられるようになった

*1 神奈川工科大学工学部電気電子情報 工学科

〔〒243-0292 厚木市下荻野 1030〕
e-mail: abex0930@ele.kanagawa-it.ac.jp
*2 国立がん研究センター東病院

*3 国際医療福祉大学三田病院

[1]. 一般的に,機械学習には様々なバリエーションを持った症例画像を網羅的に与えて学習 を行うことで,汎用的で高性能な判別器を設計 する. これは,学習に含まれていない画像はう まく検出ができないと考えられるからである. しかし, CNN の学習データを構成する中で,デ ータを一様に与えるのではなく,複数のサブセ ットに分け,その比率を調整することで効果的 な学習ができる可能性が確認できた.本論では, このサブセットを使用して CNN の学習を段階 的に繰り返し行う学習法について提案する.

CNN を用いた乳がん腫瘤影の検出は Almasni ら[2,3]や Tan ら[4]などが行っている.また, CNN を用いた肝腫瘍(肝臓がん)の検出は 近藤ら[5]が行っている.しかし,これらは学習 データについては網羅的に与える手法をとっ ており,与える学習データの内容について精査 してはいない.

CNN の課題として, 有効ではない画像が含ま れると性能が低下する問題がある. これに対し サブセットを作成して段階的に学習を行うこ とにより,無作為に画像を与えた場合に比べて 有効な画像群を優先して用いることが可能と なり判別精度の向上が期待できる. 本論文のポイントを以下に示す.

- 段階的学習法の提案
- ② 提案システムの乳がん腫瘤への適用
- ③ 汎化性確認のため同手法の肝腫瘍への適 用

本論文では、2 章で段階的学習法の手法について、3 章で提案学習法での検出性能の推移を示す、4 章にて考察、5 章にて本研究のまとめについて述べる.

2. 段階的学習法について

2.1 段階的学習法の流れ

提案する段階的学習法の流れを図1 に示す.

2.2 サブセットの作成

乳がん腫瘤,肝腫瘍の症例画像をサイズの大 小とコントラストの濃淡を基に9分類に分けサ ブセットを作成する.分類表を図2に示す.コ ントラストは腫瘍内部と辺縁での差分とした.

分類表の分類名は、サイズを S・M・L (Small, Middle, Large)、コントラストを P・M・D (Pale, Middle, Deep) と分類し頭文字をつなげて表記 したものであり、本論では以降この表記で記述 を行う.

2.3 乳がん腫瘤 CNN の段階的学習

乳がん腫瘤影判別の CNN は Al-masni らの手 法[2]や藤田らの書籍[6]を参考に yolo[7]を用い て作成した. OS は ubuntu18.04, cuda9 を用いて GPU を利用した学習を行っている. CNN の構 成は中間層 8 層の CNN を用い,転移学習は使 用していない. すべての学習において Epoch 数 は 5000, バッチサイズは 64 とした.

本論にて使用する yolo では完全ランダムで 画像を選択し学習する.そのため,同様の種類 の画像が連続で選択された場合,その種類に特 化した判別器になる可能性があり,稀に低性能 の判別器が作成される.この問題への対策とし て,同一の学習データセットにて各3回の学習 を行って判別器の作成を行い,判別性能が最高 である判別器を使用することとした.

初めに各サブセット単体での CNN と各サブ セットを網羅した CNN を作成する.作成した 判別器にて評価データセットを用いて評価を 行い,判別性能を求める.評価用データセット には,がん症例 100 例,非がん症例 100 例の計 200 例を用意した.評価には ROC グラフを用い て AUC(ROC グラフの下面積)を算出し,各学習 における判別性能を算出する.なお,症例数の 関係上,乳がん腫瘤に関しては SP, SM, SD の 3 つのサブセットは統合し計 7 つのサブセット にて評価を行った.評価結果での AUC を表 1, 図 3 に示す.

• • • • • • • • • • • • • • • • • • • •	
判別記名	AUC
判別器 S	0.873
判別器 MD	0.550
判別器 MM	0.856
判別器 MP	0.843
判別器 LD	0.811
判別器 LM	0.831
判別器 LP	0.706
判別器X(網羅)	0.878

表1 判別器ごとの AUC(腫瘤)

図3 分類表でみる AUC(腫瘤)

サブセット MD において,枚数不足に起因するとみられる極端に低い学習結果が得られたため後の平均 AUC 算出からは除外している.

網羅型である判別器 X 及び MD を除いた判 別器の平均 AUC は 0.820 であり, 平均より判別 性能が高かったのは, サブセット S・MM・MP・ LM であった.ただ,サブセット S は複合であ るため単独での性能が未知数である.よって, 1 段階目の学習は MM・LP・LM の3種にて判 別器 Y1 の作成を行った.以降は作成する Y 系 統の判別器での検出ミスが多いサブセットを 加えて,段階的に高性能な判別器作成を行う. 追加するサブセットの決定は式(1)にて Score を 算出. MM を除き最も有効であるサブセットの みを加えて判別器を組み替える.判別器 Y1 で の検出ミス数と Score を図4に示す.

Score=(対象サブセットの検出ミス*2)

+(周囲3サブセットの検出ミス) (1)

Score より SD を加えて判別器 Y2 を作成する.以降も同様に Score を基に組み換えを行い, AUC が飽和または減少するまで行い最高性能の判別器を作成する.最終的な評価データセットでの AUC の推移を表2に示す.

表2 評価データセットによる

段階的学習法の AUC 推移(腫瘤)

判別記名	AUC
判別器X(網羅)	0.878
判別器 Y1	0.820
判別器 Y2	0.851
判別器 Y3	0.873
判別器 Y4	0.921

表2より評価データセットでは判別器 Y4 が 最高値となった.また,段階的な判別性能の向 上も確認できた.

2.4 肝腫瘍 CNN の段階的学習

汎化性の確認のため, 肝腫瘍の CNN も乳が ん腫瘤と同様に yolo を用いて作成を行った. サ ブセットについても乳がん腫瘤と同様にサイ ズとコントラストを用いて9分類し各判別器と 網羅型の判別器を作成, 式(1)の Score を用いて 段階的に学習を行った.また,肝腫瘍では評価 データセットを2種類用意,相互に評価データ セットと未知データセットとすることで2通り の判別器にて本学習法の評価を行った.データ セットには,がん症例100例,非がん症例100 例の計200例を用意した.サブセットごとの AUCを表3に示す.

	評価セット	評価セット
判別記名	Α	В
	AUC	AUC
判別器 SD	0.822	0.824
判別器 SM	0.732	0.753
判別器 SP	0.846	0.855
判別器 MD	0.772	0.769
判別器 MM	0.797	0.803
判別器 MP	0.834	0.855
判別器 LD	0.701	0.699
判別器 LM	0.732	0.774
判別器 LP	0.846	0.775
判別器 X(網羅)	0.825	0.865

表3 判別器ごとの AUC(肝腫瘍)

セット A では網羅型である判別器 X を除い た判別器の平均 AUC は 0.787 であり, 平均より 判別性能が高かったのは, サブセット SD・SP・ MM・MP・LP であった.また,セット B では 平均 AUC は 0.790 であり, 平均より判別性能が 高かったのは,サブセット SD・SP・MM・MP であった.よって,これらより判別器 Z1 を作 成し段階的に学習を行った.評価データセット での AUC の推移を表 4 に示す.

表4より評価データセットでは,セットAで は判別器 Z2,セットBでは判別器 Z4 が最高値 となった.

	評価セット	評価セット		
判別記名	А	В		
	AUC	AUC		
判別器 X (網羅)	0.825	0.865		
判別器 Z1	0.891	0.859		
判別器 Z2	0.904	0.860		
判別器 Z3	0.856	0.888		
判別器 Z4	-	0.907		
判別器 Z5	-	0.884		

表4 評価データセットによる 段階的学習法の AUC 推移(肝腫瘍)

3. 未知データでの本学習法による検出性能 の推移

3.1 乳がん腫瘤

2.3 節にて作成した CNN を未知データセット にて適用し,評価を行った.未知データセット にはがん症例 100 例と非がん症例 100 例を用い た.結果を表 5 に, ROC の推移を図 5 に示す.

表5 未知データでの判別性能の推移(腫瘤)

-		
	判別記名	AUC
	判別器 X(網羅)	0.840
	判別器 Y1	0.814
	判別器 Y2	0.852
	判別器 Y3	0.858
	判別器 Y4	0.888

図5 未知データでの ROC グラフ(腫瘤)

表 5, 図 5 より未知データにおいても有意な 判別性能の向上が見て取れる. 網羅型である X の AUC が 0.840 に対し, 段階型学習法では段階 的な性能向上が見られ, 最終的に 0.888 まで増 加した.

3.2 肝腫瘍

2.4 節にて作成した CNN を未知データセット にて適用し,評価を行った.未知データセット にはがん症例 100 例と非がん症例 100 例を用い た.結果を表 6 に, ROC の推移を図 6(a)(b)に示 す.

	未知セット	未知セット
判別記名	А	В
	AUC	AUC
判別器 X(網羅)	0.865	0.825
判別器 Z1	0.877	0.828
判別器 Z2	0.927	0.835
判別器 Z3	0.832	0.865
判別器 Z4	-	0.868
判別器 Z5	_	0.856

表6 未知データでの判別性能の推移(肝腫瘍)

(a) 未知セットAのROC グラフ

表6及び図6より,乳がん腫瘤同様こちらも 未知データにおいても有意な判別性能の向上 が見て取れる.また,未知セットA・Bともに 網羅型である X に比べて評価データでの最適 値である Z2・Z4 で AUC の最高値を得ており, 本学習法の有効性が示唆できた.

4. 考察

2章の表 2・3 の結果より, サブセットの AUC を基にした学習データセット構築と, Score を 用いた弱点補強法が CNN 開発に有効であると 確認できた.特に Score を使用しての段階的学 習では,従来の網羅型の CNN と同数の学習デ ータでより効率的に学習が行えていることが 確認できる.

3 章の評価結果より,段階的学習法を用いる ことにより,最適化を行った評価データだけで なく最適化を行っていない未知データにおい ても性能の向上が確認できた.また,対象によ り多少ばらつきはあるものの FP 率 10%で 80% ~90%の高い TP 率が得られており,医師の正 答率が 80%~90%と言われているため同等の性 能が得られたといえる.

乳がん腫瘤においてはデータ不足によりサ ブセットS系が個別に評価できなかった.また, 同様にデータ数不足と思われる要因によりサ ブセット MD の学習性能が低かった.これらの 問題は一層のデータ収集を行うことにより,的 確なサブセットを使用しての判別器開発が行 えると考えられる.

肝腫瘍においては撮影機器や造影剤による コントラストのばらつきが大きく同一サブセ ット内でもばらつきが見られる.今回は門脈相 のみを用いたが,位置合わせを行い単純相との 差分をコントラストとして用いるなども検討 の余地がある.また,嚢胞を検出してしまうこ ともあり嚢胞は別途学習を行うことも検討の 余地がある.

乳がん腫瘤での MM など有効なサブセット のみで効果的な CNN が作成できる要因として, サブセットによる周囲の補完が考えられる.図 7 に示す通り,同一サブセット内にある大小や コントラスト差などから, CNN により周辺を補 完する特徴量が作られるため性能の向上が見 られた.一方, 肝腫瘍での LD, LM などは嚢胞 の誤検出の要因となりやすく精度が低下した と考えられる.この点からも単純に網羅するよ りもサブセットを用いて不要部位を減少させ る利点と考えられる.

図7 サブセットによる補完

5. まとめ

本論では、CNN を用いた CAD 開発において サブセットを用いて段階的に学習を行い、判別 性能の高い CNN の作成手法について提案を行 った.サイズの大小、コントラストの濃淡に注 目して症例画像を9個のサブセットに分割、中 間評価画像を利用して最適な組み合わせを検 討し、未知データにて性能向上を評価した.そ の結果、乳がん腫瘤と肝腫瘍のいずれを対象と した判別器においても段階的に性能向上が見 られる結果となり、本手法での CAD 開発の有 効性が確認できた.

利益相反の有無

利益相反 なし

倫理規範の順守

本研究にて使用した患者の症例データは,す べての患者の初診時に撮影画像の研究利用も 含めた「包括的合意」にサインを受け,また各 病院にて倫理委員会を通したうえで提供を受けたものを使用している.

文 献

- Robertson S, Hartman J, Robertson S et al: Digital image analysis in breast pathologyfrom image processing techniques to artificial intelligence. Translational Research Vol.194, pp.19-35, 2018
- [2] Al-masni M. A., Al-antari M. A., Park J et al: Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLObased CAD system. Computer Methods and Programs in Biomedicine Vol.157, pp.85-94, 2018
- [3] Al-masni M. A., Al-antari M. A., Park J et al: Detection and classification of the breast abnormalities in digital mammograms via regional Convolutional Neural Network. IEEE Conf Proc. No.EMBC. pp.1230-1233, 2017
- [4] Tan Y. J., Sim K. S., Ting F. F: Breast cancer detection using convolutional neural networks for mammogram imaging system.
 IEEE Conf Proc. No.ICORAS. pp.1-5, 2017
- [5] 近藤正,上野淳二,高尾正一郎:人工知 能技術を用いた多層型 GMDH-type ニ ューラルネットワークによる肝臓癌の 医用画像診断.信学技報 111(396), pp1-6, 2012
- [6] 藤田一弥,高原歩:実装ディープラーニ ング.オーム社,東京,2016,pp150-167
- Joseph R, Santosh D, Ross G et al: You
 Only Look Once: Unified, Real-Time
 Object Detection. Computer Vision and
 Pattern Recognition, arXiv:1506.02640,
 2015

Proposal for an incremental learning method for CAD development

that uses CNN

Kazuya ABE*1, Hideya TAKEO*1, Yuuichi NAGAI*2, Shigeru NAWANO*3

*1 Kanagawa Institute of Technology

*2 National Cancer Center Hospital East

*3 International University of Health and Welfare, Mita Hospital

In recent years, convolutional neural networks (CNN) have found increasingly active application in the field of computer-aided diagnosis (CAD) research. Typically, general-use, high-performance detectors are designed using machine learning, the training of which is conducted by applying comprehensive sets of case images having various variations. In this study, we show that, when configuring CNN training data, dividing the data into multiple subsets and adjusting their ratios, instead of providing the data uniformly, has the potential for effective learning. We propose in this study a learning method by which CNN learning using these subsets is incrementally repeated.

In this study, subsets of breast cancer mass learning data based on mass size and intensity were created. Using multiple data sets prepared for use in the evaluation of a CNN that had been subjected to learning, optimal ratios were considered and, based on this, performance evaluations using actual unknown data were conducted. Next, the ratios of evaluation data subsets having numerous detection errors were raised and relearning conducted. This process was repeated multiple times, as long as increases in the area under curve (AUC) were observed, thus enabling the design of a high-performance CNN. As a result of applying unknown data to this CNN, we found that it exhibited a higher AUC than a CNN to which learning data was simply provided comprehensively, demonstrating the effectiveness of the proposed learning method. Furthermore, applying the proposed learning method to hepatic tumors produced similar results, indicating the general applicability of this method.

Key words: CNN, CAD, learning method, breast cancer mass, hepatic tumor

著者紹介

大大学院修士課程了. 同年富士フィル ム株式会社に入社. 医用画像処理シス テムに関する研究・開発に従事. 2005 年東京農工大大学院博士後期課程了. 博士(工学). 2006年神奈川工科大 工学部助教授,現在同大教授,医用・ フォト・シネマ映像などの画像工学の 研究に従事. 2004年度本学会論文 賞. 第6回および第8回 JAMIT-CADコ ンテスト優勝.本学会,映像情報メデ ィア学会,画像電子学会,電子情報通 信学会, 医用画像情報学会各会員.

永井 優一 (ながい ゆういち) 1991年中央医療技術専門学校夜間部 卒. 1991年より国立療養所松戸病院 放射線科, 1992年より国立がん研究 センター東病院放射線部,2006年よ り国立がんセンター中央病院(現独立 行政法人国立がん研究センター中央病 院)放射線診断部消化器官撮影主任, 2015年より東埼玉病院放射線科副診 療放射線技師長,中央医療技術専門学 校非常勤講師(画像工学),全国国立 病院療養所放射線技師会常任理事, 2017年より国立がん研究センター東 病院放射線部放射線診断技術室副放射 線診断技術室長,現在に至る.診療放 射線技師. 医用画像解析の研究に従 事. 日本放射線技術学会会員.

縄野 繁 (なわの しげる) 1981年千葉大学医学部卒,同年千葉 大学医学部付属病院放射線科研修医. 1982年同助手. 1986年国立がんセン ター病院放射線診断部医員. 1992年7 月1日国立がん研究センター東病院放 射線部医長. 2002年4月1日同部 長. 2007年4月1日国際医療福祉大 学三田病院放射線診断センター教授. 日本医用画像工学会,日本医学放射線 学会専門医, 日本核医学会専門医, 日 本磁気共鳴医学会,北米放射線学会, CT・MRIの診断,消化管X線診断.

Prediction of five-year survival probabilities of head-and-neck cancer patients using support vector machine based on radiomic

signatures selected by Coxnet

LE Cuong Quoc¹, Hidetaka ARIMURA^{*2}, Masahiro YAMADA¹, Hidemi KAMEZAWA³

Abstract

Five-year survival probability may affect the choices of treatment policies for head-and-neck (H&N) cancer patients. The aim of our study was to investigate an automated approach to predict of 5-year survival probabilities of H&N cancer patients using a support vector machine (SVM). Computed tomography (CT) images of 126 patients with H&N squamous cell carcinoma were selected from The Cancer Imaging Archive database for this study. Engineered features representing tumor heterogeneity of cancer patients were extracted from gray-level histogram and texture matrices within cancer regions. The signatures, i.e., sets of significant features, were constructed using a Coxnet algorithm. The signatures were fed into the SVM with a polynomial kernel to estimate the 5-year survival probabilities. The polynomial SVM learning with radiomic signatures archived an area under the curve of 0.665 for stratification of patients based on 5-year survival. The polynomial SVM could be feasible to estimate the 5-year survival probabilities of H&N cancer patients by continuing this study to improve the approach.

Keywords : Head-and-neck cancer, Five-year survival probabilities, Coxnet, Support vector machine

1. Introduction

More than 90% cancer in head-and-neck (H&N) region are squamous cell carcinomas (SCC) [1]. In H&N cancer patients, five-year survival probability may affect the choice of treatment policies. Hence, prediction of 5-year survival probability plays an essential role during treatment course of H&N cancer. Recently, radiomics has attracted increased attention of researchers and clinicians due to its quantitative advantages. Radiomics could massively and comprehensively analyze and extract mineable data from a large amount of medical images [2]. Machine-learning techniques, e.g. support vector machine (SVM), have been used to imitate complex neural network or brain plasticity. In clinical practice, machine-learning approaches with high accuracy could drive the success of radiomics-based applications. We hypothesized that a radiomic-based SVM approach could be feasible to stratify H&N cancer patients

¹ Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University

^{*2} Department of Health Sciences, Faculty of Medical Sciences, Kyushu University

^{[3-1-1,} Maidashi, Higashi-ku, Fukuoka 812-8582, Japan]

e-mail: arimurah@med.kyushu-u.ac.jp

³ Department of Radiological Technology, Teikyo University

and predict 5-year survival probabilities of them. Our study aimed to investigate and validate an automatic approach of the radiomic-based SVM model for prediction of 5-year survival probabilities of the patients.

2. Materials and methods

1) Clinical cases

Our study employed computed tomography (CT) images of 126 cancer patients with HNSCC [3] (male: 107, female: 19, age: 29-91 (mean: 56.79)) from The Cancer Imaging Archive database [4]. Patients were categorized into five overall stages I (n=3, 2.38%), II (n=2, 1.58%), III (n=15, 11.90%), IVA (n=95, 75.40%), and IVB (n=11, 8.74%). CT images were acquired using several CT scanners, with in-plane pixel sizes of 0.6386-0.9766 mm and slice thicknesses of 2.50-3.75 mm.

2) Overall procedure

Figure 1 describes the overall scheme of the proposed procedure. CT images of each H&N cancer patient were first focused on a cancer region and interpolated to obtain isotropic images. Engineered features representing tumor heterogeneity were extracted from gray-level histogram and texture matrices [5, 6] within cancer regions. Feature extraction was performed and significant features were selected using an algorithm based on a Coxnet [7] model to construct radiomic signatures. The Coxnet algorithm was performed using the glmnet package in R software Ver. 3.4.4. The signatures were fed into a SVM model with a polynomial kernel function for estimation of 5-year survival probabilities.

Fig. 1 An overall procedure.

3) Coxnet algorithm

The Cox proportional hazard model $h_i(t|\mathbf{x}_i)$ for a patient *i* at a time *t* can be expressed by

$$h_i(t|\mathbf{x}_i) = h_0(t)e^{\boldsymbol{\beta}^T \mathbf{x}_i}.$$
⁽¹⁾

The Lagrangian formulation is constructed as follow

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmax}} [kl(\boldsymbol{\beta}) - \lambda P_{\alpha}(\boldsymbol{\beta})], \tag{2}$$

where

$$l(\boldsymbol{\beta}) = \sum_{i=1}^{n} d_i \left\{ \boldsymbol{\beta}^T \boldsymbol{x}_i - ln \left(\sum_{t_j \ge t_i} e^{\boldsymbol{\beta}^T \boldsymbol{x}_i} \right) \right\},\tag{3}$$

$$P_{\alpha}(\boldsymbol{\beta}) = \alpha \|\boldsymbol{\beta}\|_{1} + \frac{1-\alpha}{2} \|\boldsymbol{\beta}\|_{2}^{2}, \tag{4}$$

$$d_i = \begin{cases} 1, \text{ event occurred at } t_i \\ 0, \text{ censored at } t_i \end{cases}, \tag{5}$$

and *i*, *j* are the patient number, \mathbf{x} is the feature vector, $\boldsymbol{\beta}$ is coefficient vector, $h_0(t)$ is the baseline hazard function, t_i and t_j ($t_i \le t_j$) are the survival time of a patient *i* and *j*, *k* is the scaling factor, λ is the Lagrangian multiplier, and α ($0 \le \alpha \le 1$) is the blending parameter for adjusting the impact of the LASSO and ridge regression penalty on the overall regularization [7].

4) Feature selection and signatures construction

From CT images, gray-level histogram and texture matrices were calculated and a total of 486 radiomic features were extracted within cancer regions. A Coxnet algorithm with a blending parameter $\alpha = 0.25$ was employed in this study. The cross-validation error of our algorithm was calculated using a 10-fold cross validation, in which the training and validation datasets were selected using random variables. In the m-fold cross validation, the cross-validation error $CE(\lambda)$ can be calculated by [8]

$$CE(\lambda) = -\frac{1}{n} \sum_{m=1}^{M} \{ l(\widehat{\beta}_{\lambda}^{m}) - l^{m}(\widehat{\beta}_{\lambda}^{m}) \},$$
(6)

where *m* is the number of folds, $\widehat{\beta}_{\lambda}^{m}$ is a vector of the optimal coefficients based on the datasets in which the *m*th subset was used for validation, and l^{m} is the partial likelihood calculated among the patients without the *m*th subset. Since the training and validation datasets for cross validation was selected using random variables, the Coxnet algorithm produced different optimal models and minimum cross-validation errors. Therefore, we applied the Coxnet algorithm with 100 iterations for feature selection. After 100 iterations, features selected 100 times were assumed to be robust for variations in the training dataset. The possible association between each 100-time-selected feature with survival was evaluated using a Kaplan-Meier analysis, and a *p*-value from the log-rank test was calculated. In this study, features, which were selected 100 times by the Coxnet algorithm and had *p*-value < 0.05, were considered to have stronger associations with patients' prognoses, and they were used for building radiomics signatures.

5) Bulding of a SVM model

A radiomic-based SVM model with a polynomial kernel function was built for estimation of 5-year survival probabilities of H&N cancer patients. Other parameters of the SVM model were optimized using a leave-one-out test based on the actual survival time.

6) Performance validation of the SVM model

The performance of our radiomic-based polynomial SVM model was evaluated using the area under the curve (AUC) of the receiver operator characteristic (ROC) curve.

3. Results and discussion

1) Selection of radiomic features and construction of signatures

Twelve features (Median, Skew, LLL_Median, LLL_Variance.1, HLL_LZLGE, LHL_Mean, LLH_LZE, LLH_LGZE, LLH_LZLGE, LLH_LZHGE, HLH_Skew, and HHH_Skew) were selected 100 times by the Coxnet algorithm and considered as robust features. Figure 2a illustrates the results of our feature selection process (only a portion of 486 features were shown in this figure). Among twelve robust features, there were three features (HLL_LZLGE, LHL_Mean, and Median) having *p*-value < 0.05 resulting from the Kaplan-Meier analysis and the log-rank test. Figure 2b exhibits the relation *p*-value < 0.05 in term of $-\log_{10}(p$ -value) > $-\log_{10}(0.05)$ for a better visualization.

Fig. 2 Bar graphs of (a) number of times selected by Coxnet and (b) -log₁₀(p-value) for various image features.

2) Estimation of 5-year survival probabilities

Our radiomic-based SVM model with a polynomial kernel function (slope = 0.85, intercept = 260, dim = 9) achieved an AUC of 0.665 (Figure 3). The results of our SVM model could produce the predictions of 5-year survival probabilities for H&N cancer patients.

Fig. 3 An ROC curve of SVM model based on radiomics signatures.

3) Discussion

Radiomics provided quantitative measurements of tumor heterogeneity based on distribution of gray levels on medical images, while the SVM had the advantages of classification and its outputs can be used as probability. Therefore, we trained a SVM model with a polynomial kernel function based on radiomic signatures selected by a Coxnet algorithm, which are associated with 5-year survival probabilities of H&N cancer patients. The performance of our model achieved an AUC of 0.665. It could be feasible to employ a radiomic-based polynomial SVM model to predict the 5-year survival probabilities of H&N cancer patients.

Competing interests

The authors do not have any competing interests to disclose.

Acknowledgement

L.C.Q was a recipient of the Japanese government MEXT scholarship (Ministry of Education, Culture, Sport, Science and Technology) during this study. The authors are grateful to all members in Arimura laboratory (http://web.shs.kyushu-u.ac.jp/~arimura/), whose comments made enormous contribution to this study.

References

- [1] Sanderson R J, Ironside J A D: Squamous cell carcinomas of the head and neck. BMJ 325: 822-827, 2002.
- [2] Arimura H, Soufi M: A review on radiomics for personalized medicine in cancer treatment. Med Imag Tech 36: 81-89, 2018.
- [3] Grossberg A, Mohamed A, Elhalawani J, et al.: Imaging and Clinical Data Archived for Head and Neck Squamous Cell Carcinoma Patients with Radiotherapy. Scientific Data 5: Article number: 180173, 2018.

- [4] http://www.cancerimageingarchive.net/
- [5] Haralick RM, Shanmugam K, Dinstein I: Textural features for image classification. IEEE Trans Syst Man Cybern 3: 610-621, 1973
- [6] Galloway MM: Texture analysis using gray level run lengths. Comput Graph Image Process 4: 172-179, 1975.
- [7] Simon N, Friedman H, Hastie T, el al.: Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descend. J Stat Softw 39 (5): 1-13, 2011.
- [8] Hokeun Sun, Wei Lin, Rui Feng, el al.: Network-regularized high-dimensional Cox regression for analysis of genomic data. Stat Sin 24 (3): 1433-1459, 2014.

テンプレート(全ての原稿の種類に共通) Ver. 2.1 (2019.3.28 改訂)

Kinect を用いた効率的な

3次元顔面腫れ顔の形態変化の観測と可視化

健山 智子*1 大野 瑛史*1 松本 慎平*2

要旨

顔面浮腫や顔面陥没骨折などに伴う顔面形態変化の診断・経過観測は、医師の目視による主観的観測が一 般的であり、客観的な評価手法の確立が切望されている.本研究では、顔面浮腫の形態変化の数値化より、 浮腫具合を評価する計算機診断支援(CAD)の確立を目指す.顔面形態観測として、高精度レーザスキャナ を用いて顔の3次元形状情報の取得などが挙げられるが、使用する機材が高価だけでなく、キャリブレー ションのための計算コストが高いことなどの問題点がある.そのため、安易な撮像方法で顔形状情報の取 得が可能なデバイス導入に、我々は、汎用性のある RGB-D センサ、Kinect V2 を導入し、顔面形態変化に 対する疾患観測が可能かを検証する.検証では、顔面浮腫を模した正常10名に擬似腫れ顔として頬を膨 らまし、その差分についての可視化を解析することで検証をおこなう.その可視化に対し臨床医の評価を 反映し、顔面浮腫の形態変化の診断支援に有効であるか議論する.

キーワード: 顔面浮腫, 3次元顔面形態解析, 疑似腫れ顔生成, Kinect V2, ランドマーク選定,

1. はじめに

顔は、個人特徴を表現するだけでなく、 豊かな表情変化などから、我々にとって相手 とのコミュニケーションを図るための重要な 役割を担う.その豊かな表情変化や様々な状 況を表現するための美貌、美容に対する関心

*1 広島工業大学情報学部知的情報シス テム学科知的情報可視化研究室

〔〒731-5193 広島県広島市佐伯区三宅 2-1-1〕

email: {t.tateyama.es,

md19001 }@cc.it-hiroshima.ac.jp

*2 広島工業大学情報学部知的情報システム学科知的情報可視化研究室

〔〒731-5193 広島県広島市佐伯区三宅2-1-1〕

投稿受付:2003年1月31日

は、すべての人において関心が高く、顔全体、 もしくは顔における個々の部位の変化によっ て表現される.ゆえに、この顔の形態変化は コミュニケーション相手へ様々な印象を引き 起こすことから、顔形状の変化に伴う疾患は、 患者の精神的な苦痛を引き起こす要因となる ゆえ、疾患に対する効果的な治療法の提示・ 経過観測は、臨床現場においても重要である.

顔面形態変化における疾患として, 顔全体 における変形, また顔の一部の部位の変化が 挙げられる[1]. 前者には下顎矯正ならびに顔 形成手術後の顔面浮腫や顔面陥没骨折, そし て後者は顔面神経麻痺に伴う変形疾患がそれ ぞれ列挙される.本研究では今回, 形成外科 医指導の下, 前者の顔面浮腫の疾患に伴う顔 面形態変化の観測ならびに可視化について焦 点を当てる.

顔面浮腫の症例は一般的に,通常時の顔の 状態と比較すると,頬周辺の膨張と赤みを帯 びた症状である.この疾患の発症要因は様々 であるが,形成外科の分野では顎矯正手術後 に発症する可能性が非常に高く,術後の治療 として顔面浮腫の度合いに基づいて投薬治療 をおこなう.

顔面浮腫の診断は臨床医による視診・触診 による経過観察が一般的であるが、その指標 基準は定まっておらず,臨床医の経験に基づ く主観評価となるため、顔面浮腫の診断結果 が医師ごとに異なる可能性が高い. ゆえに, 顔面浮腫の度合いを客観的に評価するための 指標整備は急務であり、臨床現場でも多くの 形成外科医が取り組んでいる課題である.こ の課題克服の取り組みとして, CT や MR な どの高精細医用画像を用いた顔面内部からの 浮腫度合い観測手法[2]が提案されているが、こ の医用画像撮像装置そのものは膨大な金額と 場所が必要となるだけでなく,放射線の問題や 撮像時間の長さの影響などから多くの課題が挙 げられる. Kau らは, 高精細3次元レーザスキャ ナを2台用いて3次元の顔面撮像を取得し、この 3次元顔面撮像からその差分を指標とする顔面 浮腫の形態変化の観測を提案した[3, 4]. この手 法は, 顔面外部からの撮像による顔面形態変化 の観測を可能とし,放射線被爆の問題解決につ ながった.また、先述の装置にかかる膨大な金額 と場所についても解決された手法ではあるが、こ の高精細レーザスキャナも1台あたりのコストもま た非常に高価である. さらに, 2台のレーザスキャ ナから取得された顔情報に対し, データのキャリ ブレーション処理ならびに処理後の顔面形態観 測のためのランドマーク特定を手動で行っている ため、その処理手順は非常に複雑である. そし て,その評価方法および提示方法として,定量 的な手法として確立されていない. そのため, 臨 床現場からは、より効率的な手法での顔面形態 変化の観測が切望されている. さらには, これら 取得されたデータならびに臨床現場の知識と経 験が導入されたデータベースの整備・客観評価 システムの実現が強く切望されている.本研究で は,以上の通り,臨床現場における顔面浮腫診 断においての計算機診断支援システムの開発を 目的としている.

顔面形態変化の観測を可能とするため, 先述 で提示したような、高精細3次元レーザスキャナ、 そして,体や顔の3次元形状を瞬時に撮像・画 像化し,美容皮膚領域で広く利用されている VECTRA series[5]等による計測が挙げられる. 他にも, 複数の高精細カメラから, 多視点方向か ら撮像,エピポーラ幾何などコンピュータビジョン 技術から3次元形状の計測手法などが挙げられ る[6]. しかし, 上記すべての手法では, 個々の計 測機器そのものの費用や選択する機器による計 測スペースの確保と維持の膨大化,さらには,膨 大な点群情報が取得されているため、3 次元形 状推定だけでなくその点群位置合わせについて 複雑な計算処理が膨大となる. そのため, 本研 究における研究課題(以降,リサーチクエスチョ ン, RQ)は以下 2 つとする.

[RQ:1] 民生用の3次元形状計測機器を用い て,顔面形態情報の計測が可能であるか

[RQ:2] 取得された顔面浮腫症例の観測・診 断のためのランドマークはどの部位となるか

先述の通り,現状における顔面形態変化の観 測は,機器やスペースにおいて膨大な費用と処 理時間が要求され,限られた施設のみでの観測 となっている.多くの施設で顔面形態変化の定 量的観測を可能にするため,本研究では, [RQ:1]において,民生用 RGB-D センサとして広 く利用されているKinect V2[7]を用いた3次元顔 面形態の観測と可視化を提案する.この可視化 は,関連研究 Kauらの手法と同様の可視化提示 となったことから,臨床への応用についても十分 可能であることを示す.

また、多くの3次元形態解析では Iteration Closet Points (ICP)[8]が用いられる.しかし、ICP は全点群に対する位置合わせとなるため、頬部 位における顔面浮腫の3次元形態観測では頬の 膨らみを抑制させてしまい、正確な形状の取得 が難しくなる.頬の膨らみや顔形状を高精度に 計測するためには、頬の膨らみなどを考慮した 顔形状の点群位置合わせの手法が重要となる. 本研究では、[RQ:2]として、高精細な顔面浮腫 の3次元形態変化の観測を可能とするランドマ ークの特定について提案する.

本論文は以下の構成となる. 2.では[RQ;1]の 課題,本研究における疑似腫れ顔の生成と民生 用 RGB-D センサによる顔面形態観測のための Kinect の導入について議論し,3.では顔面形態 観測における位置合わせのランドマーク特定,4. では実験として,提案手法の可視化結果を示し, 5. で本研究を総括する.

2. 顔面形態変化観測のための診断支援 の構成と疑似腫れ顔生成

顔面形態変化を伴う疾患は,顔面陥没や顔 面浮腫などの顔全体の変化をはじめ,顔面神 経麻痺などの局所部位変化が挙げられるが, 今回,関連研究のKauらの手法に沿って,ま ずは顔面浮腫による3次元顔面形態変化を観 測対象とした診断支援を本研究の対象とする.

1)研究対象の疑似顔面浮腫の構成

顔面浮腫は、下顎矯正手術や形成手術後な どに発症し、通常時の顔の状態と比較すると、 頬周辺の膨張と赤みを帯びた症状である.この 症例は6ヶ月間腫れ度合いを臨床医の目視によ る主観評価から投薬を行って治療を行うが、臨 床医ごとにその診断が異なる可能性があることが 課題である.ゆえに、客観的な観測手法確立が 臨床現場より求められているため、本研究では、 計算機による顔面形態変化の客観的計測と可 視化を目的としている.

多くの顔面浮腫の症例が観測されている一方, これまでその形態変化に対する客観的観測手

Subject Numbers	13 volunteer (Male, Health)	
Age	20 - 25	
堪佈士向	Front (based Depth	
1取1家刀円	information)	
	Normal x (10 /	
Expression	volunteer)	
	Puffy x (10/volunteer)	
Device	Kinect V2	
	3D point cloud	
Data style	based on Kinect V2 HD	
	Face Lib [3]	
Points	1347	

表1. 解析対象の3次元顔形状情報の構成

(a) 正常顔

(b) 疑似腫れ顔

(c)顔面浮腫観測の対象領域(赤枠) 図1:本研究で構築した疑似腫れ顔 (本研究で観測・解析の対象となる顔情報)

法は未確立であり、その臨床データの取得は臨 床医ごとに異なっていることから、臨床データが 極めて少ないことも本研究の課題である.よって、 臨床現場での応用可能性についての調査として、 本研究では、臨床医の診断経験にもとづき、顔 面浮腫の発症・既往歴のない成人男性 13 名を 対象として、頬部位を膨らませた疑似腫れ顔の 検討を行った.解析対象となる 3 次元顔形状情 報の構成を表 1、そして本研究で構成した顔面 浮腫観測としての疑似腫れ顔を図1に示す.正 常時における顔形状は通常状態の顔(図1(a)) であり、疑似腫れ顔は図1(b)のように頬を膨らま せた状態として、図1(c)に示す顔面の赤枠領域 を解析・可視化の対象領域とした.この部位を正 面方向に対して3次元形状の情報を取得する.

なお、このような疑似腫れ顔と正常例について、 臨床医より、概ね検証用のデータとして適応でき ることの確認をもらい、本研究で検証を進めた.

2) 顔面形態観測のための RGB-D センサ選
 定

1. で述べたように、これまで顔面浮腫の顔

面形態変化の観測では、VECTRA などの高精 細3次元スキャナなどから取得されていたが その費用な非常に膨大でクリニックや小規模 臨床施設への導入は膨大な費用となる. さら に、取得された3次元形態情報もまた、膨大 な点群情報であると同時に多視点からの撮像 が必要となり、形態変化観測・可視化のため 複雑な計算処理が求められる.

本研究では、関連研究の課題を克服するため、民生用 RGB-D センサのひとつ、Kinect V2 を用いて顔形状情報の観測・取得を行った. Kinect V2 はカラー画像と **Time-of-Flight**

(TOF) 方式で,光の反射時間を利用して, 対象に対する3次元形状計測を計測した距

離画像を同時に提示する. 本研究では、1)の定義に従った正常顔,疑 似腫れ顔について, Kinect V2 と HD Face ライブラリから取得された3次元形状点群情 報に基づき, 顔面形態の3次元形態変化に対 する観測と可視化を行う. HD Face ライブラ リとは, Kinect V2 から取得された顔形状の 点群を提示するためのライブラリであり, 基 準顔としての3次元点群情報(図2)も用意 されている.この基準顔の情報を用いて、取 得された顔の3次元形状情報を1347点の3 次元点群情報として計測された顔情報を取得 できるだけでなく、解剖学的ランドマークも 十分に整備されている.このことからも、こ れまで複雑な計算処理が必要であった顔形状 解析の簡易化にもつながり,より精度の高い 顔面形態解析が可能になる.以上の理由より, 本研究でのデバイスとして Kinect V2 を行っ た.図3に、図1で提示した正常顔と疑似腫 れ顔について, Kinect V2 と HDFace ライブ ラリを用いて観測した3次元顔形状の点分布 を示す. このように, 解析に十分必要な顔形 状の点分布情報取得が容易に行える.

図2: Kinect HD Face ライブラリ基準顔形状

(a) 正常顔
 (b) 疑似腫れ顔
 図 3: KinectV2 から観測された
 3 次元顔形状の点分布(図 1(a), (b)の顔形状を提示)

3. 顔面形態変化観測のための正規化と ランドマーク特定

1) 顔面形態変化観測のための位置合わせ とランドマーク選定

2.2)で述べた顔の3次元形状点群情報は, 顔形状の左右方向や前後方向などの向き違い がある. さらに, 顔面浮腫に関する顔面形態 変化の観測では、口もとの膨らみなどがどの ように影響されるかなどについて、これまで の研究でも未着手である. そのため, 顔面浮 腫形態観測のため3次元形状の正規化は、剛 体変換を行う際にどのような解剖学的特徴を ランドマークとして選定するか,本研究では 調査を行う. 顔面浮腫の場合, 頬部位の膨ら みが観測できることから、顔位置の前後のズ レ以外にもその頬の膨らみ具合がどのように 影響の影響が,疾患の特徴として考えられる. よって,本研究では,顔面形態変化観測のた めのランドマーク選定例として,各図内の赤 の点を剛体変換のランドマークとして、図4 に示すように、ランドマーク5点((a):額のラ ンドマークなし+口元ランドマークあり,(b): 額のランドマークあり+口元のランドマーク なし)と6点((c):額のランドマークあり+口

(a) ランドマーク5点 額なし+口元あり

- (b) ランドマーク6点 (b) ランドマーク5点 額なし+口元あり
 - 額なし+口元なし

(b) ランドマーク5点

額あり+口元なし

図4: 本研究での選定評価における 各ランドマーク(赤点)

元ランドマークあり,(d):額のランドマーク あり+口元のランドマークなし)より, 顔面 腫れ顔形態変化におけるランドマークの影響 を評価した.

各図の赤点がランドマークであり,これは HD Face ライブラリの解剖学ランドマーク番 号に従っている. ランドマーク間の位置合わ せは下式の剛体変換に従う.

$\hat{\mathbf{p}} = \mathbf{R}\mathbf{p} + \mathbf{t}$ (1)

ここで, HD Face ライブラリに用意され基 準顔の3次元形状ベクトル $\hat{\mathbf{p}} = (\hat{x}, \hat{y}, \hat{z})^t$ と Kinect V2 から観測された各症例の3次元形 状ベクトル $\mathbf{p}=(x, y, z)^{t}$ である.また,平行移 動のベクトルは $t = (t_x, t_y, t_z)^t$ とし, その基準は 鼻頭頂部のランドマークからの移動ベクトル を考慮する.また,回転ベクトルRは式(2) に従い,回転パラメータ(それぞれ x, y, z 軸 に従った角度を示す)を推定する.

$$\mathbf{R} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
(2)

ここで, それぞれ
$$a = \cos\beta \cos\gamma$$
, $b =$

 $\cos \alpha \sin \gamma + \sin \alpha \sin \beta \cos \gamma$, $c = \sin \alpha \sin \gamma -$ $\cos \alpha \sin \beta \cos \gamma$, $d = -\cos \beta \sin \gamma$, e = $\cos \alpha \sin \gamma - \sin \alpha \sin \beta \cos \gamma$, $f = \sin \alpha \sin \gamma +$ $\cos \alpha \sin \beta \cos \gamma$, $g = \sin \beta$, $h = -\sin \alpha \cos \beta$, $i = \cos \alpha \cos \beta$, $\forall b \delta$.

2) 位置合わせによる症例間のズレ評価と 考察

ランドマーク選定における位置合わせのズ レ評価と考察を図5,6の結果から考察する. 図5に、位置合わせのズレ評価を示す. 各結 果は,図 4(a)~(b)におけるランドマーク選定 に従った結果である.また,各グラフともに, 顔のセンターラインに存在する各ランドマー ク間(正常顔:青,疑似腫れ顔:赤),選定対 象のランドマーク間(正常顔:緑,疑似腫れ 顔:紫)各ズレの全体の平均とその差分の分 布を提示した.この結果から確認できるよう に, 顔5点のランドマークと6点のランドマ ークの比較では、6点によるランドマーク選 定により, 正常・疑似腫れ顔ともに症例間の 位置ずれが抑制されている.疑似腫れ顔の評 価において、6点の選定でも十分に位置ずれ の抑制が確認できることが示唆された.また, 額のランドマーク導入は顔前後の位置ずれを 抑制するかを評価するため、我々は顔の鼻頭 頂を通る顔中央部の直線(額頭頂から顎底) に存在するランドマークにおけるズレの評価 を行った(各グラフともに青:正常,赤:疑 似腫れ顔).また、この評価における各ランド マークのズレ結果を図6にも併せて示す.図 6の各結果は、それぞれランドマークを図(a)、 (b), (d)の選択の違いを比較するため, 顔中央 部直線上における点群のズレ可視化結果であ る. この評価では、サンプル 10 名の正常顔 (青),疑似腫れ顔(赤)をそれぞれ任意でひ とつずつ選択し, それぞれ 10 症例ずつプロッ トした.図5の結果からも確認できるように、 額部位をランドマークとして導入することで, 顔の前後ズレが抑制されていることは数値と しても十分に評価でき, さらに図6の結果で は, 顔の額部, そして顔下部(顎部位)のズ レが十分に抑制されていることも同時に確認

図 5:図 4(a)~(d)のランドマーク選定におけるズレ評価結果,各グラフともに,顔のセンターラインに存在す る各ランドマーク間(正常顔:青,疑似腫れ顔:赤),選定対象ランドマーク間(正常顔:緑,疑似腫れ顔: 紫)各ズレの全体の平均とその差分の分布を提示

(a): 図 4(a)のランドマーク選定 (b): 図 4(b)のランドマーク選定 (a): 図 4(d)のランドマーク選定

図6: ランドマーク選定からの位置合わせの比較(青:正常顔,赤:疑似腫れ顔,任意10例をプロット)

された.このことから,額部位のランドマー ク導入により,顔全体の前後ズレが抑制され, 顔面の3次元形態変化解析に有効なランドマ ークである.額部位も本研究のランドマーク として選定した.

また、ランドマーク5点かつ額を考慮しな い場合、図6(a)より顔前後のズレが広く存在 することを確認した.この抑制として、目元 の導入を検討した.目元において、目尻だけ でなく目頭を選定することで顔前後のズレ分 布が抑制されていることを図(b, c)より確認 され、さらにランドマークとして目頭、目尻 を選定する.なお、顎底部位のランドマーク 特定として、本研究での経験上、顔面腫れ顔 の度合いを評価する範囲であることがわかり、 導入しない.以上を踏まえ、我々は顔面形態 変化の観測のための可視化について、臨床医 と検討を行なった.

4. 顔面浮腫形態観測のための可視化

2.3の記述にもとづき, さらに顔面形態変 化の観測・可視化について, 検討した. 疑似 腫れ顔と正常症例間でその変化の提示が臨床 現場でも十分に妥当であるか, について形成 外科医と検討を行った.任意のサンプル *i* に おける正常症例と疑似腫れ顔症例の各3次元 点群分布ベクトルをそれぞれ p₆, p_nとして, 各点群分布を座標(0, 0, 0)からのユーグリッ ド距離を考慮し,式(3)より可視化した結果を 図7に示す.

$$\mathbf{D}_{i} = |\mathbf{P}_{f}|_{i} - |\mathbf{P}_{n}|_{i} \tag{3}$$

図7は,任意のサンプル1例における正常顔 と疑似腫れ顔間の差分を点群距離に基づきレ インボーカラーで可視化した.可視化は, HDFace ライブラリの基準顔上にその差分を プロットさせて評価した.この結果から,頬 部位において,変化が大きく,顔面浮腫では 影響を持たない額部などでは変化が低いこと が提示された.この結果は,臨床医が顔面浮 腫についての評価と同様の結果であるとの評 価であった.また,この可視化は,関連研究 [3]で Kau らが提示した結果とも類似した可 視化である.

また,他症例についての可視化を行った. 他症例においても図7と同様の可視化が提示 され,より詳細に可視化されるよう,サーフ ェイス情報により可視化を行った結果におけ る任意例が図8である.この可視化から顔面 浮腫変化の様子は十分に理解しやすいと評価 された.

以上より,1.で定義した各 RQ において, 以下が示唆され,実験結果から提案法の有効 性が示された.

- [RQ:1] 民生用デバイスにおいて, Kinect 選 定は有効であり,可視化も十分な評価が 得られる
- [RQ:2] 腫れ顔に対する顔面形態変化観測 のための可視化では、ランドマークとし て、口元を含まない6点として、両目の 目頭、目尻、額中央部、鼻頭頂を選定

図 7:顔面形態変化の可視化結果(症例1)

図8:他症例に対する顔面形態変化の可視化

5. おわりに

顔面浮腫による顔面形態変化の観測・可視 化支援を背景として,本研究では,形成外科 医指導の下,民生用デバイス選定および観測 手法の提案、観測の妥当性評価のための疑似 腫れ顔生成, さらに客観評価のためのランド マーク選定を行った. 民生用デバイスの選定 として、本研究では Kinect V2 を用いること で、3次元形状の観測およびその天運分布の 特定を容易に行えることを提示した.また, 解析のためのランドマーク選定では, 頬部位 の変化に注目するため,額,両目の目尻,目 頭,鼻頭頂の6点をランドマークとして選定 することの妥当性を検証した.以上を踏まえ, 可視化を行った結果,臨床医のこれまでの経 験と知識に十分に従った可視化を提示するこ とができ、本研究の有効性を示した.

現在,本研究は疑似腫れ顔を用いて検証を している.今後,臨床現場での応用を目指し, 提案手法を用いて実際の臨床現場で取得され た臨床情報を用いた検証が必要である.また, 顔面浮腫以外の顔面疾患に対しても,提案法 が有効であるか評価し,診断支援を目指す.

謝辞

本研究において,臨床医の立場から御指導 賜りました澤本尚哉医師に謝意を示す.本研 究は,JSPS 科研費基盤研究 C(18K11454),公 益研究財団古川技術振興財団の助成のもと, 遂行した. なし

文 献

- [1] 小林正治: 顎矯正手術の周術期管理, 日本口腔外科学会雑誌, 62(11), pp.554-560, 2016.
- [2] Agrawal A, Singh V, K Pradeep, et al"Unilateral swelling of cheek" Natl J Maxillofac Surg. 8(2): pp.157–161, 2017.
- [3] Kau C.H, Andrew J, Stephen R: A Three-Dimensional Evaluation of Postoperative Swelling following Orthognathic Surgery at 6 Month, Plastic and Reconstructive Surgery.
 119(7): pp.2192-2199, 2007.
- Kovacs L, Zimmermann A, Brockmann G, et. Al.: Three-dimensional quantification of facial symmetry in adolescents using laser surface scanning, European Journal of Orthodontics 36(2), pp.125–132: 27 July 2011
- [5] CANFIELD: VECTRA series H1~M3, https://www.canfieldsci.com/imaging-sy

stems/vectra-h1-3d-imaging-system/, Last Access : 2019/05/15.

- [6] Osawa S, D. Guifang, Chen YW: Reconstruction of 3D Dynamic Expressions from Single Facial Image, Proc.of.ICIP 2013, pp.1386-1390,2013.
- [7] MicroSoft Corplation, Kinect for Windows, <u>https://developer.microsoft.com/ja-jp/wi</u> <u>ndows/kinect</u>, Last accessed : 2019/05/15.
- [8] Szymon.R and Marc.L: Efficient Variants of the ICP Algorithm", Proc of Third International Conference on 3-D Digital Imaging and Modeling, pp.145– 152, 2001.
- [9] Pterneas V: Kinect HD Face, https://pterneas.com/2015/06/06/kinecthd-face/, Last access 2019/05/15
- [10] 大野瑛史,健山智子:Kinect を用いた腫れ顔の3次元形態変化の解析-顔形状の位置合わせ-,2018年IEEE
 Hiroshima Chap 若手研究会,pp41-43,広島工業大学,2018/07/28.

Efficient Observation and Visualization for

Morphological Changes of 3D Facial Swell Using Kinect

Tomoko TATEYAMA^{*1}, Akifumi OHNO^{*1}, Shimpei MATSUMOTO^{*2}

*1 Intelligent Visual Analytics Lab, Department of Computer Science, Hiroshima Institute of Technology

*2 Social System Engineering Lab, Department of Computer Science, Hiroshima Institute of Technology.

The post-surgical follow-up observation of facial swelling change is mainly subjective assessment by the plastics doctor, therefore clinical field hopes to establish its numerical assessment of the facial changed. In this study, we focus to develop Computer Aided Diagnosis system for assessment to three-dimensional facial swelling morphological change after orthognathic surgery. Laser-scanner is effective device and used generally for measuring facial shape features, however the device is so expensive that is necessary to adopt general-purposed devices in order to reduced cost. Although Kinect is one of the general-purpose devices that can acquire three-dimensional face shape information, verification that its accuracy is effective for the measurement of facial swelling is not sufficient. In this study, we verify the effectiveness of the evaluation of the morphological change from the face shape obtained using Kinect. First, we propose an alignment method at some points including the forehead part for the face shape of all samples and evaluate whether accurate analysis for facial morphological change is possible.

Key words: Faceial Swelling, Morphological Change of 3D Face points, Pseduo-Puffy shape, Kinect V2, Landmark Selection

著者紹介

健山 智子 (たてやま ともこ) 2009年3月琉球大学大学院総合知能工学 専攻博士後期課程修了.2009年4月より 立命館大学情報理工学部助手,2013年4 月より同大学情報理工学部特任助教, 2016年4月より広島工業大学情報学部知 的情報システム学科助教,現在に至る。 博士(工学).計算解剖学,パターン認識, 統計学習による画像処理,医用画像処理, 知能情報処理,コンピュータグラフィッ クの 医用画像工学への応用に関する研 究に従事。電子情報通信学会,日本医用 画像工学学会,IEEE,日本コンピュータ 外科学会などの各会員.

大野 瑛史 (おおの あきふみ) 2019 年広島工業大学・情報学部卒.現在, 同大学情報システム工学専攻.学士.顔 面形態変化の観測,可視化,計算機支援 診断システム開発の研究に従事.

松本 慎平 (まつもと しんぺい) 2007 年 3 月大阪大学 大学院情報科学研 究科 情報数理学専攻博士課程終了.2007 年大分工業高等専門学校 制御情報工学 科助教,2010 年広島工業大学情報学部助 教,2013 年同大学准教授,現在に至る. 博士(情報科学).数理最適化,社会シ ステム工学,教育工学,データサイエン スに関する研究に従事.日本 0R 学会,日 本経営システム学会,IEEE などの各会員.

GAN による CT 肺結節画像の生成

濵口 拓真^{*1} 木戸 尚治^{*2} 平野 靖^{*1} 岩野 信吾^{*3}

要旨

近年, CT 画像中の肺結節の解析を Convolutional Neural Network (CNN)を用いて行う手法が数 多く提案されており,高い性能を示すことが報告されている.一方で,このような解析に用いる 学習画像を大量に用意できないことが原因で汎化性能を向上させることができない場合が多い という問題がある.この問題を解決するため,一般的には画像に対して回転や鏡映などを行って 学習画像数を増加させる手法がとられているが,根本的な解決にはなっていない.そこで本研究 では,2次元画像に対して Deep Convolutional Generative Adversarial Networks (DCGAN)を用いた 画像 data augmentation 手法を開発することを目的とした.55 個の良性結節と 120 個の悪性結節 を含むデータベースを用いて本手法の性能を評価した結果,CNN による良悪性鑑別の精度は 75.81±6.36[%]であった.

1. はじめに

肺がんをはじめとした肺に関する疾患に肺 結節がある.肺結節は CT 画像において類円 形の陰影として描出される.医師はこれらの 陰影を読影することにより肺結節の良悪性鑑 別などを行う.しかし,CT 画像が撮影される 機会が増加し,また扱うスライス数も増えた ことにより読影する医師の負担が増加してい る.これらの問題を解決するためにコンピュ ータ支援診断(Computer Aided Diagnosis, CADx)システムの開発が行われている.近年 の CADx システムについては,

*1 山口大学大学院創成科学研究科電気電子 情報系専攻

〔〒755-8611 宇部市常盤台 2 丁目 16-1〕
e-mail: <u>b054vg@yamaguchi-u.ac.jp</u>
*2 大阪大学大学院医学系研究科

*3 名古屋大学医学部放射線医学教室

CNN(Convolutional Neural Network)を用いた手 法が数多く提案されている. CNN を用いた手 法では,大量の正解ラベル付きの画像が必要 である.しかし,正解ラベル付き画像を作成 できるのは、専門知識を持つ医師しかいない ため、大量に作成するのは難しい. この問題 を解決するために学習データの data augmentation 法が存在するが, 元々のデータに 対して平行移動や回転, 鏡映といった画像処 理を行い、データを増やすため、学習データ の情報量自体は増加せず、根本的解決に至っ ていない. そこで、本研究では Deep Learning の手法の 1 つである GAN(Generative Adversarial Network)[1]を用いて肺結節画像を 生成することで、新しい data Augmentation 手 法を提案することを目的とした.本研究で用 いた GAN は, DCGAN(Deep Convolutional GAN)[2]である. DCGAN は, GAN に対して

CNN の構造を適応して、画像生成に特化した GAN モデルである.本研究では,DCGANの 入力に対して物体の属するラベルを付与する ことで、生成画像の種類の制御を目的とした conditional GAN[3]と, Discriminator および Generator の学習回数を制御し, Generator が 10 ステップ先の Discriminator に対して学習を行 う Unrolled GAN[4]の 2 つの手法を用いた Unrolled-cDCGAN を用いて実験を行った.本 研究では、まず肺結節周辺を切り出した 2 次 元画像に対して Unrolled-cDCGAN の学習を行 い,肺結節画像を生成するモデルを作成した. そして, GAN を用いて data augmentation した 学習データに対して肺結節の良悪性鑑別を行 う CNN モデルを作成し、その精度を評価し た. また、本研究の比較として学習データに 対して data augmentation を行わなかった場合 と, 従来の data augmentation 手法を用いて data augmentation した場合のそれぞれのデータで 良悪性鑑別を行う CNN モデルを作成し, それ らの精度を評価した.

2. 提案手法

GAN による CT 肺結節画像生成の概要を 図1に示す.まず,胸部 CT 画像から階調変 換によって階調数を 256 階調へ変換した.そ して等方性ボクセル化し,階調変換した画像 に対して肺結節を中心として48×48× 48[voxel]の大きさで肺結節周辺を切り出した. 次に,切り出した画像から axial, coronal, sagittalの3 断面の中心スライスを切り出した 画像を作成した.最後に,作成した画像すべ てを用いて GAN の学習を行い,GAN による 画像生成を行った.

図1GAN による CT 肺結節画像生成の概要

次に、CNNによる肺結節の良悪性鑑別の概 要を図2に示す.CNNにおける肺結節の良悪 性鑑別については、5分割交差検証により精 度の評価を行った.まず、良悪性鑑別用の学 習データを作成した.次に、学習済みの Generator モデルを使用して data augmentation を行った.最後に、学習データを用いて CNN モデルを学習し、テストデータを用いて良悪 性鑑別の精度の評価を行った.

図 2 CNN による肺結節の良悪性鑑別の概要

1) 画像に対する前処理

図 3 は肺結節画像の CT 値のヒストグラム例 である.

図3 肺結節画像の CT 値のヒストグラム例

図3では、-500~430[H.U]が肺結節を表す箇所 である.そのため、-1000~200[H.U]を0~255の 256 階調に階調変換を行った.さらに、データ をTensorFlowで扱うためにデータを[0,255]の 画素値から[-1,1]に正規化を行った. 2)肺結節周辺画像の切り出し

今回用いた CT 画像は解像度にばらつきが あり,解像度をそろえるためにスペーシング サイズを 0.625×0.625[mm]に,またスライス 厚を 0.625[mm]に統一した.この画像から肺結 節の中心から 48×48×48[voxel]で画像を切り 出した.そのあと,axial, coronal および sagittal の各断面の中心スライスを切り出した 2 次元 画像を作成した.

3)学習データの水増し

Deep Learning の学習には大量の学習データ が必要である.また、使用した肺結節画像の データは、良性の枚数と悪性の画像数に約2 倍の差が存在する. そこで, 本研究では, GAN の学習および良悪性鑑別用の CNN の学習の ために, 画像処理による data augmentation を 行った.具体的には、良性肺結節画像では、正 方向および負方向にそれぞれ 5[pixel]の平行 移動と元画像に対して、90・180・270度の回 転および鏡映・反転を組み合わせることで1 枚の画像から54枚の画像を作成した.悪性肺 結節画像では良性肺結節画像と同様の手法か ら鏡映・反転を省くことで1枚の画像から27 枚の画像を作成した.これにより,良性の画 像データ枚数と悪性の画像データ枚数をほぼ 同数にした.

4)GAN モデルの構築

今回の実験で構築した GAN の Generator モ デルを表 1 に、Discriminator モデルを表 2 に それぞれ示す. Generator モデルには各 dense 層 および deconvolution 層 の後に batch normalization 層を追加した. なお、識別モデル の層の種類や数、あるいはフィルターサイズ などは出力画像のサイズが 48×48[pixel]とな り、かつ生成精度が高くなるように実験的に 定めた.

表 1 Generator モデ	シル
------------------	----

層種・名称	フィルターサイズ	ストライド	出力マップサイズ	活性化関数
data	-	-	102	-
dense1	-	-	36621	PReLU
reshape1	-	-	3 × 3 × 4096	-
deconvolution1	4×4	2	$6 \times 6 \times 2048$	PReLU
deconvolution2	4×4	2	$12 \times 12 \times 1024$	PReLU
deconvolution3	4×4	2	$24 \times 24 \times 512$	PReLU
deconvolution4	4×4	2	$48 \times 48 \times 1$	tanh

層種・名称	フィルターサイズ	ストライド	出力マップサイズ	活性化関数
data	-	-	$48 \times 48 \times 3$	-
convolution1	5 × 5	1	$48 \times 48 \times 64$	PReLU
maxpooling1	2 × 2	2	$24 \times 24 \times 64$	-
convolution2	5 × 5	1	$20 \times 20 \times 128$	PReLU
maxplooling2	2 × 2	2	$10 \times 10 \times 128$	-
dense1	-	-	1024	PReLU
dense2	-	-	1	sigmoid

表 2 Discriminator モデル

5)GAN モデルの学習

Generator の入力は一様分布の乱数 100 個 および,生成する肺結節画像の良悪性ラベ ル 2 個とし,出力は 48×48[pixel]の濃淡画 像とした.Discriminator の入力は肺結節画像 と肺結節の良悪性ラベルの 48×48×3 の画 像とし,出力は肺結節画像の本物らしさを 表す尤度とした.学習係数は,Generator が 8.0×10^4 ,Discriminator が 1.0×10^{-5} とした. また,学習回数は最大 500 回としたが,途 中で mode collapse が生じたため,320 回目 で得られた Generator モデルを使用して画 像生成を行った.

3. 実験

1)対象データ

実験では,名古屋大学医学部附属病院で撮影された肺結節を含む胸部 CT 像 172 症例を 用いた.対象とした CT 画像の詳細を以下に 示す.

- ・画像サイズ:512×512[pixel]
- ・ピクセルサイズ:0.566~0.781[mm]
- ・スライス厚:0.301~1.00[mm]
- ・スライス枚数:306~1086[枚]

肺結節には、医師の診断による良悪性のラベ ルが与えられている.交差検証を行うために、 データセット1つにつき良性画像を33枚、悪 性画像を72枚にした.

2)GAN による data augmentation

学習データに対して GAN による data augmentation を行い, CNN による良悪性鑑別 を行った.手法としては,まず学習データと して良性画像を 132 枚と悪性画像を 288 枚用 意した.次に, GAN に良性のラベルを入力と した生成画像 7128 枚と悪性のラベルを入力 とした生成画像 7776 枚を生成した.

3)比較実験

data augmentation 手法の比較として, 画像処 理による data augmentation 手法, data augmentation を行わない場合, GAN で生成し たデータのみを使用した場合のそれぞれにつ いて CNN による良悪性鑑別を行い,精度を評 価した. data augmentation 手法は2節で述べた 方法を用いて行った. 画像処理を用いた data augmentation では、まず学習データとして良性 画像を 132 枚と悪性画像を 288 枚用意した. 次に, 2.3 節で述べた data augmentation 手法と 同様の手法で学習データに対してデータの水 増しを行い良性画像 7128 枚と悪性画像 7776 枚を作成した. GAN で生成した画像のみを使 用した場合には、GAN に良性のラベルを入力 とした生成画像 7260 枚と悪性のラベルを入 力とした生成画像8064枚を生成し、実験を行
った.

4)評価方法

GAN による data augmentation 手法の評価方 法として既存の肺結節の良悪性鑑別の CNN モデルの 1 つである CNN47[5]を基に肺結節 画像の良悪性鑑別を行うモデルを作成した. そして, 学習データおよび GAN で生成したデ ータを用いて CNN の学習を行い, CNN によ る良悪性鑑別の精度を用いて評価を行った. 肺結節の良悪性鑑別には 5 分割したデータセ ットの内 1 つをテストデータとし, 残り 4 つ を学習データとする 5 分割交差検証で行った. CNN による良悪性鑑別では CNN が出力した 尤度を閾値 0.5 で分類した.表 3 に CNN47 を 基に作成した肺結節の良悪性鑑別モデルを示 す.また, CNN の学習係数は 1.0×10⁴ とし, 学習回数は 200 回とした.

表3CNN47を基に作成した肺結節の良悪性鑑別モデル

層種・名称	フィルターサイズ	ストライド	出力マップサイズ	活性化関数
data	-	-	$48 \times 48 \times 1$	-
convolution1	5 × 5	1	$48 \times 48 \times 40$	ReLU
maxpooling1	2 × 2	2	$24 \times 24 \times 40$	-
convolution2	5 × 5	1	$24 \times 24 \times 80$	ReLU
convolution3	5 × 5	1	$24 \times 24 \times 40$	ReLU
maxpooling2	2 × 2	2	$12 \times 12 \times 40$	-
dropout1(0.25)	-	-	$12 \times 12 \times 40$	-
convolution4	3 × 3	1	$12 \times 12 \times 100$	-
maxpoolinng3	2 × 2	2	$6 \times 6 \times 100$	ReLU
dropout2(0.25)	-	-	$6 \times 6 \times 100$	-
convolution5	3 × 3	1	$6 \times 6 \times 200$	-
maxpooling4	2 × 2	2	$3 \times 3 \times 200$	ReLU
dropout3(0.5)	-	-	$3 \times 3 \times 200$	-
convolution6	3 × 3	1	$3 \times 3 \times 500$	ReLU
dropout4(0.25)	-	-	$3 \times 3 \times 500$	-
convolution7	3 × 3	1	$3 \times 3 \times 300$	-
dense1	-	-	500	ReLU
dropout5(0.5)	-	-	500	-
dense2	-	-	200	ReLU
dense3	-	-	2	softmax

4. 結果

1)GAN による CT 肺結節画像生成結果

GAN による肺結節画像生成結果における目 視での成功例を図3に,失敗例を図4に示す. ここで,図3,4の(a)(b)は良性のラベルを与え て生成した画像を,(c)(d)は悪性のラベルを与 えて生成した画像をそれぞれ示す.

図3 肺結節画像生成結果における成功例

図4 肺結節画像生成結果における失敗例

図3より,良性・悪性ともに類円形の肺結 節画像が生成できた.しかし,生成された画 像の中には,図4で示した形が不整な肺結節 画像が生成される場合もあった.

2)CNN による肺結節の良悪性鑑別結果

肺結節の良悪性鑑別結果を表4に示す.

表4 肺結節の良悪性鑑別結果

データの種類	識別率(Mean±SD)		
data augmentation	7(2) + 422		
なし	/0.38±4.32		
画像処理による	7657 ± 440		
data augmentation	/0.3/±4.40		
GAN による data	$75.91 \pm (.2)$		
augmentation	/5.81±0.50		
GAN で生成した	58.20 ± 2.78		
画像のみ	30.29 - 5.78		

data augmentation なしに対して, 画像処理に よる data augmentation, GAN による data augmentation のそれぞれで t 検定を行った結 果, いずれの組み合わせでも p 値が 0.05 より も大きい結果となり, 有意差は得られなかっ た.

5. 考察

1)CNNの良悪性鑑別に関する考察

今回の実験では, data augmentation なしと比 較して既存の data augmentation 手法と GAN に よる data augmentation のそれぞれが有意差の ない結果となった.このような結果となった 原因としては次の2つが考えられる.1つ目 は、画像処理を用いた data augmentation 手法 に関して data augmentation 枚数が不十分であ る可能性である.今回の実験では,DCGANの 学習時と同じ data augmentation 手法を行った. しかし, 画像処理を用いた data augmentation で は, 平行移動を行う距離や, 回転角の種類を 増やすことにより,より多くの data augmentation が可能である. そこで, data augmentation 枚数を増やすことによって精度 が向上する可能性がある.2つ目は,GANを 用いた data augmentation 手法に関して, 生成 画像の精度が不十分である可能性がある. 今

回の実験では目視で確認したところ,生成さ れた画像の中に形状が不整な肺結節など正し く生成されなかった画像が存在した.そのた め,画像生成の精度を向上させることにより CNN の良悪性鑑別の精度が向上する可能性 がある.

2)生成された画像に関する考察

今回の実験では, 生成された画像の中に正 しく生成されなかった画像が存在した.画像 生成に失敗した原因としては、以下の2つが 考えられる.1つ目は,良性の肺結節症例の中 に典型的ではない肺結節画像が含まれていた ことである.実験で使用したデータの中には、 良性でも形状が複雑な肺結節が多く、典型的 な症例が少なかった.そのため、典型的な良 性の肺結節画像の学習枚数が不足し,形状が 不整な肺結節画像が生成されたと考えられる. したがって、 良性の肺結節について 典型的な 肺結節データのみを GAN の学習に用いるこ とで良性の肺結節の画像生成の精度が改善さ れることが見込まれる.2つ目は, GAN モデ ルの改善である. 今回の実験では, GAN が生 成した画像の中には形状が不整な肺結節画像 が生成された場合もあったため、GAN モデル にも改善の余地がある.具体的な改善策とし ては、DCGAN の中間層におけるフィルター サイズの変更や,出力マップサイズの変更, 学習エポック数の変更を行うことにより画像 生成の精度の向上が見込まれる.

6. まとめ

今回, GAN を用いた data augmentation 手法
により, 肺結節の良悪性鑑別の精度において
75.81[%]の精度を得ることができた.しかし,
従来の data augmentation 手法と比較して,有
意差が得られない結果となった.良悪性鑑別
の精度が 75.81[%]であるため,臨床の場にお

いて結果を活用するにはさらなる精度向上が 求められる. 良悪性鑑別の精度が向上しなか った原因としては,生成した画像の中に生成 に失敗した画像が含まれていたことがあげら れる. そのため,課題として考察で述べた良 性の症例について典型的な症例のみを使用し て GAN の学習行うことや,GAN モデルの改 良があげられる.

7. 謝辞

本研究は日本学術振興会科学研究費補助 金新学術領域研究(26108009),および基盤研 究(B)(17H02110)による支援を受けた.

利益相反の有無

無し.

文献

- Goodfellow I, Pouget-Abadi e,Mehdi
 Mirza J, Xu B, et al :Genera
 tive Adversarial Nets, NIPS2 014:267
 2-2680,2014
- [2] Radford A, Metz L, Chintala S:U nsupervised Representation L earning with Deep Convolutional Generative Adversarial Networks, ICLR2016, 2016
- [3] Mirza M, Osindero S:Conditional Generative Adver-sarial Nets, arXiv: 1411.1784, 2014
- [4] Metz L, Poole B, Pfau D, Sohl-Dic kstein J:Unrolled Generative Adversa rial Networks, arXi v:1611. 02163,2 016
- [5] Causey JL, Zhang J, Ma S, et al
 : Highly accurate model for predict ion of lung nodule malignancy with CT scans, Scientific Reports, 8, Articl e number: 9286, 2018

Generating CT lung nodule images by use of GAN

Takuma HAMAGUCHI^{*1}, Shoji KIDO^{*2}, Yasushi HIRANO^{*1} Shingo IWANO^{*3}

*1 Graduate School of Sciences and Technology for Innovation, Yamaguchi University
 *2 Graduate School of Medicine, Osaka University
 *3 Nagoya University, Graduate School of Medicine

In recent years, many methods for analyzing lung nodules of medical images by using convolutional neural networks (CNNs) have been proposed. However, there is a problem that large amounts of data cannot be prepared. In order to solve the problem, a method to augment the data by using rotation and reflection is used. However, it is not a fundamental solution. In this study, we proposed a new data augmentation method by using "Generative Adversarial Network(GAN)".First, we cut out 2D images from 3D CT image with lung nodule on the center. Next, we made a generator model which generates lung nodule images. After that, we trained a CNN model that discriminates benign from malignant nodules. We compared the performance of our method with no data augmentation, augmented data by using translation, rotation and reflection, and using only GAN generated data.As a result, we obtained $75.81\pm6.36[\%]$ by use of our method. And we obtained $76.38\pm4.32[\%]$ by use of no data augmentation, $76.57\pm4.40[\%]$ by use of rotation and reflection, and $58.29\pm3.78[\%]$ by use of only GAN generated data. Therefore, the results using our methods were not superior to conventional augmentation methods.

AutoEncoder の正常症例訓練モデルによる

FDG-PET 画像中の悪性腫瘍検出手法

前田 健宏*1 原 武史*1 周 向栄*1

片渕 哲朗*2 藤田 広志*1

要旨

本研究の目的は、医師の負担軽減や見落としを防ぐために、体幹部 FDG-PET 画像における悪性腫瘍の自動 検出手法の開発を目的とする.ここでは、異常症例より収集が容易な正常症例を利用して、異常検知の観 点から検出を行う.PET スライス画像を 12×12 画素のパッチ画像へ分割する.正常症例のみで訓練した AutoEncoder モデルによるパッチ画像の特徴量抽出を行う.再構成誤差を特徴量として加え、外れた傾向を 持つパッチ画像を抽出する.抽出されたパッチ画像群を k-means 法により 2 クラスタへ分割し、PCA によ る第一、第二主成分をそれぞれ軸とする 2 次元空間上にプロットする.クラスタ重心との距離を基にパッ チ画像にスコア付けをし、スコアの集積する部位を腫瘍領域とする.腫瘍を含む 33 症例を対象に検出精度 を求める.検出率 95.1%、1 症例あたりの偽陽性領域数は 53 領域となり、正常症例のみで訓練した AutoEncoder モデルは腫瘍検出に有用である可能性を示唆した.

キーワード:FDG PET,深層学習,コンピュータ支援診断

1. はじめに

日本において,がんによる死亡者数は増加 傾向にあり,早期発見と早期治療が重要とさ れている[1].PET検査はがんや炎症の病巣の 調査,腫瘍の大きさや場所の特定,治療効果 判定などの用途で用いられる.

PET 検査では1度の撮影で約300枚のスラ イス画像が生成され,すべての画像を精査す るには多大な時間を要する.加えて,検査件 数の増加により読影医師の負担増大が問題と なっている.負担軽減のために,コンピュー タ支援診断(CAD)システムの開発が期待され ている.

悪性腫瘍の自動検出を深層学習による直接 検出により行う場合,多量の教師データが必 要となる.部位や種類ごとに多くの教師デー タを用意することは難しいが,正常症例は比 較的収集が容易である.ニューラルネットワ ークの一種である AutoEncoder は,大量の正 常データで訓練したモデルを利用した異常検 知に使用されている事例がある[2].

以上より,AutoEncoder を利用した悪性腫 瘍の自動検出手法の開発を目的とする.ここ では,比較的収集が容易である正常症例を訓 練に利用したAutoEncoder モデルによる特徴 量抽出と,異常検知の考えを基にした自動検 出を目指す.

^{*1} 岐阜大学大学院自然科学技術研究科 知能理工学専攻

^{〔〒501-1193} 岐阜市柳戸 1-1〕

e-mail: tmaeda@fjt.info.gifu-u.ac.jp

^{*2} 岐阜医療科学大学保健科学部

2. 方法

2.1 正常 AutoEncoder モデルの作成

AutoEncoder はニューラルネットワークの 一種である.入力画像をより低次元な情報へ 符号化し,符号化された情報を入力画像へと 復元する構造である.本手法では,PET 画像 を Axial, Sagittal, Coronal の3 断面において, 各スライス画像を12×12画素のパッチ画像 へ等間隔で切り出した画像を入力とする.訓 練に用いる画像は正常症例のみとする.

2.2 特徴量抽出と異常検知

正常症例で訓練を行った AutoEncoder モデ ルを用いて、144 次元の画像を 6 次元へと符 号化する.また、AutoEncoder の入出力の差 を一つの特徴量として加え、パッチ画像 1 枚 から 7 次元の特徴量を算出する.

7 次元特徴量群から, 腫瘍が映っていると 思われるパッチ画像を抽出する. 多変量デー タのロバストな外れ値検知手法である MSD 法[3]により, 外れた傾向の特徴量を持つパッ チ画像を抽出する. 次に k-means 法を適用し, 2 クラスタへ分割する.

腫瘍の検出を行うために、パッチ画像の異 常度を示すスコアを算出する.流れを図1に 示す. MSD 法で抽出されたデータに対して主 成分分析を行い、第一、第二主成分をそれぞ れ x, y 軸とする平面にプロットする. k-menas 法によるクラスタリング結果を基に、各クラ スタの重心座標を求める.重心に近いほど高 い値となるように設定した式を用いて異常ス コアを求める.

求めた異常スコアを利用し,腫瘍領域の決 定を行う.元画像上で異常スコアが高いパッ チ画像が集中している箇所を腫瘍領域として 検出する.最後に,検出した領域内の最大値 や平均などから偽陽性の削除を行う.

3. 結果

腫瘍領域を含む異常症例 33 症例を対象に 自動検出を行い,検出率と偽陽性領域数を求 めた. AutoEncoder の訓練には正常症例 35 症 例を用いた.

検出結果の例を図2に示す. 橙色, 薄緑色 がそれぞれ, 正解領域, 検出領域である. 検 出率は95.1%, 偽陽性領域数は53となった. 内訳を表1に示す.

図2 元画像(左)と検出結果(右)

	肺	肝臓	腹部	合計	
腫瘍数[個]	9	7	86	102	
検出数[個]	8	6	83	97	
検出率[%]	88.9	85.7	96.5	95.1	
表 1 検出結果					

4. まとめ

本研究では,正常症例のみを訓練データとした AutoEncoder モデルと,異常検知の考えを利用した悪性腫瘍の自動検出を行った.102個の腫瘍領域に対して,97個の検出に成功した.偽陽性領域数は53領域となった.

以上より,異常症例より比較的収集が容易 である正常症例のみで学習した AutoEncoder モデルは,悪性腫瘍の検出に有用である可能 性が示唆された.

謝辞

本研究を進めるにあたり,有益なご助言を いただきました研究室の方々に感謝の意を表 します.本研究の一部は,文部科学省科研費・ 新学術領域研究(26108005)および基盤研究 C(17K10455, 18K12102)の補助によって行わ れました

利益相反の有無

なし

文 献

- [1] 日本アイソトープ協会,"第8回全国 核医学診療実態調査報告書", RADIOISOTOPES, Vol.67, No.7, pp.339-387, 2018
- [2] 立花亮介,松原崇,上原 邦昭,"深層 生成モデルによる非正則化異常度を 用いた工業製品の異常検知",第 32
 回人工知能学会全国大会論文集, pp.772-775,2018
- [3] 和田かず美,"多変量外れ値の検出 ~MSD 法とその改良手法について", 統計研究彙報, Vol.67, pp.89-157, 2010

Malignant tumor detection method in FDG-PET Imaging

by normal case training model of AutoEncoder

Takehiro MAEDA^{*1}, Takeshi HARA^{*1}, Xiangrong ZHOU^{*1} Tetsuro KATAFUCHI^{*2}, Hiroshi FUJITA^{*1}

*1 Department of Intelligence Science and Engineering,Graduate School of Natural Science and Technology, Gifu University*2 Faculty of Health Science, Gifu University of Medical Science.

The purpose of this study is to develop a method for automatic detection of malignant tumors in FDG-PET images in order to reduce the burden on doctors and prevent oversight. We use normal cases that are easier to collect than abnormal cases, and detect them from the viewpoint of abnormal detection. The PET slice image is divided into 12×12 pixel patch images. Feature extraction of patch image is performed by AutoEncoder model trained only in normal cases. Reconstruction errors are added as feature, and patch images with a tendency to deviate are extracted. The extracted patch image group is divided into 2 clusters by k-means method, and is plotted on a two-dimensional space with the first and second principal components as axes by PCA. The patch image is scored based on the distance from the cluster centroid, and the region where the score is accumulated is taken as the tumor area. The detection accuracy is calculated for 33 cases including tumor. The detection rate was 95.1%, and the number of false positive areas per case was 53, suggesting that the AutoEncoder model trained in only normal cases may be useful for tumor detection.

Key words: FDG PET, Deep Learning, CAD

低線量 CT 画像による

肺結節の経時変化に基づく良悪性鑑別

東 勇太*1) 鈴木 秀宣*2) 河田 佳樹*2) 仁木 登*2)

楠本 昌彦 3) 土田 敬明 4) 飯沼 元 4)

要旨

日本における死因別死亡率はがんが第一位であり、現在もがんによる死亡率は上昇し続けている.その中でも部分別に見たとき肺がんは,がん死亡者数第一位を占め,こちらも増加傾向にある.早期発見に低線量 CT 肺がん検診が取り入れられている.そこで本研究では,テクスチャー解析を行い肺結節の経時変化から病状の悪化に伴う特徴量の変化を調べ,肺結節の良悪性鑑別を行うことである.

キーワード: CT, CAD, 医用画像処理

■ 背景,目的

わが国において,死因別死亡理はがんが第 一位であり,現在もがんによる死亡率は増加 傾向にある.そして,がんの中でも死亡者数が 最も多い部位は肺であり,男性の場合他の部 位と比べて肺がんによる死亡率は極めて高い. 女性においても死亡率は第二位であるが, 年々増加している.このようにがんの死亡率 が増加傾向にあるのは,早期発見が必要であ るためである.そこで低線量 CT 肺がん検診が 取り入れられ始めた.今まで,低線量 CT 肺が

*1) 徳島大学大学院先端技術科学教育部 システム創生工学専攻

〔〒770-8506 徳島県徳島市南常三島 2-1〕
e-mail:c501938010@tokushima-u.ac.jp
*2)徳島大学大学院社会産業理工学研究部
*3)国立がん研究センター東病院

*4)国立がん研究センター中央病院

ん検診の有用性を示すエビデンスは少なかっ たが大規模な無作為化比較試験である北米の National Lung Screening Trial(NLST)やオラン ダ・ベルギーの NELSON trial により肺がん死 亡率の減少に効果があることが示された.本 研究では,長期期間の検診により,肺結節のテ クスチャー解析を行い,経時変化から病状の 悪化に伴う特徴量の変化を調べ,良性結節と 悪性結節の有意となるパラメータを明らかに し,肺結節の良悪性鑑別を目的とする.

■ CT 画像 撮影条件

本研究では,国立がん研究センターで撮影されたデータセットを用いて実験を行った.詳 しい撮影条件を表1に示す.CT 画像は低線量 の画像であり,また読影医による結節の判定 が示されている.これを図1に示す.

撮影梁	件		
メーカー	TOSHIBA		
装置	Aquilion		
管電圧[kV]	120		
管電流[mA]	30		
スライス厚[mm]	1		
ピクセルサイズ[mm]	0.625		
再構成間6頁[mm]	1		
再構成開数	FC01		
画素サイズ[pixels]	512×512		

図1 低線量 CT 画像 (赤丸:読影医による結節の判定)

■ 手法

実験に用いるデータの選別から行う.

データセットに含まれる症例数は 683 症例 である.一人が受けた1回以上の検診をまとめ て1症例としているため,検診回数が1回の症 例や悪性結節を含まない症例などある.そこ で長期的な肺結節の経時変化をみるため,検 診回数が1,2回の症例を除き,その中でも肺が んの疑いとされた el,e2 判定の結節が存在す る症例を実験に用いることとした.このとき, 症例数は 683 症例から 222 症例となった.

■ 結果

データセットの分布を図 2、実験に用いる データセットの分布を図3に示す.

図3 実験に用いるデータセット分布

■ まとめ

元のデータセットから検診回数,検診結果 を条件に実験に使用するデータを選別し,新 たにデータセットを作成した.今後はこのデ ータセットを用いて,肺結節の判定の変化の パターンを分類し,テクスチャー解析を行い 経時変化による特徴量の変化を調べていく.

利益相反の有無

なし

文 献

- Uraujh Yousaf-Khan, et al. Final screening round of the NELSON lung cancer screening trial: the effect of a 2.5-year screening Interval ; Thorax 2017;72:48–56. doi:10.1136/thor axjnl-2016-208655
- McWilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med 2013;369:910-9. DOI: 10.1056/NEJMoa1214726
- [3] 「NationalLungScreeningTrialの概要と評 価」祖父江友孝
- [4] 「肺癌取り扱い規約 第8版」編集:日本肺癌学会 (2017)

Differentiation of Benign and Malignant Lung Nodules by Temporal Change Using Low Dose CT Images

Azuma Yuta^{*1)} Hidenobu Suzuki^{*2)} Yoshiki Kawata^{*2)} Noboru Niki^{*2)} Masahiko Kushumoto^{*3)} Takaaki Tsuthida^{*4)} Gen Iinuma^{*4)}

> *1 System Innovation Engineering, Graduate School of Advanced Technology and Science, The University of Tokushima
> *2 The University of Tokushi
> *3 National Cancer Hospital East
> *4 National Cancer Center Hospital

Cancer is the number one cause of death by death in Japan, and the mortality rate from cancer continues to increase. Among them, lung cancer accounts for the largest number of cancer deaths when viewed partially Low-dose CT lung cancer screening is incorporated in early detection, so in this study, texture analysis is carried out to examine changes in the characteristic amount associated with deterioration of the medical condition from the time-dependent change of lung nodules, lung It is to distinguish between benign and malignant nodules.

Key words: X-ray image, CT, Medical image processing

Staging of liver fibrosis by using texture and partial least squaresbased statistical shape analyses in contrast-enhanced MR images

Mazen Soufi¹, Yoshito Otake¹, Masatoshi Hori², Kazuya Moriguchi¹, Yasuharu Imai³, Yoshiyuki Sawai³, Takashi Ota², Noriyuki Tomiyama², Yoshinobu Sato^{1*}

Abstract

We aimed at the staging of liver fibrosis by using image features derived from texture analysis and partial least squares (PLS) regression -based statistical shape modelling applied to contrast-enhanced MR images. MR images of 51 patients were used. Fifty-four texture features were derived from the image histogram and 4 texture-characterizing matrices. A statistical shape model was constructed by using PLS. The fibrosis stage was estimated by using a support vector machine (SVM) based on the texture features and PLS scores. The accuracy (in terms of the AUC) at the classifications F0/1 vs. F2-4 (early), F0-2 vs. F3-4 and F0-3 vs. F4 (cirrhosis) were 0.93 ± 0.03 , 0.77 ± 0.05 and 0.84 ± 0.05 , respectively, thus showing the feasibility of the proposed approach for staging of the liver fibrosis.

Keywords : liver fibrosis, contrast-enhanced MR, statistical shape modeling, partial least squares, texture analysis

1. Introduction

Liver fibrosis is an asymptomatic disease that ultimately progress into cirrhosis, which is linked with prominent morbidity and mortality. The diagnosis of liver fibrosis includes staging the degree of fibrosis with one of five stages (from F0 'no fibrosis' to F4 'cirrhosis') [1]. The early detection of liver fibrosis is especially necessary because it may help in reversing the fibrosis, for example, through antiviral treatments [2].

Biopsy is considered the gold standard in diagnosing liver fibrosis. However, it is invasive and is prone to sampling errors. Other methods include serum/blood markers and elastography imaging techniques, such as magnetic resonance elastography (MRE) [3]. However, these tests might produce false positives due to other complications [4]. Therefore, an additional diagnostic tool for liver fibrosis is needed.

On the other side, image analysis approaches, such as statistical shape modeling [5] and texture analysis [6,

*yoshi@is.naist.jp

¹ Division of Information Science, Nara Institute of Science and Technology

^{8916-5,} Takayama-cho, Ikoma, Nara 630-0192, Japan

² Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine

D1, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan

³ Department of Gastroenterology, Ikeda Municipal Hospital

^{3-1-18,} Jonan, Ikeda, Osaka, 563-8510, Japan

7]; however, up to our knowledge, the fusion of these approaches has not been investigated yet. Deep learning approaches were also developed for the staging of liver fibrosis [8, 9]. Nevertheless, those approaches require large datasets for training the classification models (e.g. hundreds of datasets), which may not be available. Therefore, the purpose of this study was to investigate the feasibility of fusing MR image-based statistical shape modeling and texture analysis approaches for the staging of liver fibrosis.

2. Materials and methods

2.1 Image datasets

Institutional review board approvals for this retrospective study were obtained from Ikeda Municipal Hospital (approval ID: 3253) and Osaka University Hospital (approval ID: 14251). The proposed approach was validated on 51 contrast enhanced fat-suppressed T1-weighted MR images acquired by a 1.5 Tesla scanner (Signa HDxt 1.5T, GE Medical Systems, Milwaukee, WI). The distribution of the fibrosis stages was F0/1 (n=18), F2 (n=15), F3 (n=7) and F4 (n=11).

2.2 Proposed approach

Figure 1 shows the proposed approach for staging of liver fibrosis by using a fusion of partial least squares (PLS) regression-based shape and texture features. The liver shape was segmented from the 3D MR images. A smoothed polygon model was reconstructed from the segmented liver shapes, and an SSM was constructed based on affine and deformable registrations of a template to each polygon model. The shape features (scores) were derived from the registered polygons, and the shape modes summarizing 99.5% of the cumulative variation were selected.

Fig. 1 Proposed approach for staging of liver fibrosis based on fusion of SSM features (PLS scores) with texture features.

The texture features were derived by using the histogram of the segmented liver and 4 types of texture representation matrices, i.e. gray-level co-occurrence matrix (GLCM) [10], graylevel run-length matrix (GLRLM) [11], graylevel size-zone matrix (GLSZM) [12] and neighborhood gray tone difference matrix (NGTDM) [13], yielding 54 features. The matrices were computed on the image after re-quantization to 16 graylevels (4-bit), following Ref. [7]. A feature selection was applied to the derived features, in which only the features of a non-negligible correlation with the fibrosis stage (i.e. Pearson correlation coefficient > 0.3) were selected. The selected features were normalized by using a z-score (difference from the mean divided by the standard deviation). The texture features were combined with the PLS scores, and fed into a support vector machine (SVM) with a linear kernel to predict the fibrosis stage. The prediction

was performed under a binary classification (i.e. F0/1 vs. F2-4, F0-2 vs. F3-4 and F0-3 vs. F4) with a 5-fold cross-validation repeated for 50 iterations.

3. Results and discussions

Figure 2 shows the shape variations obtained by the PLS scores in the direction perpendicular to the discrimination hyperplane. The features represented commonly-known variations with respect to the fibrosis progression, such as enlargement of left lobe and shrinkage in the front side of the right lobe, as well as detailed shape variations, such as enlargement in the back side of the right lobe. These variations agree, to some extent, with those observed in cirrhotic livers by Ozaki et al. [14].

Fig. 2 Shape variations represented by PLS scores. The features represented commonly-known variations, such as enlargement of left lobe, as well as detailed shape variations, such as enlargement in the back side of the right lobe.

Figure 3 shows the Pearson correlation coefficient between the 54 texture features and the fibrosis stage. Eight features yielded non-negligible correlations, i.e. the histogram-based entropy, mean, median and root-mean-square (RMS), the GLSZM-based size zone emphasis (SZE) and zone size non-uniformity (ZSN), and the NGTDM-based busyness and strength features. The maximum correlation value in absolute value corresponded with the SZE (ρ = -0.49), which shows a moderate correlation between the texture features and the fibrosis stage.

Fig. 3 Pearson correlation coefficient between texture features computed at 16 re-quantization levels and the fibrosis stage. Features with non-negligible correlation ($\rho > 0.3$) were selected for the staging. Lower row shows examples for the features with largest-3 correlation coefficients in absolute value.

Figure 4 shows examples for representative cases of the 4 fibrosis stages with the normalized values of the largest-3 correlation features. The image features characterized the randomness in the graylevel distributions at the liver vasculature and parenchymal sub-regions.

Fig. 4 Examples for representative images with the largest-3 correlation texture features (SZE: small zone emphasis, ZSN: zone size non-uniformity; and busyness).

Figure 5 summarizes the performance of the proposed approach in terms of the AUC and ACC measures. Compared with the approach using only SSM-based PLS scores, the proposed approach yielded AUCs of 0.97 ± 0.02 , 0.78 ± 0.04 and 0.82 ± 0.06 for the classifications F0/1 vs. F2-4, F0-2 vs. F3-4 and F0-3 vs. F4, respectively. The performance has improved in the classifications F0/1 vs. F2-4; however, it slightly degraded in the classification F0-2 vs. F3-4. There was no statistical significance in the improved performance at the classification F0-3 vs. F4.

Fig. 5 Comparison of the classification accuracy between the PLS scores-based approach (blue) and fusion with texture features approach (green). (a): box-plot of AUCs with a statistical summary table of the AUC and accuracy (ACC) measures; (b): variations in the AUC with respect to the iteration number.

House et al. have shown the potential of the GLCM-based features in prediction of the liver fibrosis stage [6]. Their approach achieved AUCS of 0.81, 0.81 and 0.87 for the three classifications. Their study was applied to 48 images, and have shown the potential of the entropy features in the discrimination between non-fibrotic and fibrotic livers. Zhang et al. have also shown the potential of using 15 texture features in prediction of liver fibrosis stage. Their approach was validated on a larger dataset of MR images (n=218), and revealed the predictive value of the mean and entropy features [7]. These results align with our findings in showing the potential of the texture features, particularly the entropy feature, in the fibrosis staging. We additionally showed the potential of GLSZM- and NGTDM-based features, whose application to fibrosis staging has not been investigated before. However, the current study has a limitation of the small dataset employed for the analysis. Currently, a larger dataset (> 250 MR images) is under preparation in order to validate the proposed approach. In addition, the potential of fusing deep learning-based representations with the handcrafted features tested in this study will be investigated.

4. Conclusions

This study has investigated the fusion of PLS-based shape features with texture features for the prediction of liver fibrosis stage. An improvement was obtained at the early detection of the fibrosis (F0/1 vs. F2–4) compared with the classification by using only PLS-based features, thus showing the potential of the proposed approach for the staging of liver fibrosis.

Competing interests

The authors have no competing interests.

Acknowledgement

The authors are grateful for Fukuda Norio, Yuki Suzuki, Steven Lim, Yukio Oshiro and Toshiyuki Okada for their contributions to this study. This research was supported by Japan Society for the Promotion of Science (JSPS) Grantsin-Aid for Scientific Research (KAKENHI) Number 26108004 / 26461789 / 17K10403 and 19K20711.

References

- Ichida F, Tsuji T, Omata M, et al.: New Inuyama classification; new criteria for histological assessment of chronic hepatitis.
 Int Hepatol Commun 6(2):112–119, 1996
- [2] Liaw YF, Reversal of cirrhosis: an achievable goal of hepatitis B antiviral therapy. J Hepatol 59(4):880–881, 2013
- [3] Wang QB, Zhu H, Liu HL, Zhang B et al.: Performance of magnetic resonance elastography and diffusion-weighted imaging for the staging of hepatic fibrosis: A meta-analysis. Hepatology 56(1):239–247, 2012
- [4] Tang A, Cloutier G, Szeverenyi NM, et al.: Ultrasound elastography and MR elastography for assessing liver fibrosis: part
 2, diagnostic performance, confounders, and future directions. Am J Roentenol 205:33–40, 2015
- [5] Hori M, Okada T, Higashiura K, et al. Quantitative imaging: quantification of liver shape on CT using the statistical shape model to evaluate hepatic fibrosis. Acad Radiol 22(3):303–309, 2015
- [6] House MJ, Bangma SJ, Thomas M, et al.: Texture-based classification of liver fibrosis using MRI. J Magn Reson Imaging 41(2):322–328, 2015
- [7] Zhang X, Gao X, Liu BJ, et al: Effective staging of fibrosis by the selected texture features of liver: Which one is better, CT

or MR imaging?. Comput Med Imag Graph 46:227-236, 2015

- [8] Yasaka K, Akai H, Kunimatsu A, et al.: Liver Fibrosis: Deep Convolutional Neural Network for Staging by Using Gadoxetic Acid-enhanced Hepatobiliary Phase MR Images. Radiology 287(1):146–155, 2018
- [9] Choi KJ, Jang JK, Lee SS, et al.: Development and validation of a deep learning system for staging liver fibrosis by using contrast agent-enhanced CT images in the liver. Radiology, 289(3), 688-697, 2018
- [10] Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 3:610– 621, 1973
- [11] Galloway MM. Texture analysis using gray level run lengths. Comput Graph Image Process 4:172–179, 1975.
- [12] Thibault G. Texture indexes and gray level size zone matrix. Application to cell nuclei classification. In Proc. Pattern Recognition and Information Processing. Minsk, Belarus, 140-145, 2009
- [13] Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern. **19**:1264–1274, 1989
- [14] Ozaki K, Matsui O, Kobayashi S, et al.: Selective atrophy of the middle hepatic venous drainage area in hepatitis C-related cirrhotic liver: Morphometric study by using multidetector CT. Radiology 257(3):705–714, 2010

テンプレート(全ての原稿の種類に共通) Ver. 2.1 (2019.3.28 改訂)

少数方向トモシンセシスにおける

正則化項を用いた画像再構成

堀 拳輔*1 橋本 雄幸 1* 齊藤 典生*2 王 波*2

要旨

トモシンセシスは制限角内の投影から3次元画像を再構成する技術である.現在開発中の4つのX線管を 有する装置では1秒以内の短時間撮影が可能で,患者の息止めによる負担がほとんどない.しかし,投影 数が4つと少ないため,再構成画像の画質が劣化する.本研究では,正則化項を組み込んだ逐次近似アル ゴリズムを4方向トモシンセシス画像再構成へ応用し,その有用性について検討した.ML-EM 法とTV 正 則化を組み込んだ方法で数値ファントムおよび実測データの再構成を行い,RMSE および CNR による比較 検討を行った.数値シミュレーションでは,ML-EM 法と比較して ML-EM+TV 再構成像の奥行方向に生じ るアーチファクトが抑制され,分解能が向上した.実測データでは TV 正則化を組み込むことでノイズが 抑制でき,近似回数を重ねるにつれ CNR が向上した.4方向トモシンセシスにおいて,正則化項を組み込 んだ再構成アルゴリズムはアーチファクト抑制およびノイズ低減に有用であった.

キーワード:トモシンセシス,逐次近似画像再構成法,正則化

1. はじめに

トモシンセシスは制限された角度から得ら れる投影を用い、断層像を再構成する技術であ る[1].臨床機では、単純X線撮影に用いられ るX線管を機械的に動作させることで、制限角 30°以内で約60投影を10秒かけて撮影するた め、患者の息止めによる負担が大きい.さらに、 撮影中に息止めができなかった場合、被ばく線 量が多いにもかかわらず、単純X線検査と比較 して、肺結節検出能が同等になることが報告さ れている[2].一方、現在開発中であるトモシン セシス装置は、4つの小型X線管が固定配置さ れており、それぞれのX線管からほぼ同時に撮

*1 杏林大学大学院保健学研究科 〔〒181-8612 三鷹市下連雀 5-4-1〕 e-mail: hori1911n@std.kyorin-u.ac.jp *2 つくばテクノロジー株式会社 投稿受付: 影できる [3]. 1 秒以内に制限角 20 度程度で4 方向の投影を収集できるため、肺がん検診やポ ータブル撮影等での活躍が期待されている. し かし、収集する角度範囲に対して投影数が極端 に少ないため、ストリーク状のアーチファクト が発生してしまう問題があった.

近年, Computed Tomography (CT) や Magnetic Resonance Imaging (MRI), 核医学画像の再構成 アルゴリズムに正則化を組み込むことで, スパ ースな情報からの画像再構成が可能となって いる [3, 4, 5]. 本研究では開発中のトモシンセ シス装置の従来までの画像再構成法である Maximum likelihood expectation maximization

(ML-EM)法に Total variation (TV) 正則化を 組み込み,その有効性に関して数値シミュレー ションおよび胸部ファントムを撮影した実測 データを用いてその有用性を検討した.

2. 方法

2-1. 実験方法および使用機器

本実験における数値シミュレーションでは, 128×128×128 pixels の 3D Shepp&Logan ファン トム(図1)を対象とし,信号雑音比が 20 dB となるように正規分布にしたがうノイズを付 加した.また,実測ではポータブル 3D 表示 X 線 装置 [6] および Flat Panel Detector (PaxScan®4336W v4: Varex Imaging)を用いて, CT 値+100 で直径 10 mm および 35 mm の模擬 結節を封入した胸部ファントム (N-1 ラングマ ン:株式会社京都科学)を表1に示す条件で撮 影を行った.

図1 3D Shepp&Logan ファントム A:横断面, B:冠状断面, C:矢状断面. 最大 画素値は 3.5 であり,最小画素値は 0 である.

管電圧	120 kV
管電流	17.5 mA
撮影時間	100 msec
X線管-検出器間距離	80 cm
検出器サイズ	42.7×34.4 cm
マトリクスサイズ	3,072×2,476
ピクセルサイズ	139 μm/pixel

表1 撮影条件および検出器仕様

臨床機のトモシンセシスは,検出器を固定し, X線管を体軸方向に動作させて撮影するが,現 在開発中のトモシンセシス装置は体軸方向に 配置した4つのX線管を固定して撮影する(図 2).したがって,臨床機の条件での投影は,制 限角20°において40投影とし,開発機の条件 での投影は,制限角20°において4投影とした. また,X線は一点からコーン状に放射されるこ とを考慮し,画像再構成を行った.

図2 トモシンセシス撮影系

4 方向撮影時の各 X 線管に対するθはそれぞれ -10°,-3°,3°,10°である.

2-2. 画像再構成法

X線による投影は式(1)で表される.

$$Y = A \cdot X \tag{1}$$

Aは検出確率に関するシステム行列, X は原画 像, Y はポアソン性を考慮した投影(式(2))を 表す.

$$y_j \simeq poisson\left(\sum_{i=0}^{I} a_{ij} \cdot x_i\right)$$
 (2)

ここで, *X*を求める式(1)の逆問題を式(3)で表 される最小化問題に書き換える.

$$X = \arg \min\left(\frac{A \cdot X}{y_j} + \beta \cdot U(X)\right)$$
(3)

式(3)の右辺の第一項は ML-EM 法で解くことが でき,(4)で表される.

$$x_{i}^{(k+1)} = \frac{x_{i}^{(k)}}{\sum\limits_{j=1}^{J} a_{ij}} \cdot \sum\limits_{j=1}^{J} \frac{y_{j}a_{ij}}{\sum\limits_{i=1}^{I} a_{ij}x_{i}^{(k)}}$$
(4)

ここで, *a_{ij}はiがj*に検出される確率, *x*およ び *y* はそれぞれ *k* 回目の再構成像と投影を表 す.式(3),(4)より,本研究で提案する正則化を 組み込んだ逐次近似画像再構成法(ML-EM+TV) は式(5)で表される.

$$x_{i}^{(k+1)} = \frac{x_{i}^{(k)}}{\sum\limits_{j=1}^{J} a_{ij}} \cdot \sum\limits_{j=1}^{J} \frac{y_{j}a_{ij}}{\sum\limits_{i=1}^{I} a_{ij}x_{i}^{(k)}} - \beta \frac{\partial}{\partial x_{i}^{(k)}} U\left(x_{i}^{(k)}\right)$$
(5)

ここで、 $U(x_i)$ は正則化項であり、式(6)で 表される TV ノルムを用いた.

$$U(x_i) = \sum_{i=1}^{I} \sqrt{\left(\frac{\partial x_i}{\partial x}\right)^2 + \left(\frac{\partial x_i}{\partial y}\right)^2}$$
(6)

2-3. 評価指標

数値シミュレーションの検討では、基準画像 aとし、対象画像bとの差を式(4)で示す Root mean square error (RMSE)で評価した. トモシ ンセシスは投影角度に制限があるため、原画像 の形状を正確に描出することはできない. した がって、制限角 20°においてノイズを含まない 40 投影を収集し、ML-EM+TV 法で再構成した 画像を基準画像とした.

$$RMSE = \frac{1}{N} \sum_{i=1}^{N} \sqrt{(a_i - b_i)^2}$$
 (4)

胸部ファントム実測データでの検討では,式 (5)で示す Contrast to noise ratio (CNR)で評価し た. それぞれ, *signal* は 10 mm 模擬結節部, *B.G.* は肺野部とした.

$$CNR = \frac{Mean_{signal} - Mean_{B.G.}}{\sigma_{B.G.}} \quad (5)$$

3. 結果と考察

3-1. 数値シミュレーション

3D Shepp&Logan ファントムを用いて, ML-EM 法および ML-EM+TV 法により画像再構成 を行った.制限角 20°において, ノイズを付加 せずに 40 投影収集する条件で再構成した画像 を基準再構成画像とし,図3A,Dに示す.

基準再構成画像と比較して, ML-EM 法によ り再構成した画像の冠状断面では, ロ元部に階 段状のアーチファクトが生じた(図3B)が, ML-EM+TV 再構成画像では滑らかに描出され た(図3C). 矢状断面において, ML-EM 再構 成画像では奥行き(Z軸)方向にストリークア ーチファクトが発生していた(図3E)が, ML- EM+TV 法ではアーチファクトが抑制され,分 解能が向上していることが確認できた(図3F). これは,ML-EM+TV 法では,正則化項が組み込 まれたことにより,角度方向においてスパース になった情報を復元しながら画像再構成でき たためと考えられる.

図3 Shepp&Logan ファントム再構成画像 基準再構成画像(左:A,D)とML-EM 再構成 画像(中央:B,E), ML-EM+TV 再構成画像(右: C,F)を示す.上段(A,B,C)はそれぞれ z=30 での冠状断面画像で,下段(D,E,F)は y=64 で の矢状断面画像である.

図4 基準画像と ML-EM および ML-EM+TV 像 との RMSE 値

青線は ML-EM 法,赤線は ML-EM+TV 法で再 構成した画像と基準画像との RMSE 値を示す.

さらに,基準再構成画像と ML-EM 像および ML-EM+TV 像との RMSE 値を図4に示す. ML-EM 法では近似回数 25 程度で再構成値が発散 したが, ML-EM+TV 法では値の発散が抑制され, 近似回数を重ねるにつれて RMSE 値が減少した. ML-EM 法では近似回数が約 20 回以上で計算誤差による変動成分が増大してしまったが, ML-EM+TV 法では変動成分を低減しながら近似を重ねたことで発散を抑制できたと考えられる.

3-2. 胸部ファントム実測データ

ポータブル 3D 表示 X 線装置で胸部ファント ムを撮影し,取得した投影から再構成した画像 を図5に示す.

図5 胸部ファントム再構成画像

A: ML-EM 再構成画像, B: ML-EM+TV 再構成 画像. 左下に赤枠で示した 10 mm 模擬結節の拡 大画像を示す.

数値ファントムでの結果と同様,実測データ でも ML-EM 法により再構成した画像では,近 似回数を重ねるごとにノイズが増大したが, ML-EM+TV 再構成では,ノイズが抑制されなが らコントラストが向上し,CNR は 2.6 倍に向上 した.

4. まとめ

正則化項を組み込んだ画像再構成はアーチ ファクトを抑制でき、ノイズの低減が可能とな るため、少数方向トモシンセシスにおいて有用 であった.

利益相反の有無

なし.

文 献

- James T Dobbins III, Devon J Godfrey: Digital x-ray tomosynthesis: current state of the art and clinical potential. Phys. Med. Biol. 48: R65, 2003
- [2] Kim S.M., Chung M.J., Lee K.S. et al: Digital tomosynthesis of the thorax: the influence of respiratory motion artifacts on lung nodule detection. Acta Radiologica 54: 634-639, 2013
- [3] 王波,鈴木良一,王暁東 他:ポータブ ル 3D 表示 X 線撮影装置.特許第
 6281119 号, 2018
- [4] 工藤博幸:低被爆 CT における画像再構成法一統計的画像再構成,逐次近似画像再構成,圧縮センシングの基礎一.
 Med Imag Tech 32: 239-248, 2014
- [5] Lustig M., Donoho D., Pauly J.M.: Sparse MRI: The application of Compressed Sensing for Rapid MR imaging. Magnetic Resonance in Medicine 58: 1182-1195, 2007
- [6] V.Y. Panin, G.L. Zeng, G.T. Gullberg: Total variation regulated EM algorithm [SPECT reconstruction]. IEEE Trans Nucl Sci 46: 2202-2210, 1999

Image Reconstruction with Regularization for

Small Number Projection Tomosynthesis

Kensuke HORI*1, Takeyuki HASHIMOTO*1, Norio SAITO*2, Wang BO*2

*1 Kyorin University Graduate School of Health Sciences
 *2 Tsukuba Technology Co., Ltd.

Tomosynthesis is the technique of reconstructing 3D image from the projection within limited angles. The device under development with 4 fixed X-ray tubes enables to image in about 1 second and facilitates for patients to hold a breath. However, the image quality of the reconstructed image is degraded because the number of projections is small. In this study, availability of image reconstruction algorithm with regularization for small projection tomosynthesis is examined. Image of digital phantom and measurement chest phantom, reconstructed by ML-EM and ML-EM +TV, is compared using RMSE and CNR. In numerical simulation, the image reconstructed by ML-EM + TV is enables to suppress the artifact and improve the resolution in depth direction. In measurement data, the TV regularization enables to suppress the noise and improve the CNR by increment of iteration. Therefore, image reconstruction with regularization for small projection tomosynthesis is effective in reducing artifacts and noise.

Key words: Tomosynthesis, Iterative image reconstruction, Regularization

著者紹介

堀 拳輔(ほり けんすけ) 2017 年北里大学医療衛生学部卒業. 2019 年北里大学大学院医療系研究科修 士課程修了.現在,杏林大学大学院保 健学研究科博士後期課程に在学中.画 像処理、特に医用画像再構成の研究に 従事.2018 年 AOCMP Best Presentation を受賞.

橋本 雄幸 (はしもと たけゆき) 1994 年筑波大学工学研究科博士課程修 了.工学博士.1994 年横浜創英短期大 学情報処理学科講師,2012 年横浜創英 大学こども教育学部教授,2016 年杏林 大学保健学部診療放射線技術学科教 授. ラドン変換の逆問題,画像処理, 非破壊検査の応用研究に従事.

齊藤 典生 (さいとう のりお) 1985 年山形大学大学院修士課程修了、 国立公害研究所でミー散乱レーザーレ ーダーの研究、その後、日本電気で高 出力・高安定 YAG レーザーの開発に 従事。 2012 年よりつくばテクノロジーにて研 究開発全般を担当。 第6回ものづくり日本大賞 優秀賞受 賞。 **王 波** (おう は)

 1982 年中国西安電子科技大学レーダー システム専攻卒業、 1986 年同大学修士修了、助手、講師。 1993 年筑波大学に留学、CT と MRI の 画像処理研究; 1999 年(独) 通総研(NICT)と(独) 産 総研(AIST)にて、3D 画像処理と非破壊 検査技術に関する研究。 2005 年つくばテクノロジー(株)を起 業、研究開発・経営全般を担当。 第6回ものづくり日本大賞 優秀賞受 賞。 テンプレート(全ての原稿の種類に共通) Ver. 2.1 (2017.3.21 改訂)

超音波造影剤の動態情報を利用した模擬リンパ管の可視化 齋藤 勝也^{*1} 吉田 憲司^{*2} 大村 眞朗^{*1} 田村 和輝^{*3} 山口 匡^{*2}

要旨

従来の超音波造影法では可視化が困難であるリンパ管のイメージング手法として,音響放射力により生じ る超音波造影剤の動態情報をドプラ法で定量する動的超音波造影法を提案している.本報告では,皮膚組 織の散乱・減衰特性を模擬した散乱体含有ファントムを作成し,その内部に形成した直径 0.28 mmの模擬 リンパ管を対象に可視化を試みた.模擬リンパ管内に超音波造影剤(Sonazoid[™])懸濁液を充填した状態で, 単一凹面振動子(中心周波数 14.4 MHz)を方位方向に 10 µm ずつ移動させ,各走査線において 2 kHz のパ ルス繰り返し周波数で超音波を 0.5 秒間送信した.取得される受信信号に提案法を適用することで造影剤 の動態情報を反映した二次元像を生成した.その結果,走査線あたり一回の超音波送受信データから生成 される従来の B-mode 画像と比して提案法ではコントラスト比が改善することが確認された.

キーワード:音響放射力,超音波造影剤,超音波ドプラ,模擬リンパ管,コントラスト改善

1. はじめに

リンパ管の可視化技術が創出できれば,術中 センチネルリンパ節の同定技術やリンパ浮腫 診断におけるリンパ機能評価など診断・治療応 用の両面において有効である.現状のリンパ管 描出法として色素法やラジオアイソトープ法 などが実施されているが,近年は非切開でリア ルタイム性に優れ,広視野な観察が可能である ことからインドシアニングリーン (ICG)を用 いた近赤外蛍光造影法が注目されている.しか し,生体組織による光の散乱・吸収のため, 10 mm より深部に位置するリンパ管を観察できな いという欠点がある[1].生体に対して良好な侵 達度を有する超音波を用いて,この欠点を補う 手法を提案する.

リンパ管を含む体表組織の形態学的な特徴 を考慮すると、従来のエコー強度情報を用いる

*1 千葉大学大学院融合理工学府

〔〒263-8522 千葉市稲毛区弥生町 1-33〕 e-mail: skatsuya@chiba-u.jp

- *2 千葉大学フロンティア医工学センター
- *3 浜松医科大学光尖端医学教育研究センター

超音波イメージング(B-mode 画像)では明瞭な 可視化は困難であると考えられる.そこで,リ ンパ管描出を補助する手法として,音波照射時 に生ずる造影剤の移動をドプラ法で検出する 動的超音波造影法を提案してきた.これまでの 検討において,造影剤のわずかな移動をドプラ 法で定量可能であることを示し,その移動速度 が理論計算結果と概ね一致することを確認し ている[2].また,受信信号に混在するクラッタ 信号が造影剤移動速度の過小評価につながる 可能性について検証してきた[3].

本報告では、実際のリンパ管と直径が同程度 である円筒形チャンバを対象に、提案手法を用 いてイメージングを試みた.チャンバの視認性 について、コントラスト比を指標に従来手法と 比較した結果について報告する.

2. 動的超音波造影法

図1に提案手法の概念図を示す.皮下注射に より生体組織に投与された超音波造影剤がリ ンパ管内に吸収され,管内においてほぼ静止し ている状態,もしくは非常に移動速度が遅い状 態を想定する.この状況下で超音波を照射する と,音響放射力が作用し,造影剤が振動子から

図1 動的超音波造影法の原理模式図

離れる方向に移動することが実験的に確認さ れている[4,5].本研究では、この能動的に生じ させた造影剤の動態を超音波ドプラ法で検出 することで、リンパ管の描出を目指している.

3. 実験方法

1) 計測対象

生体の散乱・減衰特性を模擬するため,散乱 体含有ファントムを作製した.平均粒径 10 μm のポリアミド粒子 (ORGASOL,アルケマ)を体 積濃度 7.2%で混入した寒天ゲル内にリンパ管 を模擬した直径 0.28 mm の円筒形チャンバをそ れぞれ形成した.チャンバには超音波造影剤

(Sonazoid[™])の懸濁液を充填させた. 造影剤の 粒子径は 1.24±0.37 µm, 数密度は 2.26×10¹² 個 /m³である.

2) データ取得方法

図2に実験システムを示す.中心周波数14.4 MHz,焦点距離19.3mmの単一凹面振動子をその焦点がチャンバ中心と一致するように鉛直 上方に設置する.超音波の送受信にはパルサレ シーバ(Model 5800, Olympus)を用いた.パル ス繰り返し周波数(PRF)2kHzで超音波を繰り 返し送信し,同振動子によりチャンバからのエ

図2計測システム

コー信号を受信した. 超音波照射期間は 0.5 秒 である.送信波のパルス長は 0.32 µs であり,こ の値から深度方向の分解能を算出すると 0.26 mm となる. 受信信号はオシロスコープ

(HDO6104, LeCroy)を用いて,量子化ビット 数 12 bit,サンプリング周波数 250 MHz で記録 した.チャンバ中心から方位方向に 10 µm ずつ 振動子を移動させ,各走査線において上記と同 様の条件で RF エコー信号列を受信した.超音 波ビームの点拡がり関数 (PSF)は 79×208 µm (距離方向×方位方向)であり,フォーカス位 置における負音圧のピーク値は 3.0 MPa であっ た.一般的に,超音波の非熱的作用の安全性評 価の指標として用いられるメカニカルインデ ックス (Mechanical Index: MI)を概算すると, 0.79 であった.先行研究では,Sonazoid[™]に関 して,MI 値が 0.4 を超えると造影剤の崩壊が始 まり,1.0 を超えると造影剤の易壊がら

3) 信号処理

励起信号は 1/PRF 秒間隔で繰り返し振動子に 印加され,同一周期でエコー信号も受信される. 繰り返し時間間隔(1/PRF)で切り出した波形を 並び替えると図 3 に示す模式図となる. 深度方 向(t)の信号にヒルベルト変換を施し,得られた 解析信号の繰り返し時間方向(τ)の変動をドプ ラ信号と定義した.このドプラ信号にフーリエ 変換を適用し算出した周波数スペクトルS(f)よ り造影剤の移動速度を評価することができる.

図3 ドプラ信号の概念図

図4 ドプラ信号のパワースペクトルの一例

チャンバ中心 $(t = t_0)$ におけるドプラ信号のパ ワースペクトルP(f)の一例を図4に示す.ここ では、振動子から遠ざかる方向への移動を正の 周波数成分として表示している.速度の定量化 のため、式(2)よりドプラ信号のパワースペクト ルの期待値をドプラシフト周波数 Δf として求 め、式(3)を用いて移動速度に換算した.

$$P(t,f) = S(t,f)S^{*}(t,f).$$
 (1)

$$\Delta f(t) = \int_{-f_{th}}^{f_{th}} f \cdot \frac{P(t,f)}{\int_{-PRF/2}^{PRF/2} P(t,f) df} df.$$
(2)

$$V_{UCA} = \frac{\Delta f}{2f_0 + \Delta f}c.$$
 (3)

ここで、 f_{th} は積分区間、 f_0 は送信波の周波数、

*c*は水の音速(1480 m/s)である.期待値の算出 において、パワースペクトルの成分が集中する 周波数帯域を選択するために、*f*_{th}を 80 Hz とし て解析した.

チャンバ周囲の散乱体含有ファントムが完 全に静止しているという仮定の下,ドプラ信号 の周波数スペクトルにおける 0 Hz の信号強度 をクラッタ信号(静止エコー成分)の強度,そ れ以外の周波数成分の積分値を造影剤由来の 信号(動的エコー成分)の強度と定義した.

$$S_{stational}(t) = S(t, 0).$$
(4)

$$S_{dynamic}(t) = \int_{-PRF/2}^{PRF/2} S(t, f) df$$
(5)

$$-S_{stational}(t).$$
(5)

4. 結果と考察

図 5 に B-mode 画像および提案法を用いてチャンバを可視化した結果を示す. 同図(a)は各走 査線において1回の送受信データからエコー強 度分布を示した B-mode 画像である(従来法). 同図(b)-(d)は 0.5 秒間に渡るエコー信号列から 算出した静止エコー成分の強度(*S*stational),動

的エコー成分の強度 ($S_{dynamic}$), 造影剤の移動 速度 (V_{UCA}) の二次元分布像である.ただし, 各画像の最大値で規格化し,対数圧縮後の画像 を表示している.各画像のダイナミックレンジ は 40 dB である.(速度レンジは 0.01~1 mm/s である.) B-mode 画像ではチャンバの存在箇所 が判別できないが,動的エコー成分や移動速度 の二次元像では造影剤の存在部位を高感度に 検出することができた.

チャンバの視認性について定量的に議論す るため、チャンバと周囲ファントムのコントラ スト比を式(6)で評価した.

$$CNR = \frac{|\mu_{UCA} - \mu_{clutter}|}{\sqrt{\sigma_{UCA} + \sigma_{clutter}}}$$
(6)

ここで、 $\mu \geq \sigma$ はそれぞれの関心領域(ROI)内 の評価指標(エコー強度もしくは移動速度)の 平均値および分散である.図5(b)に示す静止エ コー成分の強度マップを基にチャンバ位置を 同定した. チャンバ中心と思われる走査線上に おいて、静止エコー成分および動的エコー成分 の強度比が低値となる領域にチャンバが存在 すると仮定し,この強度比を基に振動子側のチ ャンバ壁と反対側のチャンバ壁の位置を決定 し、その中間をチャンバ中心と定義した.チャ ンバ中心に直径 0.28 mm の円を ROI として設 定し,円内をチャンバ域,円外を周囲ファント ム域とした.図5(a)-(d)に示す画像におけるCNR はそれぞれ 0.15, 0.43, 2.54, 1.77 と算出され た. 同図(c),(d)のように造影剤の動態情報を利 用することで,1回の送受信データから作成し た従来法(同図(a))よりもコントラスト比が10 倍以上改善することが確認できた.また,同図 (c)は同図(d)よりも CNR が高く算出されている が,チャンバが実際のサイズよりも過大に描出 されている.この原因として、チャンバとファ ントムにおける界面からのクラッタエコーの 影響を完全に除去できていない可能性が考え られる.

5. まとめ

音響放射力により生じる造影剤のわずかな

移動を定量する動的超音波造影法を用いて. 模 擬リンパ管の可視化実験を試みた. B-mode 画像 からでは模擬リンパ管の弁別が困難であった が,パルス列送波期間に生じる造影剤の動態情 報を画像化することで高コントラストに模擬 リンパ管を検出できることを示した.

謝辞

本研究の一部は,千葉大学テニュアトラック 教員の研究推進助成制度,テルモ生命科学芸術 財団, JSPS Core-to-Core Program, JSPS 科研費 19H04436, 17K11529 の助成を受けた.

利益相反の有無

開示すべき利益相反状態はない.

文 献

- [1] Alander JT, Kaartinen I et al: A review of indocyanine green fluorescent imaging in surgery. J Biomed Imaging 7: 2012
- [2] 吉田憲司,齋藤勝也他:動的造影超音 波法における造影剤移動速度の実測と理 論計算の比較.信学技報,118(409):141-146, 2019
- [3] 齋藤勝也,吉田憲司他:アクティブ造 影超音波法における模擬リンパ管の検出. 信学技報,118(452):33-37,2019
- [4] Dayton PA, Morgan KE et al: A Preliminary Evaluation of the Effects of Primary and Secondary Radiation Forces on Acoustic Contrast Agents. IEEE Trans Ultrason Ferroelectr Freq Control 44: 1264-1277, 1997
- [5] Tortoli P, Guidi F et al: The use of microbubbles in Doppler ultrasound studies. Med Biol Eng Comput 47: 827-838, 2009
- [6] Shi WT, Forsberg F et al: Destruction of contrast microbubbles and the association with inertial cavitation. Ultrasound in Med Biol 26: 1009-1019, 2000

Visualization of a simulated lymph channel by analyzing

dynamic translation of ultrasound contrast agents

Katsuya SAITO^{*1}, Kenji YOSHIDA^{*2}, Masaaki OMURA^{*1}, Kazuki TAMURA^{*3}, Tadashi YAMAGUCHI^{*2}

- *1 Graduate School of Science and Engineering, Chiba University
- *2 Center for Frontier Medical Engineering, Chiba University
- *3 Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine

This study proposed a method named contrast enhanced active Doppler ultrasonography(CEADUS) for visualizing lymph vessels that were difficult with conventional ultrasound imaging. This method quantifies the translation of ultrasound contrast agents(UCAs) due to the acoustic radiation force by Doppler method. In this report, we attempted to visualize a cylindrical chamber with a 0.28-mm diameter in a tissue-mimicking phantom containing acoustic scatterers. The chamber was filled with a suspension of SonazoidTM as UCAs. The single element concave transducer with 14.4-MHz center frequency was scanned at the step of 10 μ m in the lateral direction. At each scan line, ultrasound was emitted with pulse repetition frequency of 2 kHz for 0.5 s. We obtained two-dimensional images using dynamic information of the UCAs by analyzing successive echo signals at each scanning line. As a result, the contrast ratio in CEADUS images was improved compared with the conventional B mode image generated from one transmitting and receiving of ultrasound.

Key words: Acoustic radiation force, Ultrasound contrast agent, Doppler ultrasound, Simulated lymph vessel, Contrast improvement

著者紹介

齋藤 勝也 (さいとう かつや) 2018 年千葉大学・工学部・メディカルシ ステム工学科卒.現在,千葉大学大学 院・融合理工学府・基幹工学専攻・医工 学コースに在学.日本医用画像工学会, 日本音響学会,各会員.

吉田 憲司 (よしだ けんじ) 2009 年同志社大学大学院生命医科学研究 科・生命医科学専攻修了.博士(工 学).現在,千葉大・フロンティア医工 学センター・助教.医用超音波,特に造 影超音波の研究に従事.IEEE,日本音響 学会,日本超音波医学会,応用物理学 会,各会員.

大村 眞朝 (おおむら まさあき) 2017 年千葉大学大学院工学研究科・人工 システム科学専攻修了.修士(工学). 現在,千葉大学大学院・融合理工学府・ 基幹工学専攻・博士後期課程在学.日本 医用画像工学会第 35 回大会・大会奨励賞 受賞. 医用超音波,特に組織性状診断法の 研究に従事.IEEE,日本音響学会,日本 超音波医学会,各会員.

出村 和四 (72むら かすさ) 2019 年千葉大学大学院工学研究科博士後 期課程修了.博士(工学).現在,浜松 医科大学 光尖端医学教育センター助教, 現在に至る.超音波医用計測の研究に従 事.IEEE,日本音響学会,日本超音波医 学会,各会員.

山口 **匡** (やまぐち ただし) 2001 年千葉大・自然科学研究科・情報科 学専攻修了. 博士 (工学). 現在, 千葉 大学フロンティア医工学センター・教 授. 医用超音波, 特に組織性状診断と音 響特性評価の研究に従事. IEEE・Senior member, IEICE・Senior member、超音波 医学会・理事, 音響学会・超音波/アコ ースティックイメージング委員など. テンプレート(全ての原稿の種類に共通) Ver. 2.1 (2019.3.28 改訂)

EM-TV アルゴリズムを用いた少数投影での

骨 SPECT 画像再構成の検討

金澤 道和*1 笹谷 典太*2 細川 翔太*3 渡部 浩司*4

湯浅 哲也*2 高橋 康幸*3 銭谷 勉*1

要旨

骨シンチグラフィでは胸郭や骨盤などの部位において解剖学的位置の把握や定量評価は難しく,骨 SPECT の3次元画像が効果的である.しかし,多数の投影が必要なため撮像時間が長く,撮像時間の短縮 が望まれる.本研究では,統計的逐次近似画像再構成法である ML-EM 法とトータルバリエーション(TV) 正則化を組み合わせた EM-TV アルゴリズムを骨 SPECT 画像再構成へ応用し,少数投影骨 SPECT の可能性 を検討した. EM-TV 画像再構成は,観測データにおける統計的な尤度に関する更新と画像の TV に基づく 正則化を交互に行うことで実現し,数値ファントムシミュレーションおよび臨床骨 SPECT 投影データを用 いた実験によって評価された.従来法の ML-EM 法と比較した結果,アーチファクトおよび定量精度が大 きく改善した.TV の骨 SPECT 画像再構成への応用は本研究が最初であり,少数投影骨 SPECT の可能性が 示唆された.

キーワード:骨 SPECT,少数投影,トータルバリエーション, EM-TV アルゴリズム,画像再構成

1. はじめに

骨シンチグラフィは,悪性腫瘍の骨転移や 骨髄炎などの診断に利用されている.しかし, プラナー像(2次元投影画像)であるため, 解剖学的な位置の把握や定量的な評価が難し い.一方,骨 SPECT (single photon emission computed tomography) は薬剤の3次元分布画 像を得ることができるので,解剖学的位置関

*1 弘前大学大学院理工学研究科 [〒036-8561 青森県弘前市文京町 3] e-mail: ms19507@eit.hirosaki-u.ac.jp *2 山形大学大学院理工学研究科 *3 弘前大学大学院保健学研究科 *4 東北大学サイクロトロン・ラジオアイ ソトープセンター 投稿受付: 2019 年 5 月 21 日 係の把握や定量評価が容易となり、骨シンチ グラフィに追加して SPECT 撮像が望まれる [1-6].しかしながら,SPECT は多方向から の投影データを必要とするため,撮像時間が 長い。骨 SPECT の短時間撮像が要求されるが [3-6],解決策の1つとして,より少ない方 向からの投影データによる画像再構成が挙げ られる.

一方近年,信号処理分野において圧縮セン シングが注目を集めている[7,8].その手法 の一つとして,トータルバリエーション(total variation; TV)と呼ばれるL1ノルム量を最小 化することで,スパース性を有する信号にお いてはナイキスト条件を格段に下回るサンプ リングレートでも元信号を再構成できること が知られており[9],医用画像分野でもMRI (magnetic resonance imaging)において応用, 実用化されている [10]. この手法を,統計的
逐次近似画像再構成法である ML-EM
(maximum likelihood-expectation
maximization)法[11]と組み合わせることで、
骨 SPECT 画像再構成において投影数の削減が期待できる.

本研究では, ML-EM 法と TV 正則化を組み 合わせて考案された EM-TV (expectation maximization-total variation)アルゴリズム[12, 13]による画像再構成法を骨 SPECT へと応用 し,数値ファントムシミュレーションおよび 臨床データによって,少数投影での骨 SPECT 画像再構成の可能性を検討した. TV を骨 SPECT 画像再構成に応用したのは本研究が 最初である.

2. EM-TV アルゴリズムによる画像再構成

図1に示されるように, SPECT における投 影データと再構成画像の関係は式(1)のよう に表される.

$$y_i = \sum_{j=1}^{J} x_{ij} = \sum_{j=1}^{J} C_{ij} u_j$$
(1)

ここで,*i*は検出器の番号を表す添字,*j*は画 像の画素を表す添字,*1*は検出器の総数,*J*は 画素の総数,*y_i*は検出器*i*で検出される光子 数(不完全データ),*x_{ij}*は画素*j*から検出器 *i*に入射する光子数(完全データ),*C_{ij}*は画 素*j*から検出器*i*に入射する光子の確率(検 出確率),*u_j*は画素*j*内の光子数(放射性核 種の濃度に比例)である.ここで,

$$\boldsymbol{f} = (\boldsymbol{y}_1, \boldsymbol{y}_2, \cdots, \boldsymbol{y}_I)^T \tag{2}$$

$$\boldsymbol{u} = \left(u_1, u_2, \cdots, u_J\right)^T \tag{3}$$

$$\boldsymbol{K} = \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1J} \\ C_{21} & \ddots & & C_{2J} \\ \vdots & & \ddots & \vdots \\ C_{I1} & C_{I2} & \cdots & C_{IJ} \end{pmatrix}$$
(4)

とおくと,式(1)を式(5)のような線形方程式で 表すことができる.

$$Ku = f \tag{5}$$

K は撮像系が決まれば事前に計算できる値で, システムマトリクスや係数行列と呼ばれる.f は測定により得られる値である.したがって, SPECT の画像再構成は測定値fから未知の物 理量の推定値uを求める線形逆問題に帰着す る.

図1SPECTにおける投影データと再構成画像との 関係.

また,未知の物理量の推定値が画素値となる画像 **u**の TV ノルムは以下のように定義される.

$$TV(\boldsymbol{u}) = \int |\nabla \boldsymbol{u}| \tag{6}$$

EM-TV アルゴリズムは, EM アルゴリズムと TV 正則化を組み合わせて考案された手法で ある [12,13]. SPECT における観測データは ポアソン分布に従うため,以下の式を目的関 数とする最小化問題を解くことにより,再構 成画像を得ることができる.

 $\min_{u \ge 0} \{ \int (Ku - f \log Ku) du + \lambda TV(u) \}$ (7)
ここで,第一項はポアソン分布に関する負号
付き対数尤度,第二項は TV 項である.また, λ は 2 つの項を調整するパラメータである.
式(7)は,凸制約最適化問題に帰着するため,
最適性条件より

$$\begin{cases} \boldsymbol{u}_{k+\frac{1}{2}} = \boldsymbol{u}_{k} \frac{\boldsymbol{K}^{*}}{\boldsymbol{K}^{*}1} \left(\frac{\boldsymbol{f}}{\boldsymbol{K}\boldsymbol{u}_{k}}\right) & (EM \ step) \\ \boldsymbol{u}_{k+1} = \boldsymbol{u}_{k+\frac{1}{2}} - \frac{\lambda}{\boldsymbol{K}^{*}1} \boldsymbol{u}_{k} \frac{\partial}{\partial \boldsymbol{u}} TV(\boldsymbol{u}) & (8) \\ & (TV \ step) \end{cases}$$

転置行列である.また, k はイタレーション 回数である.式(8)は, EM step と TV step の 2 つのステップで構成される.EM step は, ML-EM 法と同様の更新式である.TV step で は, Rudin, Osher, Fatemi らによって考案さ れた ROF モデル[9] での TV 正則化を行う. この式(8)に従い,繰り返し計算を行うことに より収束解を求める.

3. 実験

少数投影骨 SPECT に対する EM-TV 画像再 構成の効果および可能性を検討するために, 数値ファントムシミュレーションおよび臨床 骨 SPECT データによる評価実験を行った.臨 床データは GE 社製 2-head, SPECT-CT 装置 Infinia Hawkeye4,を用いて得られた.本研究 は弘前大学大学院保健学研究科の倫理委員会 の承認を受けて行われた(承認番号 2019-007).

1) 数値ファントムシミュレーション

まずは、EM-TV アルゴリズムの効果を確認 するために、数値ファントムに対してコンピ ュータ上で順投影を行って得た投影データを 画像再構成した.

(1) Shepp-Logan ファントム

画像再構成において標準的なテスト画像と して用いられる Shepp-Logan ファントム (128 ×128 画素)を使用し、360 度を等間隔で分割 した 12 方向と 72 方向の投影データ(128 bin) を作成して画像再構成を行った. 画像再構成 は ML-EM および EM-TV で行い、それぞれの 再構成画像で比較を行った. ML-EM での再 構成はイタレーション回数を 100 回とした. EM-TV においては、 λ =0.01 とし、イタレーシ ョン回数を 10000 回とした.

(2) 3D 骨 SPECT ファントム

図2に示すように、数値ファントムとして 骨 SPECT 撮像と同時に撮影された3次元X 線 CT 画像(128×128×128 画素,画素サイ ズ:4.41806 mm×4.41806 mm×4.41806 mm) を2つのしきい値を用いて、空気、骨、その 他(軟部組織)の領域に3値化し、それぞれ に0,255,127を設定したものを使用して投影 データを作成した. 投影数を 72, 36, 24, 12, 8 と変化させ, ML-EM と EM-TV による画像 再構成を行った. ML-EM での再構成はイタ レーション回数を 20 回とした. EM-TV にお いては, λ =0.01 とし, イタレーション回数を 1000 回とした. 再構成画像の画質の評価とし て, それぞれの画像と数値ファントムとの RMSE(Root Mean Square Error)を計算し, ML-EM と EM-TV との比較を行った.

図2 X線 CT 画像を3値化して得た3D 骨 SPECT 数値ファントム.上:3次元 X線 CT 画像. 下:3D 骨 SPECT ファントム

2) 臨床骨 SPECT 投影データを用いた画像再 構成

臨床用 SPECT-CT 装置で撮像された骨 SPECT 投影データを EM-TV アルゴリズムで 画像再構成を行った.骨 SPECT 撮像は,骨ス キャン用放射性核種^{99m}Tc-MDP を 1045 MBq 投与し,5時間後に撮像,step&shoot で 72 方 向から投影データを1投影あたり15秒の約9 分間,LEHR コリメータ,2 検出器を用いて 収集した.このうち,12 方向分の投影データ を等間隔に抜き出し少数投影データとした. 72 方向の投影データに対し ML-EM 法による 画像再構成を行い,その再構成画像を目標画 像として設定した.また,少数投影データに 対して,ML-EM および EM-TV での画像再構 成を行った.ML-EM での再構成はイタレー ション回数を 20 回とした.EM-TV において は、 λ =0.1 とし、イタレーション回数を 1000 回とした. それぞれの再構成画像上に関心領 域 (region of interest: ROI) を設定、ROI 内の 平均値に関して目標画像との比較を行った. 投影データは 128×128 画素、画素サイズ 4.41806 mm×4.41806 mm で、再構成画像は 128×128×128 画素、画素サイズ 4.41806 mm ×4.41806 mm×4.41806 mm である.

4. 結果

1) 数値ファントム実験

(1) Shepp-Logan ファントム

図3に,12投影および72投影でのそれぞ れの手法で画像再構成した結果を示す.図 3(b)より,72投影でのML-EMによる再構成 画像では原画像に近づいている様子が見られ たが,同時に線状のアーチファクトも見られ た.図3(c)より,12投影でのML-EMによる 再構成画像では原画像のような形状を判別す るのが難しく実用的ではないことがわかる. 一方,図3(d)より,12投影でのEM-TVによ る再構成画像では原画像により近づいている ことが確認できた.

図 3 Shepp-Logan ファントムの再構成画像. (a)原 画像. (b)72 投影 ML-EM. (c)12 投影 ML-EM. (d)12 投影 EM-TV.

図 4 Shepp-Logan ファントム再構成画像のライン プロファイル.

図4に、図3(a)の黄色線の位置のラインプロ

ファイルを示す. 12 投影での EM-TV による 再構成画像のプロファイルが原画像のものと ほぼ一致していることが確認できた.

以上から, Shepp-Logan ファントムでは EM-TV による 12 投影での画像再構成が可能 であることが確認できた.

(2) 3D 骨 SPECT ファントム

図5に、3D 骨 SPECT ファントムの再構成 画像のうち72 投影 ML-EM, 12 投影 ML-EM, 12 投影 EM-TV の画像をそれぞれ示す.また, 図5(a)の黄色線で示した位置のそれぞれのラ インプロファイルを図6 に示す.図5(c)より, 12 投影での ML-EM による再構成画像ではア ーチファクトが見られるのに対し,図5(d)の EM-TV による再構成画像ではアーチファク トが改善されていることがわかる.

図53D骨 SPECT ファントム再構成画像. (a)原画像. (b)72 投影 ML-EM. (c)12 投影 ML-EM. (d)12 投影 EM-TV.

図7にそれぞれの再構成画像のRMSEを示 す. すべての投影数において,ML-EM より も EM-TV による再構成画像のRMSE が小さ いことが確認できた.また,72 投影での ML-EM による再構成画像と,12 投影での EM-TV による再構成画像のRMSE がほぼ等 しいことがわかる.このシミュレーション実 験の結果から,臨床データを用いた実験での 目標画像を72 投影のML-EM 再構成画像とし, 少数投影データを12 投影と設定した.

図 6 3D 骨 SPECT ファントム再構成画像のライン プロファイル.

図 7 各投影数での ML-EM と EM-TV の再構成画 像の RMSE の比較.

2) 臨床骨 SPECT データを用いた画像再 構成

図 8 に, 72 投影での ML-EM による再構成 画像(目標画像), 12 投影での ML-EM によ る再構成画像, 12 投影での EM-TV による再 構成画像をそれぞれ示す.また,表1に ROI を設定し, ROI 内の平均値をそれぞれ比較し た結果を示す.図 8 より,12 投影での ML-EM による再構成画像ではアーチファクトが見ら れるが, EM-TV による再構成画像では改善さ れていることが確認できた. さらに, ROI で の評価から ML-EMよりもEM-TVによる再構 成画像の誤差が少ないことがわかる. これよ り,少数投影データを用いた際の, EM-TV 画 像再構成による定量性の改善が確認できた.

図8 臨床骨 SPECT データの再構成画像. (a)72 投 影 ML-EM. (b)12 投影 ML-EM. (c)12 投影 EM-TV.

画像再 構成法	ROI1(骨盤)		ROI2(大腿骨)		ROI3(手首)	
	平均	誤差 (%)	平均	誤差 (%)	平均	誤差 (%)
ML-EM 72 投影	1.69	_	1.26	-	4.91	_
ML-EM 12 投影	1.96	15.9	0.90	28.1	4.31	12.4
EM-TV 12 投影	1.68	0.6	1.15	8.4	4.74	3.6

表1 それぞれの再構成画像での ROI 評価

5. 考察

2 つの数値ファントムを用いたシミュレー ション実験において,従来法の ML-EM 法で は 12 投影でアーチファクトがみられ、画像は 大きく崩れたが, EM-TV アルゴリズムによる 画像再構成ではエッジを保ったまま平滑化を 行うような効果が見られ,アーチファクトも 無く,原画像に近い定量精度の高い画像を得 ることができた.また,臨床骨 SPECT 投影デ ータを用いた画像再構成では,ML-EM で見 られた顕著なアーチファクトが、EM-TV で劇 的に改善した.また、定量評価においても,

72 投影の再構成画像に対する定量値の誤差 は、12 投影の ML-EM で骨盤、大腿骨、手首 のそれぞれで 15.9%、28.1%、12.4%とかなり悪 かった。それに対して 12 投影の EM-TV で 0.6%、8.4%、3.6%と大きく改善され、72 投影 の再構成画像に近い値を得ることができた.

しかし、臨床データを用いた EM-TV アル ゴリズムによる画像再構成では一部のノイズ のカウントが増えてしまった. EM-TV アルゴ リズムは, ML-EM 画像再構成と TV による正 則化(およびノイズ除去)を繰り返し同時に 行う. つまり, ML-EM のイタレーション回 数と TV 正則化のイタレーション回数が等し くなる.本実験では,TV 正則化の計算手法 として ROF モデルを用いており, その収束速 度から正則化に必要なイタレーション回数が 多くなってしまっている. そのため, ML-EM のイタレーション回数も増えてしまっている のだが, ML-EM のイタレーション回数が過 大に増えてしまうと統計ノイズの影響などか ら一部のノイズのカウントが増えてしまう. これにより、正則化が間に合わずエッジとし て残ってしまうことが原因ではないかと考え る. 解決案として, TV 正則化の計算手法に Chambolle アルゴリズム [14] の適用を挙げ る. TV 正則化の収束速度を向上させること ができるので、その結果 ML-EM の過度なイ タレーションによる一部のノイズの強調の抑 制が期待される.また,統計ノイズの影響を 改善する方法としてコリメータ開口補正の実 装も方法の1つである [15].

また,臨床データ用いた実験結果では定量 精度は大きく改善されたものの,まだ不十分 と考えられる.この原因の1つとして,吸収 や散乱線の影響が挙げられる.今回,吸収補 正や散乱線補正を行っていないが,胴体のサ イズから吸収や散乱線の影響は小さくないと 思われる.今後,モンテカルロシミュレーシ ョンによって吸収や散乱の影響を評価しつつ、 吸収補正や散乱線補正の実装を検討する.ま た,今回臨床データでの評価は1例のみだっ たが,多数症例での評価も必要である.

さらに今後の課題として、EM-TV アルゴリ ズムのパラメータ λ について、今回、数値フ アントムのシミュレーション実験では λ =0.01, 臨床データを用いた実験では λ =0.1 と経験的 に決定し画像再構成を行った.しかし、 λ の 値によって再構成画像の精度が大きく変わる ことを確認しており、より適切な λ の値の決 定が重要であると考える.今後、 λ の値と再 構成画像との関係を調べ、適切な λ の選択方 法の考案を課題とする.

最後に,12 投影での骨 SPECT 画像再構成 が実現すれば,72 投影で9分かかっていた撮 像が、15 秒/投影×12 投影=3分,2 検出器 なので6投影分のわずか1.5分と,極めて短 時間の骨 SPECT 検査が可能となる.

6. まとめ

EM-TV アルゴリズムを骨 SPECT へ応用し, それを用いて数値ファントムおよび骨 SPECT 撮像で収集した投影データでの画像 再構成を行うことにより,少数投影での骨 SPECT 画像再構成を検討した.結果,従来法 と比較し,再構成画像のアーチファクトおよ び定量性の改善を確認できた.これにより, 骨 SPECT における少数投影での画像再構成 の可能性が示唆された.

謝辞

本研究は JSPS 科研費 JP17H04116 の助成を 受けたものです.

利益相反の有無

なし.

文 献

[1] Kosuda S, Kaji T, Yokoyama H, et al.: Dose bone SPECT actually have lower sensitivity for detecting vertebral metastasis than MRI? J Nucl Med **37**: 975-978, 1996

- [2] 小須田茂:骨シンチグラフィと骨
 SPECT の適切な使い方.断層映像研
 究会雑誌 28: 58-64, 2001
- [3] Palmedo H, Marx C, Ebert A, et al.: Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging 41: 59-67, 2014
- [4] Van den Wyngaert T, Strobel K, Kampen WU, et al.: The EANM practice guidelines for bone scintigraphy. Eur J Nucl Med Mol Imaging 43: 1723-1738, 2016
- [5] 増田安彦,川渕安寿,片淵哲朗,他:
 臨床に役立つ基準画像の収集・処理・
 表示・出力のポイント.核医学技術
 28:13-66,2008
- [6] 日本核医学技術学会 SPECT 標準化委員会:骨 SPECT 撮像の標準化に関するガイドライン 1.0. 核医学技術 37: 517-530,2017
- [7] 篠原広行,小畠隆行,橋本雄幸: 圧縮 センシングによる少数投影からの画 像再構成.断層映像研究会雑誌 40: 31-42,2014
- [8] 工藤博幸:低被曝 CT における画像再構成法-統計的画像再構成,逐次近似 画像再構成, 圧縮センシングー. Med Imag Tech 32: 239-248, 2014
- [9] Rudin L, Osher S, Fatemi E: Nonlinear total variation based noise removal

algorithms. Physica D 60: 259-268, 1992

- [10] Block KT, Uecker M, Frahm J: Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med 57: 1086-1098, 2007
- [11] Shepp LA, Vardi Y: Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging MI-1: 113-122, 1982.
- [12] Sawatzky A, Brune C, Wbbeling F, et al.: Accurate EM-TV algorithm in PET with low SNR. In 2008 IEEE Nuclear Science Symposium Conference Record, Dresden, 2008, pp5133-5137
- [13] Sasaya T, Sunaguchi N, Aoki D, et al.: EM-TV reconstruction algorithm for pinhole-type fluorescent X-ray computed tomography. In Proceedings of 2015 10th Asian Control Conference (ASCC), Kota Kinabalu, 2015, Paper ID 1570073831
- [14] Chambolle A: An Algorithm for Total Variation Minimization and Applications. Journal of Mathematical Imaging and Vision 20: 89-97, 2004
- [15] 崎本智則, 銭谷 勉, 石田健二, 他: 頭部 SPECT におけるコリメータ開口 補正およびモンテカルロ法に基づく 散乱線補正を用いた画像再構成法の 定量精度評価. Med Imag Tech 28: 135-144, 2010

Bone SPECT reconstruction from a small number of projections

using EM-TV algorithm

Michikazu Kanazawa*1, Tenta Sasaya*2, Shota Hosokawa*3, Hiroshi Watabe*4, Tetsuya Yuasa^{*2}, Yasuyuki Takahashi^{*3}, Tsutomu Zeniya^{*1}

*1 Graduate School of Science and Technology, Hirosaki University

*2 Graduate School of Science and Engineering, Yamagata University

*3 Graduate School of Health Sciences, Hirosaki University

*4 Cyclotron and Radioisotope Center, Tohoku University

Bone scintigraphy is difficult to understand anatomical position and evaluate quantitatively in the regions of the thorax and pelvis especially. Three-dimensional image of bone SPECT is effective for this case. However, SPECT imaging time is long because SPECT reconstruction needs many projections. So, shortening of SPECT imaging time is desired. In this study, we applied the expectation maximization-total variation (EM-TV) algorithm combining the maximum likelihood-expectation maximization (ML-EM) method, which is a statistical iterative image reconstruction method, and the total variation (TV) regularization to bone SPECT reconstruction, and evaluated feasibility of the bone SPECT in a small number of projections using the EM-TV reconstruction. Image reconstruction by EM-TV algorithm is realized by alternately updating the statistical likelihood in observation data and the TV of the image. To evaluate we performed computer simulation with numerical phantoms and image reconstruction with EM-TV algorithm on clinical bone SPECT projection data in a small number of projections. As a result, the artifact and the quantitative accuracy could significantly be improved as compared to the ML-EM method as conventional method. These results suggest a possibility of bone SPECT reconstruction from a small number of projections using EM-TV algorithm.

Key words: Bone SPECT, a small number of projections, total variation, EM-TV algorithm, image reconstruction

著者紹介

和文でも英文でも可。

さい.

ここに顔写真を 山田 太郎 (やまだ たろう) 貼り付けてくだ ¹⁹⁹⁰年筑波大・情報学群・情報学類卒. 1995 _{年同大大学院博士課程・システム情報・CS} 専攻了.現在,筑波大・システム情報・准 教授. 2005年日本医用画像工学会論文賞受 賞. 工博. CT と PET を中心とした医用イメ ージング,画像処理の研究に従事. IEEE, 電子情報通信学会, 各会員.

ここに顔写真を 鈴木 次郎 (すずき じろう) 1995年筑波大・医学専門学群卒.現在,医 貼り付けてくだ 用画像研究所・主任研究員.医博.計算機 さい. 支援診断の研究に従事.
頭部専用 PET における放射能・減弱補正係数同時推定法の 深層学習を用いた精度向上手法の検討

呉 博文*1 田島 英朗*2 山谷 泰賀*2 小尾 高史*3

要旨

高齢化社会の進展により,認知症患者の増加が大きな問題となっている.PET はアルツハイマー型認知症 の原因物質である特定のタンパク質の蓄積状況を画像として測定することが可能であることから,認知症 の早期発見を目的とした検診での利用への期待が高まっている.現在,高性能でありながら低コストでコ ンパクトな筐体を目指した頭部専用 PET 装置の開発を進めているが,減弱補正用のデータを取得する機構 を省略しているため,PET 画像の定量性を確保するために別途撮影した CT や MRI などを位置合わせして 補正用のデータを生成する必要がある.そこで本研究では,頭部専用 PET 装置の測定のみから診断に十分 な画質と定量性を得るために,PET 画像再構成に必要となる減弱補正画像を同時推定する手法と深層学習 を利用した画像補正手法を組み合わせた再構成手法を提案し,計算機シミュレーションによりその有効性 を示した.

キーワード: PET, 画像再構成, 深層学習, 減弱補正, U-Net

1. はじめに

現在,日本では高齢化社会の進展により,認知症患者の増加が大きな問題となっている.厚 生労働省によると,認知症の患者数は2012年 時点で約462万人,2025年には約700万人まで 増加することが予想されている[1].そのため, 認知症対策は喫緊の課題となっており,その早 期診断の実現が期待されている.

PET (Positron Emission Tomography) は,認知 症の原因となるタンパク質の蓄積を画像化す ることによって,早期診断を可能とすることが 期待されている.今後,脳PET の需要が高まる

*2 量子科学技術研究開発機構 放射線医 学総合研究所

*3 東京工業大学 科学技術創成研究院 未来産業技術研究所兼社会情報流通基盤 研究センター ことが予想されるため、従来の PET/CT 装置と 比べて低コストでコンパクトな普及型の頭部 専用 PET 装置の開発を進めている [2,3].

ここで、PET 装置における画像再構成におい て、減弱補正は必須のプロセスである.従来の PET/CT では CT 装置によって減弱係数を取得 することで、PET 画像の減弱補正を行う.しか しながら、頭部専用 PET 装置では、装置サイズ やコストの観点から、別途撮影した CT や MRI 画像を用いることを想定し、CT 装置などの減 弱補正用データを取得する機構を省略してい る.今後よりいっそう広く普及させるためには、 頭部専用 PET 装置のみから診断に十分な画質 と定量性を確保できることが望ましいため、 Time-Of-Flight(TOF)情報を使って、減弱係数と 放射能分布を同時に推定する手法の検討を進 めている.

一方,近年機械学習を様々な分野に取り入れ た研究がなされており,これまでに,MLAA (Maximum Likelihood reconstruction of Attenuation and Activity) [4]という放射能と減弱

^{*1} 東京工業大学工学院情報通信系情報 通信コース

係数分布(減弱マップ)の同時推定手法に対し て,深層学習ネットワークを組み込み,その精 度を向上させる研究がなされている[5].

本稿では, 頭部専用 PET において, 放射能分 布と減弱補正係数 (ACF: Attenuation Correction Factor)の同時推定法である MLACF (Maximum Likelihood reconstruction of activity and Attenuation Correction Factor) [6] と, ACF の精 度を向上させるための深層学習を組み合わせ, 最終的な再構成画像の精度向上が可能な手法 を提案し,計算機シミュレーションによって有 効性を検証する.

2. 提案手法

提案手法の流れを図1に示す.本手法では,ま ず頭部専用 PET 装置で得られた TOF-PET デー タに対して, MLACF による再構成を行う.そ の後,得られた放射能分布を順投影して作成し たサイノグラムと ACF サイノグラムを用いて U-Net[7]の入力を作成し,高精度な ACF サイノ グラムの推定を行う.最後に推定された高精度 ACF サイノグラムを用いた MLEM 法で放射能 分布の推定を行う.

2. 1. ネットワークアーキテクチャ

図 2 に本研究で用いる U-Net のアーキテクチ ャを示す.

図2 ネットワークアーキテクチャ

各 Convolution 層でのカーネルサイズは 3×3 , stride は 1 として構成し,各 pooling 層でのカー ネルサイズは 2×2 , stride は 2 で構成した. さ らに,各 Deconvolution 層においては,カーネル サイズは 3×3 , stride は 2 で構成した.

図 3 に本研究で用いた U-Net の入力と出力を 示す.

図 3 U-Net の入出力

本研究では MLACF で同時推定した放射能分布 から Non-TOF のサイノグラムを作成し、それ と出力の ACF サイノグラムを連結させて U-Net の入力とし、ACF サイノグラムの真値をラ ベルとした.

2. 2. 学習

U-NetをACFサイノグラムの予測に用いるため,損失関数は出力とラベルのMSE とした.ま

た,最適化手法として Adaptive moment estimation method (Adam)[8]を用い,学習率は 0.001, β_1 を0.9, β_2 を0.999に設定した.加え て,収束を高速化させるため,各重みはXavier method[9]で初期化し,各レイヤーにおいて Batch Normalization[10]を行なった.さらに,過 学習を防ぐため,最初に Deconvolution に入る 前の層のノードに対し確率 0.5 で Dropout[11]を 行なった.学習においてのバッチサイズは 32, エポック数は 20 とした.

3. 計算機シミュレーション

3. 1. シミュレーションデータ

シミュレーションを行うためのデータは Brainweb[12]において公開されている 20 の脳モ デルから作成した. 放射能分布は, 一般的な脳 への蓄積状況を鑑み,灰白質にある程度集中す るように作成した.また、一部のスライスにラ ンダムに5パターンの放射能の高い部位を加え た. 減弱マップについては頭を灰白質/白質部と 骨のみで構成されていると仮定し構成した.こ の減弱マップに対して TOF サイノグラムと ACF サイノグラムを線積分による順投影によ り計算し、ノイズなしのデータセットを作成し た.この時想定した時間分解能は 520ps とし, ガウス関数により TOF のカーネルを設定した. 放射能分布に関しては、PET 薬剤として 130MBq の¹⁸F-FDG を 60kg 前後の人間に対し て投与することを想定した. PET 感度として 2-5%を想定し、10分前後の計測時間におけるス ライス厚 0.5 mm, 3×3mm²のピクセル内の線量 を仮定したものを用いた.

vまた、ノイズなしのTOFサイノグラムに対 してポアソンノイズを加えてノイズありの TOFサイノグラムを作成した.図4にTOFサ イノグラムの生成のプロセスを示す.この時、 角度方向に64回のサンプリングで、3mmの解 像度を想定した.これにより64×64ピクセル のTOFサイノグラムを作成した.

図4 シミュレーションデータ生成

使用した脳モデルのうち,16 個をトレーニング セット作成のためのデータセットとして使用 した.また,残りの4個の脳モデルから評価用 のデータを生成した.まず、トレーニングセッ トと同等の放射能濃度で生成した放射能分布 と減弱マップを作成し, TOF サイノグラムを生 成した後ポアソンノイズを加えた.また、ノイ ズが増加した際の影響を確認するためにカウ ントを半分にした放射能分布を用いた TOF サ イノグラムも同様に作成した.作成した評価用 データのうち、2個の脳モデルから生成したも のを検証用に、残り2個の脳モデルから生成し たものをテストセット用として使用した.図5 にトレーニング,検証,テストセットに使用し た脳モデルから生成した放射能分布及び減弱 マップのスライスの例を示す. 図の中には TOF データを作成するための元データがそれぞれ3 例ずつ示されており,検証及びテストセットの 場合にはカウントを下げた場合の例 (Example 3) が含まれている.

(b)

ActivityImage: Constraint of the second second

図 5 (a)トレーニングセットの元データ例 (b)検 証セットの元データ例 (c)テストセットの元デ ータ例

3. 2. シミュレーション結果

以下に U-Net から出力された ACF とその ACF を用いて再構成された放射能分布につい て示す.また, MLACFの反復回数は50回とし, この結果は全てテストセットにおける結果で ある.

画像の誤差は, Normalized Root Mean Square Error(NRMSE)を用いて評価した.

$$NRMSE = \sqrt{\frac{1}{N} \sum_{i} \frac{(a_i^{out} - a_i^{true})^2}{\overline{a^{out} a^{true}}}}$$
(1)

ここで、Nはピクセル数を表し、 a_i^{out} はACFサ イノグラムのi番目のピクセルの推定値、 a_i^{true} は ACFサイノグラムのi番目のピクセルの真値を 表す.また、 $\overline{a^{out}}$ はACFサイノグラムの推定値 の平均を表しており、 $\overline{a^{true}}$ はACFサイノグラ ムの真値の平均を表している.

まず, ACF サイノグラムについて MLACF の 出力と U-Net の出力画像の比較をそれぞれノイ ズなし, SN5.5(35 万カウント前後), SN3.9(18 万 カウント前後)に分けて図 6 に示した後数値的 な比較について述べる.

図 6 ACF サイノグラム比較

ここで視覚的に明らかにノイズが少なくなっていることが見て取れる.

NRMSE を比較したものを表1に示す.

表 1 ACF の NRMSE の比較

	MLACF	U-Net
データ全体	0.34	0.051
ノイズなし	0.29	0.039
SN5.5	0.31	0.046
SN3.9	0.43	0.067

以上より,提案手法によりノイズを数%のオー ダーまで除去できることが確認できた.

次に, ノイズの除去された ACF の放射能分 布の推定に対する影響を確認するため, 図7 に再構成画像による比較をノイズなし, SN5.5, SN3.9 に分けてそれぞれ示す.

図7SN3.9の再構成結果

ここでは、視覚的には多少の改善は見られる ものの、顕著ではない.ここでも NRMSE によ る評価結果を表2に示す.いずれの場合にお いても改善していることが分かる.

表2 再構成画像の NRMSE の比較

	MLACF	U-Net + MLEM
ノイズなし	0.53	0.17
SN5.5	0.82	0.69
SN3.9	1.5	1.3

4. まとめ

本研究では, 頭部 PET 装置における画像再構 成において深層学習を用いた手法による精度 向上について検討した. 再構成された ACF サイ ノグラムにおいては従来の MLACF に比べて顕 著な改善が確認された. また, 放射能分布に関 しては, ノイズなし, SN5.5, SN3.9 の3 つの場 合に分けて確認した結果, 十数%以上の精度向 上が見られ, ノイズなしの場合には特に顕著で あった. ノイズありの場合においては低カウン トになりノイズが増えるほど効果が減少する ものの精度改善が可能であることを示した. し たがって, 提案手法は頭部専用 PET 装置におい て有効であり, 今後も発展の余地があることが 示唆された.

謝辞

本研究の一部は JSPS 科研費 16K21637 の助 成を受けたものです.

利益相反の有無

なし.

文 献

- [1] 厚生労働省:認知症施策推進総合戦略~ 認知症高齢者等にやさしい地域づくりに 向けて~(新オレンジプラン)2017
- [2] 放射線総合医学研究所:世界初,ヘルメ ット型 PET の開発に成功-高性能・小型の 頭部専用装置で認知症早期診断の普及へ -2015
- [3] H. Tashima, E. Yoshida, H. Wakizaka et al:
 First prototyping of a dedicated PET system with the hemisphere detector arrangement.
 Phys. Med. Biol. 64 065004. March 8, 2019
- [4] A. Rezaei, M. Defrise, G. Bal et al: Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans. Med. Imag., vol. 31, no. 12, Dec. 2012. pp. 2224-2233.
- [5] D. Hwang, K. Y. Kim, S. K. Kang et al: Improving the Accuracy of Simultaneously Reconstructed Activity and Attenuation Maps Using Deep Learning. J Nucl Med., vol. 59, no. 10, October 1, 2018. pp. 1624-1629.
- [6] A. Rezaei, M. Defrise, G. Bal et al: ML-Reconstruction for TOF-PET With Simultaneous Estimation of the Attenuation Factors. IEEE Trans. Med. Imag., vol. 33, no. 7, Jul. 2014. pp. 1563-1572.
- [7] O. Ronneberger, P. Fischer, T. Brox: U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, LNCS, Vol.9351, 2015. pp. 234-241.
- [8] D. P. Kingma, J. Ba: Adam: A Method for Stochastic Optimization. A conference paper at

the 3rd International Conference for Learning Representations, San Diego, 2015.

- X. Glorot, Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks", Proceedings of the 13th International Conferenceon Artificial Intelligence and Statistics (AISTATS), Chia Laguna Resort, Sardinia, Italy. 2010.
- [10] S. Ioffe, C. Szegedy: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arxiv.org website https://arxiv.org/abs/1502.03167
- [11] N. Srivastava, G. Hinton, A. Krizhevsky,
 I. Sutskever et al: Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Mach Learn Res. 15, 2014. pp. 1929-1958.
- [12] BrainWeb: Simulated Brain Database, website http://brainweb.bic.mni.mcgill.ca/brainweb/
- [13] NIST, X-Ray Mass Attenuation Coefficients, website https://www.nist.gov/pml/x-ray-massattenuation-coefficients

Accuracy improvement of simultaneous activity and attenuation correction factor estimation for dedicated brain PET using deep learning

Bowen WU^{*1}, Hideaki TASHIMA^{*2}, Taiga YAMAYA^{*2} Takashi OBI^{*1}

*1 Tokyo Institute of Technology

*2 National Institute of Radiological Sciences, QST

As aging of society developed, dementia became a severe problem. We expect a demand for using positron emission tomography (PET) in diagnosis of dementia at early phase will increase because the PET can measure accumulation of protein causing dementia caused by the Alzheimer's disease. To meet the demand for widespread use of PET, we are developing a dedicated brain PET scanner to achieve high performance with a compact and low cost gantry. Attenuation correction data necessary for quantitative imaging are required to be generated by registering a separately acquired CT or MRI image as the scanner does not have an attenuation correction device to make the gantry as compact as possible. In this work, we propose a method to simultaneously estimate attenuation correction factor and activity images by combining with a deep learning network for improving accuracy. We demonstrated the effectiveness of the method by a computer simulation.

Key words: PET, image reconstruction, deep learning, attenuation correction, U-Net

膵癌腫瘍病理顕微鏡画像の染色変換

足立 秀雄*1 クグレ マウリシオ*1 岩本 千佳*2 大内田 研宙*2

橋爪 誠*2 横田 達也*1 本谷 秀堅*1

要旨

本研究の目的は膵臓癌病理画像の3次元多チャンネル画像を生成するために病理画像の染色変換を行うこ とである.空間的に連続する病理切片の顕微鏡画像より3次元画像を再構成する.この3次元病理画像は 生体のミクロな3次元解剖構造を観察する上で有用である.すべての切片をHE染色など単一の染色で染 めれば、その染色の3次元病理画像を得ることができる.本研究の目的は、同一標本を異なる染色液で染 めたときに得られるであろう多チャンネルの3次元病理画像を構築することである.この3次元画像は、 各チャンネルがそれぞれ異なる染色液で染色した病理画像を表現する.病理切片は単一の染色でしか染め ることが出来ないため、多チャンネルの3次元病理画像を構築するためには、各病理画像を染色変換しな ければならない.本稿ではGANによる染色変換の結果を報告する.

キーワード:染色変換, GAN, pix2pix, 膵臓癌

1. はじめに

膵臓癌の研究は重要であり、現在でも基礎研究 が継続して行われている.本研究では人と類似し た膵臓癌を発症する実験用マウスの膵癌腫瘍の病 理画像群を用いる.マウスの膵臓を連続的に薄切 し、それぞれを HE/MT/CK19/Ki67 の4種類の染色 により交互に染色した.連続する2枚の薄切切片 は、腫瘍の異なる断面ではあるものの、共通して観 察される解剖構造が多い.これら画像間で対応す るランドマークを検出し、非剛体位置合わせを適 用することにより3次元病理画像を構築する[1].

2. GAN による染色変換

本研究の目的は膵臓癌腫瘍の染色変換により多

*1 名古屋工業大学

*2 九州大学

チャンネル 3 次元病理画像を構築することである [2]. そのために HE 染色を MT 染色と CK19 染色に 変換する. この染色変換には Generative Adversarial Network,(GAN)のうち, pix2pix[3]を採用する. Pix2pix は画像の生成器に U-net を用い,識別器に は畳み込みネットワークを複数用いる. それぞれ の識別器は生成画像を異なるスケールで観察して 真偽を判定する. 具体的には, 3 つの識別器を用意 し,それぞれの識別器に元画像と,ダウンサンプル の比率の異なる画像を入力する. これにより,大域 と局所の双方で実画像と整合する偽画像を生成で きるようになる.

最適化する目的関数は次のとおりである.

$$\max_{G} \min_{D_1, D_2, D_3} \sum_{k=1,2,3} \mathcal{L}_{GAN} (G, D_k) + \lambda \mathcal{L}_{L1} \quad (1)$$

$$\mathcal{L}_{GAN}, \mathcal{L}_{L1}(G) は次のように与えられる.$$

 $\mathcal{L}_{\text{GAN}}(G, D) = \mathbb{E}_{(s,x) \sim p_{data}(s,x)}[\log D(s,x)] + \mathbb{E}_{s \sim p_{data}(s)}[1 - D(s,G(s))]$

 $\mathcal{L}_{L1}(G) = \mathbb{E}_{(s,x) \sim p_{data}(s,x)}[||x - G(s)||_{1}]$

本研究ではs が HE 染色, x が sと対応する MT 染 色である. この GAN を用い HE 染色から MT 染色 と CK19 染色への変換を行った. Pix2pix の学習に 必要なペア画像は非剛体位置合わせを行い作成し た.

3. 実験

実験の詳細設定について説明する.最適化手法 については Adam を採用し $\alpha = 0.0002, \beta_1 =$ $0.5, \beta_2 = 0.999$ とした.式(1)の λ は 100 とし た.また学習にサイズ 1024×512 の 684 枚の画像 を利用し,水平垂直に反転する data augmentation を行った.

染色変換結果を図1に示す.図1上段が入力したHE染色,中段がターゲット画像,下段が染色変換結果である.また左がMT染色,右がCK19染色への変換結果である.

染色変換後の断面図を示す. 図 2 左上は HE 染 色 193 枚と MT 染色 63 枚,右上は HE 染色 193 枚 と CK19 染色 63 枚,各 256 枚を臓器からスライス した順に並べた断面図の一部である. 図 2 下段は HE 染色を MT 染色,CK19 染色にそれぞれ変換し た後の断面図である.

4. まとめ

本研究では染色変換法を提案した.今後は一つ の染色から同時に複数染色へと変換する手法な どを開発する.

5. 利益相反の有無

なし

文 献

Mauricio Kugler, Yushi Goto, Naoki
 Kawamura, et al.: Accurate 3D Reconstruction
 of a Whole Pancreatic Cancer Tumor from
 Pathology Images with Different Stains. Miccai

Workshop, COMPAY

- [2] Masayuki Fujitani, Yoshihiko Mochizuki, Satoshi Iizuka, et al.: Re-staining Pathology Images by FCNN. International Conference on Machine Vision Applications (MVA), 2019
- [3] Isola Phillip, Zhu Jun-Yan, Zhou Tinghu, et al.: Image-to-Image Translation with Conditional Adversarial Networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017

図 1 染色変換結果.上段入力画像, 中段ターゲット画像,下段染色変換結果.

図 2 pix2pix による染色変換前後の断面図. 上段が染色変換前,下段が染色変換後.

Staining transformation for Microscopic Pathology Images

of Pancreatic Cancer Tumor

Hideo ADACHI^{*1}, Mauricio KUGLER^{*1}, Chika IWAMOTO^{*2}, Ohohda KENOKI^{*2} Makoto HASHIZUME^{*2}, Tatsuya YOKOTA^{*1}, Hidekata HONTANI^{*1} *1 Nagoya Institute of Technology

*2 Kyushu University

Key words: Stain Transfer, GAN, pix2pix, Pancreatic cancer

The purpose of this study is to carry out staining transformation of pathological images to generate threedimensional multi-channel images of pancreatic cancer pathological images. A three-dimensional image is reconstructed from microscopic images of spatially consecutive pathological sections. This threedimensional pathological image is useful for observing the microscopic three-dimensional anatomical structure. If all sections are stained with a single stain such as HE staining, a three-dimensional pathological image of the stain can be obtained. The purpose of this study is to construct a multi-channel threedimensional pathological image that may be obtained when the same specimen is dyed with different stains. Pathological sections can only be stained with a single stain. Therefore, in order to construct a multi-channel three-dimensional pathological image, each pathological image must be transformed. In this paper, we report the result of stain transformation by GAN.

MR エラストグラフィによる内包ファントムの

粘弾性分布の評価

菅 幹生*1 石井 孝樹*1 岸本 理和*2 小畠 隆行*2

要旨

Magnetic resonance imaging (MRI) を利用して,生体内の粘弾性率を非侵襲的に評価する手法として magnetic resonance elastography (MRE) がある. MRE は外部加振装置により撮像対象内部に発生させた弾性波を MRI で画像化し,弾性波画像から逆問題を解くことで粘弾性率を推定する.本研究では生体組織の粘弾性率と 周波数特性を模擬した内包ファントムを使用して,MR エラストグラフィにより内包領域が検出可能な撮 像条件を検討することを目的とした.硬さの異なる内包領域を有するファントムを用いた実験結果より, 内包領域の検出には,内包領域の大きさと波長の関係,波長のピクセル数などを考慮して撮像パラメータ を設定する必要があることを明らかにした.

キーワード: MRI, エラストグラフィ, 内包領域, 撮像条件

1. はじめに

疾病と生体組織の弾性率には相関がある. Magnetic resonance imaging (MRI)を利用して, 生体内の粘弾性率を非侵襲的に評価する手法 として magnetic resonance elastography (MRE)が ある[1]. MRE は外部加振装置により撮像対象 内部に発生させた弾性波を MRI で画像化し,弾 性波画像から逆問題を解くことで粘弾性率を 推定する.本研究では,MRE により得られる粘 弾性率分布を腫瘍などの検出に利用すること を想定し,生体組織の粘弾性率と周波数特性を 模擬した内包ファントムを使用して,MRE によ り内包領域が検出可能な撮像条件を検討する

*1 千葉大学

〔〒263-8522 千葉市稲毛区弥生町 1-33〕

e-mail: mikio.suga@faculty.chiba-u.jp *2 量子科学技術研究開発機構放射線 医学総合研究所 ことを目的とした.

2. 方法

外部加振周波数 60 Hz での MRE 測定におい て背景領域の貯蔵弾性率(G')が 3.1 kPa, 内包 領域の G'が 1.5, 5.3, 9.1 kPa となる 3 種類の円 筒型アクリル容器入り内包ファントム(名称を それぞれ A, B, C とする)を作成した. アクリ ル容器の内径は 144 mm, 高さは 128 mm, 2 つ の内包領域の直径は 20 mm と 30 mm とした.

MRE 測定は 3 T MRI (MAGNETOM Skyra, Siemens) を用いた SE-EPI ベースの MRE パル スシーケンス (WIP) を利用した. 撮像パラメ ータは, TR/TE: 3000/97 ms, Matrix: 128×128, FOV: 384×384 mm, スライス枚数: 15 枚, スラ イス厚: 3.0 mm とし, 積分型粘弾性率分布推定 法[4]を用いて算出した. 外部加振周波数は 40, 60, 90, 120 Hz とした. 得られた貯蔵弾性率分 布は図 1 に示す関心領域において式 1 に示すコ ントラスト対雑音比 (contrast to noise ratio: CNR) を用いて評価した.

$$CNR = \frac{|M_{s1} - M_{s2}|}{\sqrt{SD_{s1}^2 + SD_{s2}^2}}$$
(1)

ここに、*M_{s1}, M_{s2}* は対象とする2種類のROIの平均 値、*SD_{s1}, SD_{s2}* は対象とする2種類のROIの標準偏差 を表す.

図1 CNR 算出用関心領域と内包形状 (coronal 断面)

3. 結果と考察

図 2 に内包型ファントムの貯蔵弾性率分布, 図 3 に内包直径ごとの CNR を示す.各ファン トムや測定周波数における CNR より,内包領 域が背景領域よりも硬いファントム B と C で は周波数が高いほど CNR も上昇し,検出能が 向上した.一方,内包領域が柔らかいファント ム A では 120 Hz で検出能が低下した.周波数 が高いほど弾性波の波長が短くなり,柔らかい 内包領域において 1 波長を構成する pixel 数が 不足したことが原因と考えられる.今回の測定 条件では硬さの異なる小領域の検出には 1 波長 を構成する pixel 数は 4 以上,そして半波長以 上がその小領域に入るように測定周波数を設 定する必要があると考えられる.

3. まとめ

生体組織の粘弾性率と周波数特性を模擬し た内包ファントムを使用した実験により,内包 領域の検出には,内包領域の大きさと波長の関 係,波長のピクセル数などを考慮して撮像パラ メータを設定する必要があることが示唆され た.

図2 内包型ファントムの貯蔵弾性率分布

図3内包型ファントムの CNR

謝辞

本研究の一部は JSPS 科研費 JP17H02115, JP17H05279 の助成を受けたものです.

利益相反の有無

なし

文 献

Muthupillai R, Lomas DJ, Rossman PJ, et
 al.: Magnetic resonance elastography by
 direct visualization of propagating acoustic
 strain waves. Science 29: 1854-1857, 1995

Evaluation of Viscoelasticity Distribution of Embedded Phantom

by MR Elastography

Mikio SUGA*1,2, Koki Ishii*1, Riwa Kishimoto*2, Takayuki Obata*2

*1 Chiba University

*2 National Institute of Radiological Sciences, QST

Magnetic resonance elastography (MRE) is a noninvasive method to evaluate viscoelasticity distribution using magnetic resonance imaging (MRI). MRE visualize the shear wave generated inside of object by external driver using MRI, and estimates the viscoelasticity by inversion algorithm from the elastic wave image. In this study, we aimed to investigate the imaging conditions that can detect the embedded region by MRE using tissue mimicking embedded phantoms. The results indicate that it is necessary to select imaging parameters in consideration of the relationship between the size of the embedded area and a shear wavelength, the number of pixels of a shear wavelength.

Key words: MR elastography, viscoelasticity distribution, embedded phantom, shear wavelength

Generative Adversarial Frameworks を用いた

腹部 CT 像における非造影像からの造影像の推定

小田 昌宏*1 隈丸 加奈子*2 青木 茂樹*2 森 健策*1,3

要旨

本稿では、深層学習を用いて腹部領域の非造影 CT 像から造影 CT 像を推定する方法について述べる. 診断 及び治療時における血管を含む解剖構造や異常の確認を目的として、血管造影下での CT 像撮影が広く行 われている.しかし造影剤の影響で呼吸困難や心停止といった重大な合併症を引き起こす場合が存在し、 患者によって造影剤が使用できないことがある.本稿では深層学習による画像処理を用いて、腹部 CT 像 の非造影像から造影像を推定する方法を提案する.Fully convolutional network (FCN)を用いた学習データ の直接的学習,Generative adversarial frameworks (pix2pix, CycleGAN) における FCN の間接的学習等を用 い、非造影から造影像への変換ネットワーク構築を行う.腹部 CT 像における推定実験を行ったところ, CycleGAN を用いると他の方法より良好で造影 CT 像に近い画像を推定可能であった.

キーワード: CT 像,造影像推定, Generative adversarial framework, pix2pix, CycleGAN

1. はじめに

診断及び治療時の CT 像の撮影において,血 管及び血流の豊富な組織の位置と形状の視認 性を向上させるため,血管造影剤を患者に投与 する場合がある.血管造影 CT 像は血管の状態 確認だけでなく,造影効果の経時変化を利用し てがんなど異常組織の発見にも用いられる.ま た,外科手術における臓器構造の把握にも有用 である.このように血管造影 CT 像は診断及び 治療に広く利用される.

血管造影剤は静脈注射等で患者に投与され

*1 名古屋大学大学院情報学研究科 [〒464-8601 名古屋市千種区不老町] e-mail: moda@mori.m.is.nagoya-u.ac.jp *2 順天堂大学大学院医学研究科 *3 国立情報学研究所医療ビッグデータ 研究センター 投稿受付: 2019 年 5 月 15 日 るが,患者によって副作用を生じる場合がある. 副作用には痒みなど軽度なものもあるが,呼吸 困難や心停止など重大な副作用が発生する場 合もあるため [1,2],造影剤投与には注意が必 要である.

CT 像撮影時の血管造影剤投与を不要とする ことを目的とし、本稿では腹部非造影 CT 像か ら造影 CT 像を推定する方法を提案する.非造 影 CT 像から造影 CT 像を推定する画像回帰モ デルとして Fully convolutional network の一種で ある U-net [3] を使用した. U-net を訓練する際 に、学習データをネットワークに直接的に与え る 直 接 的 学 習 と , Generative adversarial frameworks (pix2pix, CycleGAN)を用いた間接 的学習を行い、それぞれの推定結果の比較を行 った.

2. 手法

2.1 使用画像

画像回帰モデルの学習には同一患者の腹部の非造影 CT 像と血管造影 CT 像(動脈相)を

非造影CT像 血管造影CT像図1 非造影及び血管造影 CT 像の 3D 像

直接的学習

pix2pixでの学習

CycleGANでの学習

図2提案手法で得られた 推定造影 CT 像の 3D 像

基にした画像を用いる. これらは非剛体レジス トレーションを適用し位置合わせを行う. それ ぞれの CT 像から取り出した Axial スライス像 を使用し, 2D 画像回帰モデルの学習を行う.

2.2 画像回帰モデルの学習

(1) 直接的学習: U-net に学習用の非造影 CT 像から得た Axial スライス像を入力,造影 CT 像から得た Axial スライス像を教師データとして与え,100 epoch の学習を行う.

(2) pix2pix での学習:生成モデルとして U-net を
 使用した pix2pix に学習用画像を与え,100 epoch
 の学習を行う.

(3) CycleGAN での学習:生成モデルとして Unet を使用した CycleGAN に学習用画像を与え,
400 epoch の学習を行う.

非造影CT像 血管造影CT像 図3 非造影及び血管造影 CT 像の Axial スライス像

直接的学習

pix2pixでの学習

CycleGANでの学習 図4提案手法で得られた 推定造影 CT 像の Axial スライス像

2.3 造影 CT 像の推定

上記(1), (2), (3)で学習した 3 つの U-net に対 し,評価用非造影 CT 像の Axial スライス (2D 画像)を1 枚ずつ入力する. U-net が出力した 推定造影 Axial スライス画像を構成し,推定造 影 CT 像 (3D ボリューム)を得る.

3. 実験及び考察

非造影と血管造影 CT 像の組 29 例を用いて 実験を行った. 2.2 で示した(1)と(2)の学習法で は 26 例を学習, 3 例を評価に用いた. (3)は 29 例全てを学習に用いた. CT 像の仕様は,画像サ イズ 512×512 pixels,スライス枚数 41~96 枚, 画素間隔 0.586~0.782 mm,スライス厚 5.0 mm である.非造影及び造影 CT 像の 3D 像及び Axial スライス像の例を図 1,3 に,非造影 CT 像から 提案手法により生成した推定造影 CT 像の 3D 像及び Axial スライス像の例を図 2,4 に示す.

図2から,直接的学習とCycleGANでの学習 を用いた場合に比較的血管造影CT像に近い結 果が得られた.今回の画像変換で扱った血管の 濃度値変化は画像内で比較的小さな変化であ り,pix2pixではこの変化を表現するようネット ワークの学習を行うことができなかったと考 えられる.

4. むすび

本稿では非造影 CT 像からの造影 CT 像推定 手法を提案した.推定は U-net を用い,直接的 学習,pix2pix での学習,CycleGAN での学習の 3 通りを行った.学習済み U-net で推定造影 CT 像を生成した結果,CycleGAN を用いた場合に 比較的良好な推定結果が得られていた.今後の 課題として,推定結果の定量評価,細かい血管 推定精度向上,3D 画像回帰モデルの使用が挙げ られる.

謝辞 本研究の一部は, JSPS 科研費 26108006,

17H00867, 17K20099, AMED 研究費「医療ビッグデ ータ利活用を促進するクラウド基盤・AI 画像解析に 関する研究」18lk1010028s0401, 19lk1010036h0001, JSPS 二国間交流事業, 公益財団法人 堀科学芸術振 興財団によった.

利益相反の有無 なし

文 献

- Katayama H, Yamaguchi K, Kazuka T, et al: Adverse reactions to ionic and non-ionic contrast media - A report from the Japanese Committee on the Safety of Contrast Media. Radiology 175(3): 621-628, 1990
- [2] Andreucchi M, Solomon R, Tasanarong A:
 Side effects of radiographic contrast media:
 pathogenesis, risk factors, and prevention.
 BioMed Research International, 2014
- [3] Ronneberger O, Fischer P, Brox T, et al: U-Net convolutional networks for biomedical image segmentations. MICCAI 9351: 234-241, 2015

Estimation of Contrasted Abdominal CT Volume from Non-contrasted

CT Volume using Generative Adversarial Frameworks

Masahiro ODA*1, Kanako KUMAMARU*2, Shigeki AOKI*2, Kensaku MORI*1,3

*1 Graduate School of Informatics, Nagoya University

*2 Graduate School of Medicine, Juntendo University

*3 Research Center for Medical Bigdata, National Institute of Informatics

We propose an estimation method of an abdominal contrasted CT volume from a non-contrasted CT volume. In diagnosis and treatment, contrasted CT volumes are taken to confirm anatomical structure and abnormal regions related to the blood vessels. However, administration of contrast agents causes dyspnea and cardiac arrest in some cases. In this paper, we propose an estimation method of contrasted images from non-contrasted images in abdominal CT volumes. As the estimation method, we employ an image regression model using a fully convolutional network (FCN). We trained the FCN in a direct-training and indirect-trainings using generative adversarial frameworks (pix2pix, CycleGAN). In our experiments using abdominal CT volumes, contrasted CT-like volumes having good-quality were generated when we used the CycleGAN.

Key words: CT volume, Contrasted image estimation, Generative adversarial framework, pix2pix, CycleGAN

マルチチャンネル化と CNN を用いた

嚥下時 X 線透視動画における頸椎椎間板の抽出

藤中 彩乃*1 目片 幸二郎*2 滝沢 穂高*3 工藤 博幸*3

要旨

嚥下時の頸部動態解析において,頸椎椎間板の同定は嚥下障害の原因疾患の病態理解のために重要である. 本報告では,嚥下時X線透視動画 (Videofluorography, VF)から CNN を用いて椎間板を自動抽出する手法を 提案する.X線透視動画の各フレームは濃淡画像である.その濃淡画像に濃度正規化,トップハット変換, Local Binary Pattern 処理,ソーベルフィルタをそれぞれ適用して4つの中間画像を生成する.それらの中 間画像から3つの画像を選択し,RGBの各チャンネルに保存した1つのカラー画像を生成する.このカラ ー画像にウィンドウベースの CNN を適用し,椎間板領域を抽出する.中間画像の組み合わせの中から最適 なものを選択する.実際のX線透視動画に本手法を適用した結果を示す.

キーワード:嚥下時 X 線透視動画,頸椎椎間板, CNN, マルチチャンネル化, カラー画像

1. はじめに

頸椎構造物の一つである頸椎椎間板を同定 する医学的^[1]および工学的^[2,3]な研究が報告さ れている.本研究では、ウィンドウベースの畳 み込みニューラルネットワーク (CNN)を用い て嚥下時 X 線透視動画 (Videofluorography, VF) から椎間板を自動抽出する手法を提案する.

2. 方法

VF の各フレームは 8 ビットの濃淡画像である.この濃淡画像に,濃度正規化,トップハット変換,Local Binary Pattern 処理,ソーベルフィルタをそれぞれ適応し,4 種類の中間画像を 生成する.それらの中間画像から,重複を許し

*1 筑波大学大学院システム情報工学研 究科コンピュータサイエンス専攻 [〒305-8573 つくば市天王台 1-1-1] *2 神戸赤十字病院 *3 筑波大学システム情報系 て3つを選択し, RGB の各チャンネルに保存す ることで,一枚のカラー画像を生成する.この カラー画像にウィンドウベースの CNN を適用 し,頸椎椎間板の画素を抽出する.

3. 実験

本研究の参加者は,39名の健常な実験参加者 と,19名の頸椎固定術術前患者の合計58名で ある.参加者から事前に同意を得た後,実験を 行う.参加者は任意の時期に実験を取り止める ことができる.

4. 結果

健常な実験参加者のフレーム画像を図 1 に, その頸椎椎間板の正解領域を図 2 の赤色領域に 示す.表1に RGB 各チャンネルに保存した中 間画像の一覧,図 3~8 に椎間板ウィンドウの 例,図 9~14 に椎間板の抽出結果を示す.表2 に,23 症例で抽出実験を行った際の抽出精度を 示す.

表1	中間画像の一	一覧.
----	--------	-----

R	G	В	ウィン	抽出
チャン	チャン	チャン	ドウ	結果
ネル	ネル	ネル		
正規化	正規化	正規化	図 3	図 9
Top-hat	Top-hat	Top-hat	図 4	図 10
LBP	LBP	LBP	図 5	図 11
Sobel	Sobel	Sobel	図 6	図 12
正規化	Top-hat	Top-hat	図 7	図 13
正規化	Top-hat	LBP	図 8	図 14

表	2	中間	面像	の網	しみ合	わせ	と捕	出来	青度

図 13

図 14

図 12

Rチャン	Gチャン	Bチャン	平均 F 値			
ネル	ネル	ネル				
正規化	正規化	正規化	0.628			
Top-hat	Top-hat	Top-hat	0.592			
LBP	LBP	LBP	0.564			
Sobel	Sobel	Sobel	0.560			
正規化	Top-hat	Top-hat	0.651			
正規化	Top-hat	LBP	0.644			

5. 考察

表2より,同じ中間画像を組み合わせた場合 より,異なる中間画像を組み合わせた場合の方 が,抽出精度が高くなることが分かった.

6. まとめ

VF にマルチチャンネル化と CNN を適用し, 頸椎椎間板を抽出する手法を提案した.今後の 課題は,中間画像の種類を増やすことと,最適 な組み合わせを探索する手法を開発すること である.

謝辞

研究遂行にあたり貴重なご協力を賜った京 都大学大学院医学研究科人間健康科学系専攻 リハビリテーション科学コース 松林潤氏,岡 山大学整形外科 瀧川朋亨氏,神戸赤十字病院 整形外科 戸田一潔氏,神戸赤十字病院整形外 科 伊藤康夫氏に深謝いたします.

利益相反の有無

「なし」

文 献

- [1] Hardik S, Hitesh I. S. R, Amandeep K et al.: Dysphagia, dysphonia & dyspnoe caused by ostrich beak-like anterior C1-C2 cervical osteophyte. Interdisciplinary Neurosurgery 16: 132-134, 2019
- [2] Sean J. D, Weiye Z, Martin T et al.: In-vivo T2-relaxation times of asymptomatic cervical intervertebral discs. Skeletal Radiology 45-3: 393-400, 2016
- [3] Ayano F, Yuki S, Kojiro M et al.: Segmentation of intervertebral disks from videofluorographic images using convolutional neural network. International Forum on Medical Imaging in Asia, Proceedings 110501: 1105011, 2019

Segmentation of Intervertebral Disks from Videofluorography

by Multi Channelization and CNN

Ayano FUJINAKA*1, Kojiro MEKATA*2, Hotaka TAKIZAWA*3, Hiroyuki KUDO*3

- *1 Department of Computer Science, Graduate School of Systems and Information Engineering, University of Tsukuba
 *2 Kobe Red Cross Hospital
- *3 Faculty of Engineering, Information and Systems, University of Tsukuba

In order to understand the pathological causes of dysphagia, it is important to analyze the arrangement of cervical structures. In this report, we propose a segmentation method of intervertebral disks (IDs), which are ones of the representative cervical structures, in Videofluorography (VF) based on multi channelization technique and CNN. Each frame of VF is a gray scale image. By applying intensity normalization, morphological top-hat transform, local binary pattern operation, and Sobel filter to the frame image, four intermediate images are obtained. Three images are selected from the four intermediate images, and then one color image is generated by setting the three images to its RGB channel planes. Window-based CNN is applied to the color images to extract ID regions. Several experimental results are shown.

Key words: Videofluorography, Cervical intervertebral disk, CNN, Multi channelization, Color image

Template (Common to all types of submissions) ver. 2.0 (Revised 2019.3.28)

A Comparative Study on Atlas-guided Liver Segmentation in CT Jinke WANG ^{*1, 2}, Yuanzhi CHENG ³, Shinichi TAMURA ⁴, Noriyuki TOMIYAMA ¹

Abstract

This paper provides a comparative study between probabilistic atlas (PA) and multi-atlas (MA) on liver segmentation in CT. Comparative results showed distinct superiorities of the two models.

Keywords : probabilistic atlas, multi-atlas, liver segmentation

1. Introduction

Segmentation is a key prerequisite for image-guided liver surgery, and is helpful for making choice of therapeutic strategy. Among the popular segmentation models, atlas-guided ones, including probabilistic atlas (PA) and multi-atlas (MA) have shown good prospects. Newly atlas-based methods are developed constantly, including single organ segmentation [1], multiple organs segmentation [2], and good surveys [3]. However, comparative studies between PA and MA are rare.

This paper first gives basic working flows of PA and MA. Then, experiments are implemented using 30 CT datasets. Finally, we provide conclusions based on the results.

2. Method

1) Registration algorithm

Registration is the core for atlas-based methods. In this work, registration tool *elstix* [4] is utilized, which could be well combined with popular medical image processing tool *Insight Toolkit* (ITK). The selected algorithm for non-rigid registration is 3D B-Splines.

2) Probabilistic atlas

PA process is divided into 2 parts: atlas construction, and atlas-based registration. For atlas construction, a single average atlas is built for both spatial correspondence and standardization purposes (shown in Fig. 1), via registrating

*1 Department of Radiology, Graduate School of Medicine, Osaka University [2-2 Yamadaoka, Suita, Osaka 565-0871, Japan] e-mail: ousinka@hotmail.com

2 Department of Software Engineering, Harbin University of Science and Technology [92, Xidazhi, Nangang, Harbin, 150080, China]

3 School of Computer Science and Technology, Harbin Institute of Technology, [52 Xuefu, Nangang, Harbin, 150001, China]

4 NBL Technovator Co., Ltd [631 Shindachimakino, Sennan, Osaka 590-0522, Japan]

all the training images to one selected training image. For atlas-based registration, the segmentation is first implemented by registering the average intensity atlas to the target image, and then by propagating the average labeled atlas with transformational model, the segmentation result is then obtained.

Fig. 1 Average Atlas for labeled image.

2) Multi-atlas

For MA, no atlas building is needed, but only registration process. Pairwise registrations are performed from each training intensity image to the target testing image, resulting in corresponding transformation models. Then, based on these models, all the labeled binary images are propagated to the target coordinate, the segmentation result is achieved with "majority voting".

3. Experiments

1) Datasets

A total of 30 abdominal datasets with reference segmentations from corporative hospital are used in the experiments (20 for training, 10 for testing), in which, 10 cases have adjacent organs with similar intensities, 5 cases have small tumors (3 inside, 2 border). The experiment is programmed using ITK in Ubuntu, with CPU i7-6770, 4G RAM. The scanning parameters are provided in Table 1.

CT scanner	Number	Slice size	Pixel size	Slice number	Slice distance
SIMENS SOMATOM Definition Flash	30	512×512	0.51~0.87	341~475	0.8~3.0

2) Accuracy

Comparative results were shown in Table 2. It showed a slight superiority performance for MA on all four metrics. Fig. 2 was a typical segmentation error on both 2D and 3D views, in which MA showed smaller error on the liver border.

Method	VOE (%)	ASD (mm)	RMSD (mm)	MSD (mm)
PA	7.92	1.74	1.92	13.77
MA	7.34	1.59	1.56	11.69

Table 2 Comparative results on four metrics.

2) Time cost

As shown in Fig. 3, we provided an average computational time for 10 testing images. Though the time-cost for

PA-training is quite high (comparable to that of MA-testing), the time-cost for PA-testing is much more less. The main reason is that, once the atlas construction of PA is completed, only one average atlas image is needed to be registered to the target image. Contrastively, pairwise registrations are always required between all the training images and the target image in MA process.

Fig. 2 Errors evaluation (a) PA (b) MA. In 2D view, golden result is labeled with red color, while yellow and blue represent PA and MA results, respectively.

4. Conclusions

Generally, MA can obtain higher segmentation accuracy than PA, but in the case of limited datasets, the accuracy of the PA is comparative to that of PA. Once the PA atlas is constructed, the computational cost is very low. Therefore, for atlas-guided liver segmentation, appropriate atlas strategy (PA, MA) should be made according to both time and precision requirements, with specific application scene. In further study, the scales and varieties of the experimental datasets will be extended to provide a more comprehensive and convincing comparison.

Ethics statements

The research was approved by the ethics committee of Harbin University of Science and Technology, with

informed consent obtained from all patients being included in the study.

Competing interests

No conflict of interest was reported by the author(s).

References

- [1] Shi C, Cheng Y, Wang J, et al.: Low-rank and sparse decomposition based shape model and probabilistic atlas for automatic pathological organ segmentation. Med Image Anal **38**: 30-49, 2017
- [2] Okada T, Linguraru M, Hori M, et al.: Abdominal multi-organ segmentation from CT images using conditional shape–location and unsupervised intensity priors. Med Image Anal 26: 1-18, 2015
- [3] Iglesias J, Sabuncu M: Multi-atlas segmentation of biomedical images: a survey. Med Image Anal 24: 205-219, 2015
- [4] Klein S, Staring M, Murphy K, et al.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imag 29, 196-205, 2010

Biography

Jinke Wang

He received the Ph.D. degree from the Harbin Institute of Technology, Harbin, China, in 2016. He is an associate Professor in the Department of Software, Harbin University of Science and Technology, China. Currently he is doing post-doctoral study in Osaka University.

Yuanzhi Cheng

He received the Ph.D. degree from the Harbin Institute of Technology, Harbin, China, in 2007. He is currently a Professor in the School of Computer Science and Technology, Harbin Institute of Technology.

Shinichi Tamura

He received the Ph.D. degree in electrical engineering from Osaka University, Osaka, Japan, in 1971. He is an Editorial Board Member of the IJCARS, an IEEE Life Fellow, IEICE Fellow, and a Member of IEICE, IPSJ, and JAMIT.

Noriyuki Tomiyama

He received the Ph.D. degree in Medicine from Osaka University, Osaka, Japan, in 1993. He is currently a Professor in the Department of Radiology, Graduate School of Medicine, Osaka University.

テンプレート(全ての原稿の種類に共通) Ver. 2.1 (2019.3.28 改訂)

X 線暗視野法に基づく屈折コントラストX線 CT を用いた

ヒト乳頭の3次元可視化および解析

砂口 尚輝^{*1}, 島雄 大介^{*2}, 市原 周^{*3}, 西村 理恵子^{*3},

岩越 朱里*3,渡邊 彩*1,丹羽 輝久子*1,黄 卓然*1,

湯浅 哲也*4, 安藤 正海*5

要旨

乳房の乳頭部における乳管の組織構造はまだ完全に把握されていない. 例えば, 最も解析しやす いと考えられる乳頭内の乳管数は, 解剖学の教科書で 15~20 本と書かれているが, 2000 年以降 の報告では平均値で約 25 本, 多い人で 50 本あるとされている. それ以外の 3 次元的な乳管構 造についても徐々に分かっている. 一方で, このような解剖学的な解析は, 労力を必要とする 3 次元病理観察に基づくため, 多症例による統計的解析はほとんど行われていない. 本研究では, 染色された 2 次元組織像に匹敵するコントラストで描出できる X 線暗視野法に基づく屈折コン トラスト CT を用いて, ヒトの乳房から採取された 23 症例の乳頭を撮影し, 乳頭内乳管の 3 次 元可視化および解析を行う. その結果を先行研究と照らし合わせて, 解剖学研究における屈折コ ントラスト CT の有用性を示す.

キーワード:屈折コントラストX線CT,X線暗視野法,乳頭,解剖学,3次元可視化

1. はじめに

乳癌は罹患率,死亡率ともに増加の一途を辿っており,本邦では 30 歳~64 歳女性のがん死

*1 名古屋大学大学院医学系研究科医用 技術学専攻

〔〒461-8673 名古屋市東区大幸南一丁
目1番20号〕
e-mail: sunaguchi@met.nagoya-u.ac.jp

- *2 北海道科学大学
- *3 名古屋医療センター
- *4 山形大学
- *5 総合科学研究機構
- 投稿受付:2019年5月14日

亡原因の第一位となっている(国立がん研究セ ンター「がん情報サービス」がん統計). 乳癌の 多くは,乳管(母乳が通る管)で発生する乳管 癌である.乳管は,乳頭部の太い乳管(主乳管) から分岐を繰り返して乳房内に広がっており, 様々な太さのものから構成されている. 乳癌は 乳管内面を覆う腺上皮細胞から発生し,増殖を 繰り返して進展していく. 乳癌の中でも,非浸 潤性乳管癌(DCIS)は癌細胞が乳管内に留まっ て増殖し,乳管に沿って進展する特徴を持つ. DCISが乳管から周囲の結合組織へ浸潤すると, 浸潤性乳癌となり,リンパ管や血管に進入し, 他の部位に転移する. 浸潤のない,純粋な DCIS は,癌細胞が乳管内に留まっているため,手術 によりそれらを完全に除去することができれ

ば完治する.一方, DCIS は, 乳頭部にまで進展 する可能性があるため,乳頭温存乳房切除術 (Nipple-sparing mastectomy) には再発のリスク が存在する[1].もし、術前に乳頭内の状態を調 べることができれば,患者に対し安全な乳頭温 存を提供できるが、現在の乳頭内診断手法であ る臨床画像(X線造影,超音波, MRI),乳管内 視鏡,乳管洗浄では,乳頭部における DCIS の 有無を正確に判定することは困難である. その 大きな要因は,乳頭内の主乳管同士の吻合の有 無や3次元空間内における乳管形状など解剖学 的な情報が不足しているからと考えられる.現 在解剖学の教科書で書かれていることは、 乳腺 実質でいくつかの葉(セグメント)に分かれた 乳管が乳頭部で 15-20 本の主乳管に集約すると いう基本構造についてだけである[2]. 後述する が、この記述についても異なる結果が報告され ている.

乳頭内乳管の3次元解剖構造について解析し た研究は 2000 年代になっていくつか報告され ている.この中で使用されている観察手法は従 来の2次元平面に基づく病理観察ではなく,複 数の組織切片から再構成される3次元病理観察 に基づく. 2004 年 Going らは, 1 症例に対し 100 μm 間隔で得た病理切片像から乳管を抽出し, 乳管構造を3次元的に可視化した.その観察か ら乳頭先端で開口する乳管数や乳輪下で生じ る乳管があることを示した[3]. 2007 年 Rusby ら は、2 症例に対し 50 µm 間隔で得た病理切片像 から Going らと同様に3次元可視化を行ってい る. 彼らは, 乳管が乳頭先端に到達する際に共 通の開口を持つこと, 乳管の断面積は乳頭先端 で急激に小さくなること,乳輪付近から生じる 乳管があること、乳管は乳輪下で集約し、くび れ状の形態をとることなど多数の結果を示し た[4]. このように、3次元病理観察は2次元平 面で知ることの難しい多数の解剖学的情報を もたらしてくれる.

一方で,彼らの解剖学的情報は1,2 症例から 得られており,十分な統計的な議論が行われて いない.この理由として,多症例を用いた3次 元病理観察には多大な労力がかかるためと考

図1X線暗視野法に基づく屈折コントラスト CT 撮像システム

えられる.一般的に病理切片は,組織ブロック を3~4 ミクロンの厚さで薄くスライスし,ヘマ トキシリンエオジン液で染色を施したもので ある.3 次元組織像は,病理切片を光学顕微鏡 で画像化し,スライス画像を積み重ねることで 作成される.これらの作業は人の手を必要とし, 3 次元組織像を構築するためには膨大なスライ スを必要することから長時間を要する.そのた め,3 次元的な観察は上述のような研究レベル で形態学的な情報を得るために一部実施され ることはあるが,その症例数は2次元組織像と 比べると極端に少ない。

新たな3次元組織像の観察手法として,我々 は生体内部を染色された2次元組織像に匹敵す るコントラストで撮像できる X 線暗視野法に 基づく屈折コントラスト CT を利用する[5,6]. この方式は現在国内外でも実現していない病 理診断での利用に向けて研究が進められてい る[7].屈折コントラスト CT は生体の3次元像 を未染色・非破壊で短時間に得ることができる ため,多症例研究における撮像法として最も適 した方法であると考えられる.

本研究では,屈折コントラスト CT を用いて ヒトの乳房から摘出した乳頭23症例を撮像し, CT から乳頭内の乳管構造を解析する.その結 果が病理観察に基づく先行結果と比較し妥当 であるか確認し,解剖学研究における屈折コン トラスト CT の有用性を示す.最初に,CT から 得た乳管数や乳管断面積を先行研究の結果と 比較する.次に,Rusby らの「乳管径は乳頭先 端で急激に小さくなる」という主張について CT 画像の乳管断面像から確認する.最後に,Rusby らの「乳頭内の乳管はくびれを持つ」という主 張について乳管の3次元可視化によって確認する.

2. 撮像手法・試料および解析手法

図1は試料撮影のために使用された屈折コン トラスト CT 撮像システムの概要図である.本 撮像手法は入射源として放射光 X 線を用いる. 放射光 X 線ビームは2結晶モノクロメータによ り単色化され,非対称 Bragg-case モノクロコリ メータ結晶(MC)で回折することにより,試料サ イズよりも大きい視野を形成する.入射ビーム は試料を伝搬する過程でその電子密度分布に 従って屈折し,その後方に設置された薄い Laue-case 角度アナライザー結晶(LAA)に入射す る.ここで,ビームの屈折角度は X 線の強度情 報に変換され,後方の X 線カメラで測定される. また,屈折コントラスト CT は,試料を回転さ せて繰り返し撮影した投影データから再構成 される.

撮像装置は茨城県つくば市の高エネルギー 加速器研究機構フォトンファクトリーBL14B ビームラインに構築される. X線エネルギーは 19.8 keV に設定される. MC と LAA の各結晶の 回折面は Si(111)である. X線カメラの視野は, 36 mm^H × 24 mm^Vで, ピクセルサイズは 14.8 µm である. 撮影された投影数は 600 枚で, 再 構成アルゴリズムには屈折 X線に基づく逐次 的再構成法[8]が採用された.

乳頭試料は乳がんにより全摘出された女性 の乳房から切り出したものである.この実験で 23 症例の乳頭が撮像され,すべて解析に利用さ れた.各試料は10%の緩衝ホルマリン液で固定 された後,保存のためにエタノールに置換され た.撮像5~6時間前に,試料内部のエタノール を除去するために水に浸された.撮像直前に, 円筒のプラスチックチューブに挿入され,乾燥 しないように周辺をアガロースゲルで満され た.撮像の際は,それを直方体の水槽に挿入し 投影撮影毎に回転させる.水槽に入れる理由は, 円筒チューブ表面で生じる試料に起因しない 屈折を低減するためである.本研究は,名古屋 大学および名古屋医療センターの生命倫理審

図2 乳頭の屈折コントラスト CT 像

査で承認を受けている.

1) 乳頭内乳管数および乳管断面積

初めに、乳頭内の乳管構造を得るために、CT 画像上の乳頭の付け根方向のスライスから先 端のスライスまでの乳管の輪郭を抽出する.抽 出作業には、画像処理ソフト Image J[9]の Measurements ツールが利用される.作業簡略化 のために、乳頭の形状が大きく変化しないスラ イスについては抽出せず、前後の輪郭でスプラ イン補間する. Measurements ツールで測定する 輪郭情報は、重心位置と断面積である.

乳管数は、乳輪下で生じる乳管も含めて乳頭 内にあるすべての乳管を数えたものである.

乳管断面積は乳管の深さ方向で大きく変化 するため、その経路上の最大断面積と最小断面 積で評価する.まず、23症例すべての乳管の最 大断面積と最小断面積を求め、平均値と標準偏 差で評価する.

2) 乳頭先端から付け根までの乳管断面形状

乳管が先端で細くなることを確認するため に、23 症例すべての乳管に対し、乳管先端から 付け根までの乳管断面積を求める.また、先端 から3 mmの深さまでの中で面積勾配(断面積 の変化量/微小深さ)が最も大きくなる先端か らの深さDを定義し、形状が大きく変化する深

図3乳頭先端から付け根までの乳管断面形状

さを評価する.

3) 乳管の3次元可視化

乳管の3次元像は、3次元空間に事前に求め た乳管の重心位置をプロットし、点を線でつな ぎ合わせることで作成される.3次元可視化に 抽出した輪郭をそのまま使用することもでき るが、いくつかの太い乳管が他の乳管を隠して しまい、構造の把握が困難になるため行ってい ない.3次元像のスライス厚は14.8μmであり、 3次元像はボリュームレンダリングによって可 視化される.

3. 結果

図 2 はある症例における乳頭の屈折コントラ スト CT を表す. CT 画像上の画素値は複素屈折 率 δ を表し,密度の大きさに比例する.ここで, 白は密度が大きいことを表す. 図 2 は,乳管, 繊維組織,皮脂腺,上皮組織を鮮明に描出して いる.また,大小形の異なる乳管は 19 個存在 し,すべて画像から確認できる.

1) 乳頭内乳管数および乳管断面積

CT からカウントされた乳管数は,23 症例で 633 本存在した.1 症例あたりの平均値,中央 値,標準偏差はそれぞれ27.5本,25本,9.3本 であった.四分位範囲および最大値最小値範囲 はそれぞれ20.5-31.5,15-51 であった.また, 乳頭の高さ,大きさ,年齢と乳管数には有意差 がないことが分かっている.

最小断面積および最大断面積は, 0.011 mm²±0.009 mm²および 0.297 mm²±0.166 mm²で

図4 乳頭内乳管のボリュームレンダリング像

あった.

2) 乳頭先端から付け根までの乳管断面形状

図3はある症例における乳管の先端から付け 根までの断面の一例である.画像上に記載され た距離は表皮からの深さを表す.深さ2.62 mm から8.73 mm までの形状は円であり,断面積は ほとんど変化しない.その後,1.75 mm から表 皮に向かって急激に細くなる.表皮では直径50 µmの円形状になり,外に開口している. ほと んどの乳管は,この例のように先端で細くなる 傾向がある.全症例全乳管の平均 D は 0.85 mm±0.20 mm である.症例毎に求めた平均 D は 0.4 mm~1.3 mm の範囲にある.また,症例毎に 求めた D の標準偏差は 0.2 mm~0.9 mm であり, 個人差が大きいことが分かる.

3) 乳管の3次元可視化

図4はある症例の乳頭内乳管をボリュームレ ンダリングにより可視化したものである.赤色 の縦に伸びる管構造は乳管を表す.白いの雲状 の構造は,乳頭の乳管位置を把握しやすいよう に重ねた乳頭実質である.画像上部は乳頭先端 を表し,下部がつけ根を表す.すべての乳管は 乳頭部と乳輪の境界付近でくびれを持つこと が分かる.このようなくびれを持つ症例は23症 例中14症例(61%)存在する.

4. 議論

 1)乳頭内乳管数および乳管断面積 病理観察に基づく先行研究で得られた乳管

387

数は, Going らの結果[3]で中央値27本(11-48)(症 例数72件), Taneri らの結果[10]で平均値17本 (18-30)(症例数226件), Rusby らの結果[4]で平 均値24本(5-50)(症例数129件)である. 我々の 結果は,GoingやRusbyらの結果に近いと言える. ただし, Rusbyらは,乳管数を計測するスライ ス位置については明確には定義していない. Goingらは,乳輪のベースを基準スライスとし ているが,乳管は乳輪下の末梢に向かって枝分 かれするため,過剰に計測している可能性があ る. 我々は,乳頭の3次元像全体を見て計測し ていることから,彼らよりも誤差が生じにくい と言える.

Rusby らは, 乳管の最小径と最大径について, 3 症例の平均で0.06 mm, 0.7 mm と求めている. 一方で, 我々は, 乳管には様々な形状があるこ とを考慮し, 直径ではなく輪郭から求めた断面 積を使用している. Rusby らの結果を断面積に 換算すると, 最小断面積は 0.003 mm², 最大断 面積は 0.38 mm² となる. 彼らの結果は, 我々の 結果の標準偏差内に入っており, 彼らの結果と 矛盾しない. また, 我々の結果は彼らより症例 数が多いため, より精度が高いと言えるかもし れない.

2)乳頭先端から付け根までの乳管断面形状 Rusby らは、乳管の断面積が乳頭先端から 1.5 mm 付近で最小になり、3 mm 付近で 10 倍に大 きくなると報告している.我々は、面積勾配が 大きくなる位置を求めたが、その位置は彼らの 結果よりも非常に浅い.この相違は、結果で示 したように、個人差が大きいことが起因してい ると考えられる.また、彼らの被験者はアメリ カ人が多いと考えられるが、我々の被験者はす べて日本人である.そのため、人種による乳頭 構造の違いが存在する可能性もある.

3) 乳管の3次元可視化

Going らの3次元像は、すべての乳管が先端 から付け根までほぼ真っ直ぐ伸びる様子を示 している. Rusby らの3次元像は乳管が先端で 集まるように見える.また、乳輪下2mmで乳 管はくびれ状になると主張している.我々の23 症例から得た3次元像は、図4のように乳頭が 先端で発散するタイプ, Going らと同様にまっ すぐ伸びるタイプ, Rusby らと同様に先端で集 まるタイプと様々な形状を確認できる.これら タイプと乳頭の大きさには関係がない.また, くびれ状に関しては,我々の結果では発散する タイプと集まるタイプで確認することができ る.

現在の乳頭内診断では乳頭内の乳管癌の有 無を調べるために,対象乳管のX線造影や内視 鏡を行うが、信頼性は低いと言われている. こ の理由は、今回の結果で確認された大きく変化 する乳管径や様々なタイプの乳管経路のため, 乳管にカテーテルなどを挿入する際に、乳管の 突き破りや別の乳管への誤挿入が生じている ためと推察する.また,乳頭内の乳管構造に個 人差が大きいことも信頼性を下げている要因 と考えられる.本研究で使用した屈折コントラ スト CT を乳頭診断に利用することも考えられ るが,光源に特別な放射光 X 線が必要であり容 易ではない. すなわち, 乳頭内の癌の進展を精 度よく診断する術がない現時点においては, DCIS における乳頭の温存術は依然としてリス クが高いと言える.

5. まとめ

本研究では,屈折コントラスト CT を用いて ヒトの乳房から採取した 23 症例の乳頭を撮像 し,3 次元可視化と解剖学的な解析を行った. この結果を従来の病理観察に基づく解剖学研 究と比較し,屈折コントラスト CT から従来法 と同様な解析ができることを示した.また,従 来よりも多数の症例を解析できたことにより, 乳管が先端で発散する新しいタイプを発見す ることができた. 今後さらに症例数を増やし, 新しい解剖学情報や DCIS の進展経路などを明 らかにしたい.

謝辞

本研究の試料を準備していただいた名古屋 医療センターのスタッフの方に感謝を申し上 げます.また,撮像システムで使用された LAA 結晶は KEK の PF 結晶加工室を利用して杉山 弘助教および笹谷典太氏によって作成されま した.ここで感謝を申し上げます。また,貴重 なX線CCDカメラを貸していただいたKEKの 平野馨一准教授および兵藤一行准教授に感謝 申し上げます.本研究はJSPS科研費16K01369, 16K08654, 22591353, 15H01129, 26286079, 18K13765,平成29年度国立病院機構共同臨床 研究H29-NHO(癌般)-01,H29-NHO(多共)-02 お よびKEK 放射光実験課題2016G0625の支援を 受けています.

利益相反の有無

無し.

文 献

- [1] Rusby JE, Smith BL, Gui GP. Nipplesparing mastectomy. Br. J. Surg. 97: 305-316, 2010
- [2] Human Anatomy Atlas 2019, Visible Body https://www.visiblebody.com
- [3] Going J J, Moffat F D: Escaping from Flatland: clinical and biological aspects of human mammary duct anatomy in three dimensions. J. Pathol 203: 538–544, 2004
- [4] Rusby J, Brachtel E, Michaelson J et al:

Breast duct anatomy in the human nipple: three-dimensional patterns and clinical implications. Breast Cancer Res Treat **106**:171–179, 2007

- [5] Ando M, Maksimenko A, Sugiyama et al: Simple X-ray dark and bright-field imaging using achromatic Laue optics. Jpn. J. Appl. Phys 41,L1016–L1018, 2002
- [6] Sunaguchi N, Yuasa T, Huo Q et al: X-ray refraction-contrast computed tomography images using dark field imaging optics.
 Appl. Phys. Lett. 97: 153701, 2010
- [7] Ando M, Sunaguchi N, Shimao D et al: Dark-Field Imaging: Recent developments and potential clinical applications. Phys. Med. 32:1801-1812, 2016
- [8] Sunaguchi N, Yuasa T, Gupta R et al: An efficient reconstruction algorithm for differential phase-contrast tomographic images from a limited number of views. Appl. Phys. Lett. 107: 253701, 2015
- [9] Image J, <u>https://imagej.nih.gov/ij/</u>
- [10] Taneri F, Kurukahvecioglu O, Akyurek N et al: Microanatomy of Milk Ducts in the Nipple. Eur. Surg. Res. 38:545–549, 2006

Three-dimensional imaging of human nipple using refraction-contrast

X-ray computed tomography

Naoki SUNAGUCHI^{*1}, Daisuke SHIMAO^{*2}, Shu ICHIHARA^{*3}, Rieko NISHIMURA^{*3}, Akari Iwakoshi^{*3}, Aya Watanabe^{*1}, Kikuko NIWA^{*1}, Zhuoran HUANG^{*1}, Tetsuya YUASA^{*4}, Masami ANDO^{*5}

- *1 Nagoya University
- *2 Hokkaido University of Science.
- *3 Nagoya Medical Center.
- *4 Yamagata University.
- *5 CROSS.

For the pathological field, we have developed the refraction-contrast computed tomography using X-ray dark field imaging technique (XDFI-CT) which is a kind of analyzer-based imaging using a Laue-case Si crystal, which allows to visualize the precise 3-D structure of biological soft tissue as well as the stained pathological image. In this research, we reconstruct 23 human nipples using XDFI-CT and perform the anatomical analysis of the structure of milk ducts from the reconstructed 3-D volume.

Key words: X-ray dark field imaging, refraction-contrast computed tomography, human nipple, anatomy

著者紹介

和文でも英文でも可。

ここに顔写真を 貼り付けてくだ さい. **砂口 尚輝** (すなぐち なおき) 2006 年:山形大学大学院理工学研究科博 士前期課程修了,2006-2007 年:(㈱日立 メディコ,2007 年-2010 年:山形大学大 学院理工学研究科博士後期課程,2010 年:同課程修了.博士(工学),2010 年 -2012 年:高エネルギー加速器研究機 構・学振特別研究員,2012 年-2017 年: 群馬大学大学院理工学府電子情報部門・ 助教,2017 年-:名古屋大学大学院医学 系研究科医療技術学専攻・准教授(現 職).X線イメージングの研究に従事.

深層学習による超音波画像からの

肝腫瘍検出に関する初期検討

堤 一晴*1 中島 崇博*1 道満 恵介*1 目加田 慶人*1

西田 直生志*2 工藤 正敏*2

要旨

本研究では、腹部超音波画像を対象とした深層学習による肝腫瘍検出の検討結果について報告する.腹部 超音波画像診断における検査水準は実施者の経験に依存し、その均てん化のためにコンピュータ支援診断 が期待されている.そこで本研究では、畳み込みニューラルネットワーク(CNN)により肝腫瘍領域を検 出する手法を検討する.実験では、肝腫瘍を含む超音波画像 98 枚から抽出された肝腫瘍領域にデータ増強 を施した画像 1,467 枚と非肝腫瘍領域 1,800 枚を用いて CNN を構築した.その結果、肝腫瘍領域を正しく 検出できたものの、非肝腫瘍領域を過検出する傾向がみられた.

キーワード:深層学習,肝腫瘍,超音波画像

1. はじめに

現在,超音波における腹部の診断においてそ の検査水準は実施者の経験に影響されるため, その均てん化のためにコンピュータによる支 援診断が期待されている.平成 29 年度の腹部 超音波検査精度管理調査結果報告書では,適切 な超音波画像所見の記載,カテゴリー判断,事 後指導判定ができていない施設が,調査に参加 した 241 施設のうち 26.7%認められたことが報 告されている [1].またこの報告書では,肝臓 において診断が困難な領域においては,改善が 必要であると指摘されている.そこで,画像認 識分野において,多くのタスクで高い性能を達

〔〒470-0393 愛知県豊田市貝津町床立 101〕 e-mail: {tsutsumi.i, nakashima.t} @md.sist. chukyo-u.ac.jp

e-mail:{kdoman,y-mekada}@sist.chukyo-u.ac.jp *2 近畿大学 医学部

〔〒589-8511 大阪府大阪狭山市大野東 377-2〕

成し,注目を集めている畳み込みニューラルネ ットワーク(CNN)を用いて超音波画像から肝 腫瘍領域を検出手法について検討した.本稿で はその結果について述べる.

2. 肝腫瘍検出手法

CNN には様々な構造が提案されているが,本 手法では基本的なネットワークの1 つである AlexNet [2] を利用する. AlexNet は,5 層の畳 み込み層,3 層のプーリング層,3 層の全結合 層,2 層のドロップアウト層からなる.

超音波画像に対して,100×100 画素のウィン ドウでスライディングウィンドウを行い,画像 を分割する.分割した画像を AlexNet に入力し, 入力画像が肝腫瘍領域を含むか否かを分類す る.入力画像が肝腫瘍領域を含む場合には超音 波画像内にその領域を矩形で描画する.

3. 実験

実験では、日本医療研究開発機構「医療ビッ グデータ利活用を促進するクラウド基盤・AI 画

^{*1} 中京大学 工学部

(d) 転移性肝がん (e) 非肝腫瘍

図1 学習データ

像解析に関する研究」より整備された確定診断 がつけられた超音波画像データセットに含ま れる,肝腫瘍を含む超音波画像 98 枚を使用し た.超音波画像データセットには肝腫瘍として 肝細胞がん,転移性肝がん,単純嚢胞,血管腫 の4種が含まれており,これらの4種を肝腫瘍 として扱った.

学習データの作成には 100×100, 150×150, 200×200 画素の3種のウィンドウを使用し,こ れらのウィンドウを用いてそれぞれの領域を 抽出した.なお,100×100 画素を超える腫瘍に ついては 100×100 画素に縮小し,データ増強 のために左右反転を施した.ただし,非肝腫瘍 画像は肝腫瘍画像に対して,極端に多くなるた め,肝腫瘍画像の枚数に合わせてランダムに抽 出したものを学習データとした.作成した学習 データは肝腫瘍画像 1,467 枚,非肝腫瘍画像 1,800 枚であった.また,評価には学習に使用し ていない超音波画像を使用した.

作成した学習データを用いて AlexNet を学習 した.学習は 100 エポック行い,そのうちから 検証データでの正解率が最も高いエポックの 重みを用いて評価した.

4. 結果 考察

推論結果の例を図2に示す. 腫瘍領域を正し く推定できたが, 過検出がみられた.

原因としては,学習データが少ないことが考 えられるほか,非肝腫瘍画像をランダムに抽出

図2 肝細胞がんを含む超音波画像に対して推論を行 った結果(赤:検出領域 黄:肝細胞がん位置)

したため,非肝腫瘍領域や超音波信号外の領域 を正しく分類できなかったことが考えられる. また,学習データには画像内に診断時に利用し たアノテーションラベルが残っており,グレー 以外の値を持っているため,その色情報を基準 に判断した可能性がある.そのため,学習デー タの増強,画像内に付与されたアノテーション ラベルを取り除くことが必要である.

5. まとめと今後の課題

CNN を用いて超音波画像から肝腫瘍を検出 した.肝腫瘍を検出することはできているが, 過検出が多くみられた.

今後の課題として、学習データの増強,超音 波画像内に付与されたアノテーションラベル を取り除くことが課題として挙げられる.

謝辞

本研究の一部は、日本学術振興会科研究費補 助金および日本医療研究開発機構(AMED)の 援助による.

利益相反の有無

なし

文 献

- [1] 公益社団法人 全国労働衛生団体連合 会:「平成 29 年度 腹部超音波検査精 度管理調査結果報告書」,pp17-19,2018
- [2] Krizhevsky A, Sutskever I, Hinton G. E: ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 25: 1097-1105, 2012

A Study on Liver Tumor Detection

from an Ultrasound Image using Deep Learning

Issei TSUTSUMI^{*1}, Takahiro NAKASHIMA^{*1}, Keisuke DOMAN^{*1}, Yoshito MEKADA^{*1} Naoshi NISHIDA^{*2}, Masatoshi KUDO^{*2}

*1 School of Engineering, Chukyo University*2 Faculty of Medicine, Kindai University

The quality of diagnosis depends on the operator's experience. A computer-aided diagnosis is system helpful for improving the accuracy of the quality of diagnosis. This paper reports experimental results on liver tumor detection using convolutional neural networks. In the experiments, we used 1,467 images of the liver tumor regions extracted from 98 images and 1,800 images of non-liver tumor regions. As a result of the experiment, alothough the tumor regions could be correctly detected by the method, some non-tumor regions were misdetected.

Key words: Deep Leaning, liver tumor, ultrasound image

腹腔鏡動画像からの Fully Convolutional Network による

血管領域抽出

盛満 慎太郎*1 小澤 卓也*1 北坂 孝幸*2 林 雄一郎*1

小田 昌宏*1 竹下 修由*3 伊藤 雅昭*3

三澤 一成*4 森 健策*1,5,6

要旨

本稿では内視鏡動画像からの血管領域の自動抽出手法について述べる.腹腔鏡手術は難易度の高い手術で あるため,腹腔鏡などで撮影した動画の自動解析による手術支援システムの開発が進められている.動画 からの術具や臓器の自動認識は、コンピュータの手術工程を理解し、術者の手技の適切な支援へとつなが る.手術工程の理解において、体内構造を表す血管の抽出は重要である.しかし、血管は手術中の把持や 切断などにより形が変化するため、単純な処理で抽出することは困難である.そこで本研究では、深層学 習を用いることにより、腹腔鏡動画像から血管領域を自動的に認識する手法の初期検討を行った.モデル には 2D U-net を用い、動画中の各フレーム画像に対応する血管領域ラベルを手動で作成し、学習を行った. 実験の結果から、評価用データに対する F 値は約 39%となり、腹腔鏡手術動画像からの血管領域の抽出が 可能であることが確認された.

キーワード: FCN, U-net, 内視鏡手術動画

1. はじめに

現在,がんに対する手術として,患者への負 担が少ない内視鏡手術が用いられている.内視 鏡手術では鉗子の動きが制限される上に,非常 に視野が狭いことから難易度が高い.従って内 視鏡手術動画に映る術具や臓器をコンピュー

- *1 名古屋大学大学院情報学研究科
 〔〒464-8601 名古屋市千種区不老町 IB
 電子情報館南棟4階466号室〕
 e-mail: smorimi@mori.m.is.nagoya-u.ac.jp
 *2 愛知工業大学情報科学部
 *3 国立がん研究センター東病院
 *4 愛知県がんセンター
 *5 名古屋大学情報基盤センター
- *6 国立情報学研究所医療ビッグデータ 研究センター

タで認識し、術者の手技を支援する技術が求め られる.

内視鏡手術動画を利用して適切に手術支援 を行うには手術工程の理解が必要となる.内視 鏡手術の中でも特に,腹部を扱う腹腔鏡手術で は,手術工程の理解において体内構造を表す血 管の認識が重要である.しかし,解剖構造には 個人差があり,血管は手術中の把持や切断など により形が変化するため,単純な処理による抽 出は難しい.

そこで本研究では、内視鏡手術動画に映る血 管領域を、深層学習を用いることにより自動認 識させることを試みる.

2. 提案手法

深層学習のモデルとしては医用画像処理に おけるセグメンテーションに主に使われる Unet[1]を用いた.本手法では Roth ら[2]が 3D U-
net をもとに改良したネットワークを参考に 2 次元画像用に変更したものを使用した. 畳み込 みは 3×3 のカーネルを用い, エンコーダー部分 では 2×2 の MaxPooling, デコーダー部分では 2×2 の Upconvolution を用いた. Skip connection には Summation を用いて畳み込み前の位置情報 を利用し, セグメンテーション結果を生成する.

学習,評価に用いる画像は動画中の一部を取り出したものであり,医師の協力の下,正解デ ータを手動で 2631 枚作成した.学習はミニバ ッチで行い,画像5枚ごとにパラメータを更新 した.

評価には交差検定を用い, 画素単位で F 値, 適合率, 再現率を計算して平均値を算出した.

3. 実験ならびに考察

実験では,腹腔鏡下S状結腸切除術または直 腸癌に対する腹腔鏡下前方切除術の動画 38 症 例分を用いた.まず,正解ラベルの存在する学 習データを入力としてモデルを学習した.そし て,学習済みモデルに評価用データを入力して, 得られた画像と正解ラベルを比較して評価し た.また,最終的なモデルに手術動画を1枚ず つ入力して,得られた推定ラベルと元の動画を 合成することで血管領域がラベル付けされた 動画を作成した.

実験の結果として評価用画像に対する評価 値を表1に示す.また,元画像を図1,Ground truth を重畳表示した画像を図2,出力ラベル を重畳表示した画像を図3に示す.表1でF 値をみると,約39%と低い値となっている.し かし,図1を見ると,場面によってはかなり良 く抽出できているものも存在した.一方で,血 管が脂肪に隠れている手術前半のシーンの抽 出精度は著しく低く,場面に分けた学習や,時 系列情報の追加などの工夫が必要となる.また, 今回の実験では学習用データに対する精度が9 割を超えるのに対し,評価用データに対する精 度は低かったことから,過学習が起きていたと 考えられる.そのため,学習データの追加も今 後の課題となる.

表1 評価用データに対する精度評価.

F值(%)	適合率 (%)	再現率 (%)
38.7	59.4	35.7

図1 元画像となる手術動画中の1枚

図2 Ground truth を重畳表示した画像.

図3出力されたラベルを重畳表示した画像.

4. まとめ

内視鏡手術動画を利用した血管領域抽出は, 全体的な精度は低いものの,シーンによっては 血管領域を抽出できた.さらなる精度向上のた めには,動画特有の時系列情報の追加などが必 要と思われる.

謝辞

本研究の一部は JSPS 科研費 17H00867, 17K20099, 26108006, AMED 課題番号 18he1802002, 19lk1010036h0001, 二国間交流事 業, 堀科学芸術振興財団の支援を受けた.

利益相反の有無なし

- [1] Ronneberger O, Fischer P, Brox T : U-Net: Convolutional Networks for Biomedical Image Segmentation. MICCAI 2015, 9351: 234-241, 2015
- [2] Roth HR, Oda H, Zhou X, et al.: An application of cascaded 3D fully convolutional networks for medical image segmentation. Computerized Medical Imaging and Graphics, 66, 90-99,2018

Segmentation of blood vessel regions from laparoscopic videos using fully convolutional network

Shintaro MORIMITSU^{*1}, Takuya OZAWA^{*1}, Takayuki KITASAKA^{*2}, Yuichiro HAYASHI^{*1}, Masahiro ODA^{*1}, Masaaki ITO^{*3}, Nobuyoshi TAKESHITA^{*3}, Kazunari MISAWA⁴, Kensaku MORI^{*1,5,6}

*1 Graduate School of Informatics, Nagoya University

*2 School of Information Science, Aichi Institute of Technology

*3 National Cancer Center Hospital East

*4 Aichi Cancer Center Hospital

*5 Information Technology Center, Nagoya University

*6 Research Center for Medical Bigdata, National Institute of Informatics

This paper describes an automatic extraction method of blood vessel regions from endoscopic videos. Because laparoscopic surgery is highly difficult, development of a surgical assistance system based on automatic analysis of videos captured by a laparoscope has been promoted. Automatic recognition of surgical tools and organs from laparoscopic videos leads the computer to understand the surgical process and to properly support the procedure of the surgeon. Extraction of the blood vessels that represent internal structures of a patient is important to understand the surgical process. However, it is difficult to extract blood vessels by simple image processing because their shape changes when they are cut or grasped by surgeon. In this study, we conducted an initial study of a method to automatically recognize the blood vessel region from laparoscopic videos by using deep learning. The blood vessel region labels were annotated manually and are corresponding to each images in the videos. The model was 2D U-net and annotated labels were used as the ground truth in the training. From the results of the experiment, F-value of segmentation results was about 39%. The potential of extraction of the blood vessel regions from laparoscopic videos sel regions from laparoscopic videos was confirmed.

Key words: FCN, U-net, Endoscopic surgery videos

非接触型微小循環観察環境の構築と

敗血症モデルラットの血行動態解析

川崎 真未*1 中野 和也*2 大西 峻*2 羽石 秀昭*2

要旨

敗血症は感染症に起因して発症し、生命に危機を及ぼす臓器障害である.発症初期には100µm以下の血管 径である微小循環が障害される.よって敗血症に対する薬効の調査では、微小循環の変化を観察すること が重要となる.先行研究では、生体の微小循環が観察可能な Sidestream Dark-Field (SDF)撮影法を用い、敗 血症モデルラットの血流速度低下を確認した.しかし SDF 撮影法は装置を組織に接触させる必要があり、 組織圧迫の影響や衛生面で懸念がある.そこで本発表では、非接触型撮影装置を構築し、敗血症モデルラ ットの微小循環の観察及び血流速度解析を行った.非接触型撮影装置による取得動画像から敗血症モデル ラットの血流や血管密度の減少が確認された.また血流速度を算出した結果、健常ラットの血流速度は減 少しなかったのに対して敗血症モデルラットの血流速度は減少傾向が確認された.これらの結果から、非 接触型撮影装置により微小循環の変化を取得可能であることが示唆された.

キーワード:微小循環,敗血症性ショック,血流速度,非接触型撮影装置

1. はじめに

敗血症とは、感染に対する制御不十分な生体 反応に起因する生命に危機を及ぼす臓器障害 である[1].敗血症が進行すると敗血症性ショ ックに移行し死亡率が増加する.そのため早期 診断や治療が重要である.敗血症の初期段階で は、100 μm以下の血管径である微小循環が障害 される[2].よって、この微小循環障害を観察 し評価することが求められている.先行研究[3] では、非侵襲で微小循環を観察可能な Sidestream Dark-Field (SDF)撮影法[4]を用い て敗血症モデルラットの微小循環を観察し血

*1 千葉大学大学院融合理工学府基幹工 学専攻医工学コース

〔〒263-8522 千葉市稲毛区弥生町 1-33〕
e-mail: m_kawasaki@chiba-u.jp
*2 千葉大学フロンティア医工学センタ

流速度の算出を行った.血流速度が減少し,微 小循環障害が確認された.しかし,SDF 撮影法 は装置を組織に接触させなければならない.組 織が圧迫され血行動態が変化する恐れが考え られる.よって非接触で微小循環を観察するこ とが必要である.非接触型撮影装置では血行動 態への影響なしに微小循環を観察でき,血液な ども付着しないことから衛生的である.そこで 本発表では,非接触型撮影装置の構築と敗血症 モデルラットを用いた血行動態解析を行った.

2. 非接触型撮影装置の構築

構築した非接触型撮影装置の模式図を図 1(a) に示す. 非接触型撮影装置はカラーカメラ (GS3-U3-15S5C-C, FLIR Systems Inc., Pixel Size[µm]: 6.45 × 6.45, Image Size: 1384 × 1032), レンズ, LED リング照明(IOTR-80-25RLGB, 有 限会社シマテック), 偏光子と検光子(USP-50C0.4-38, シグマ光機株式会社)で構成される.

図 1(b)はカラーカメラの相対感度である. レン ズは対物レンズ(#88-354, Edmund Optics Inc., WD(Work Distance): 13.5 mm, 10X/0.17)と拡大レ ンズ(AZ-3M, エヌエスライティング株式会社, WD: 36.8 mm, 倍率: 0.7X, 1.06X, 1.6X, 2.4X, 3.5X)の2種類使用した. 対物レンズは倍率が高 く, 拡大レンズは5段階で倍率が調整可能であ る. LED リング照明は赤と緑,青の LED で構成されており,同時点灯することで白色照明を 疑似的に再現した.それぞれの LED は水平面から 25°傾いた暗視野照明である.相対発光強度 を図 1(c)に示す.偏光板はリング状に加工した 偏光子を LED リング照明に,円形の検光子をレ ンズにクロスニコル配置で取付けた.照明から 偏光子を通過した光が生体表面に入射した場 合,偏光は保持されるためクロスニコル配置さ れた検光子は通過できない.一方生体内部に入 射した場合,偏光が解消されるため検光子を通 過できる.このように偏光板を用いて生体内部 での散乱光の観察及び表面反射光の低減を図 った.

図2に非接触型撮影装置を用いて同一領域を 撮影した際の取得画像例を示す.対物レンズを 用いた場合(図2(a)),直径10µm程度の細い血 管を確認でき,赤血球の流れが観察可能である. 拡大レンズを用いた場合(図2(b),(c)),赤血球の 流れは確認困難であるが,図2(a)よりも血管網 を広く観察可能である.このように,非接触型 撮影装置ではレンズなどの光学系を調整する ことで,目的に合わせた微小循環像を容易に取 得可能である.

3. 血流速度算出手法

図3に血流速度算出のフローチャートを示す. まず元画像から赤血球を強調するためにヘモ グロビンの吸収が大きい Green 成分のみを取り 出す. その後, テンプレートマッチングにより 体動によるブレを補正する.体動補正後画像に 対してロバスト主成分分析(Robust principal component analysis: RPCA) [5] を行う. RPCA は, 画素値の時間変化の小さい低ランク成分と 大きいスパース成分に分離する手法である.血 管や組織は画素値の時間変化が小さいため低 ランク成分に、ノイズや赤血球の流れは変化が 大きいためスパース成分に分類される. よって RPCA により血管や組織と赤血球の流れを分離 できる.血管領域を抽出するため,低ランク画 像に対して Frangi の方法 [6] を適用し, 血管を 抽出した.その後,血管抽出画像を細線化[7]

図6 手技の様子 (a) 結紮,(b) 穿刺

	∇	∇	∇	∇	∇	∇	∇	
↑	手技前	手技後	2	4	6	8	10	[hour]
チャンバーの装着手技				∇	7· 在	見察 バイタ	ル計測	
	図7 実験	険プロ	ト =	コル	/			

することで血管の中心線を取得した.この中心 線に沿ってスパース画像の画素値を抽出・整列 させ、時空間画像を生成した.時空間画像の横 軸は中心線上の位置、縦軸はフレーム数となっ ている.図4に血流の有無による時空間画像の 違いを示す.図4(a)のように血流がある場合は、 赤血球の流れの軌跡が時空間画像上に直線と なる.血流が速いほど直線の傾きは大きくなる. よって血流速度vは、 $v = \Delta l/\Delta t = \tan \theta$ で表され る.血流が現れない.直線の傾き θ は、時空間 画像に対して 2 次元フーリエ変換を利用し算出 した.

4. 実験と結果

本実験では、ラットを敗血症モデルラットと 健常ラットの2群に分け、2群間の微小循環の

変化を比較した.本実験は、千葉大学動物実験 委員会の承認を受けている. 雄系 Wistar ラット (日本エスエルシー株式会社、12週齢)を使用し、 背部真皮の微小循環を観察した.毎回同一領域 を観察するために、微小循環観察用チャンバー (図 5(a))を使用した. 観察の前にチャンバーを それぞれのラットの背部に取付けた(図 5(b)). 取付け後, 敗血症モデルラットが属する Cecal Ligation and Puncture (CLP)群(n=3)と健常ラット が属する Sham(偽手術)群(n=3)に無作為に分け, それぞれ手技を施した. 敗血症モデルラットと して CLP モデル [8] を採用した. CLP モデル は盲腸を結紮・穿刺することで細菌性腹膜炎を 起こし、敗血症に発展させる動物モデルである. 実施した CLP 群の手技手順を述べる.まず,手 技開始 16 時間はラットごとに似た腸の内容物 の量にするため水は自由に与えるが断食を行 った.その後,開腹し腹腔から盲腸を取り出し た.図 6(a)のように盲腸を回盲弁のすぐ下を 3-0 絹縫合糸(SC003,株式会社 河野製作所)で結 紮し,図6(b)のように血管を傷つけないように 18 ゲージの針(NN-1838S, テルモ株式会社)で穿 刺し3つの穴を開けた.穴から内容物を押し出 した. その後盲腸を腹腔内に戻し閉腹した. Sham 群は開腹による侵襲の影響を考慮するた めに偽手術を行った. Sham 群は盲腸を取り出 したが、結紮と穿刺は行わずに腹腔に戻した. それ以外の手技は CLP 群と同様に行った.図7 に実験プロトコルを示す. 微小循環の観察は手 技直前と手技直後,その後2時間ごとに10時 間後まで行った. 観察と同じタイミングで乳酸 値の計測も行った. すべての手技や観察, 計測 は2.0%のイソフルラン(099-06571、ファイザー 株式会社)の麻酔下で行った.

図8に対物レンズを使用した取得画像を示す. Sham 群の血管密度や血流速度はあまり変化が 見られないが,CLP 群の血管の消失や血管径の 縮小が見られ血管密度や血流速度の減少が取 得動画から確認された.これは敗血症により微 小循環が障害されたと考えられる.図9に乳酸 値と血流速度の推移を示す.横軸は手技終了か らの経過時間,縦軸は乳酸値(図9(a)),血流速度

(a) 乳酸値の時間変化, (b) 血流速度の時間変化

(図 9(b))である. Sham 群の乳酸値はほとんど変 化がないのに対し CLP 群は上昇しており, CLP 群が敗血症に罹患していることが推測される. Sham 群の血流速度はあまり変化していないが, CLP 群は減少傾向が確認されている.以上より 非接触型撮影装置を用いて微小循環の変化を 取得可能であることが示唆された.

5. まとめ

非接触型撮影装置を構築し,敗血症モデルラ ットの微小循環を観察した.取得動画像から血 流速度を算出した結果,CLP 群の血流速度の減 少が確認された.したがって,非接触型撮影装 置を用いた微小循環解析が可能であることが 示唆された.今後は血流速度以外の微小循環評 価指標の解析を行う. 本研究の一部は文部科学省科学研究費補助 金(課題番号:16H01855,19H01172)により行わ れた.

利益相反の有無

なし

文 献

- [1] M Singer, C S Deutschman, C W Seymour, et al.: The third international consensus definitions for sepsis and septic shock (Sepsis-3). Jama 315(8): 801-810, 2016
- [2] P E Spronk, D F Zandstra, C Ince: Benchto-bedside review: sepsis is a disease of the microcirculation. Critical care 8(6): 462-468, 2004
- [3] M Takahashi, T Kurata, T Ohnishi: Quantitative evaluation of blood flow obstruction in microcirculation with sidestream dark-field images. In Proceedings of SPIE Conference on BIOS, San Francisco, 2017, 100680A
- [4] C Ince: Sidestream dark field imaging: an improved technique to observe sublingual microcirculation. Critical care 9(1): 72, 2005
- [5] E J Candès, X Li, Y Ma, et al.: Robust principal component analysis?. Journal of the ACM (JACM) 58(3): 11, 2011
- [6] A F Frangi, W J Niessen, K L Vincken, et al.: Multiscale vessel enhancement filtering. In International conference on medical image computing and computer-assisted intervention 1496: 130-137, 1998
- [7] T Y Zhang, C Y Suen: A fast parallel algorithm for thinning digital patterns. Communications of the ACM 27(3): 236-239, 1984
- [8] K A Wichterman, A E Baue, I H Chaudry: Sepsis and septic shock—a review of laboratory models and a proposal. Journal of Surgical Research 29(2): 189-201, 1980

謝辞

Construction of non-contact setup for microcirculation imaging and

flow analysis in septic model rats

Mami KAWASAKI*1, Kazuya NAKANO*2, Takashi OHNISHI*2, Hideaki HANEISHI*2

*1 Graduate School of Science and Engineering, Chiba University*2 Center for Frontier Medical Engineering, Chiba University

Sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection. At the early stage of sepsis, it is known that the microcirculation is impaired. Thus, it is important to detect this change in the microcirculation during septic shock to investigate the drug effectiveness of septic shock. In previous study, we observed the microcirculation of sham rats and septic model rats with sidestream dark-field (SDF) imaging which is one of the methods to observe the microcirculation non-invasively. As a result, the blood velocity of the septic model rats decreased. However, the SDF imaging has several problems for instance artifacts caused by pressure and heat. Its measurement points are under pressure because the SDF imaging requires direct contact with the surface, which may affect hemodynamics. Therefore, we constructed a non-contact setup and conducted an experiment using the setup to observe the septic model rats and the sham rats. Moreover, we calculated the blood velocity using acquired motion pictures. We confirmed a slight change in blood velocity of the sham rats during the observation. However, the blood velocity of the septic model rats decreased. This finding suggests that microcirculatory alteration may be a sign of sepsis and septic shock progression.

Key words: Microcirculation, Septic shock, Blood velocity, non-contact setup

テンプレート(全ての原稿の種類に共通) Ver. 2.1 (2019.3.28 改訂)

手術の多視点動画撮影および画像認識による

自動視点切替表示

梶田 大樹*1 大石 圭*2 高詰 佳史*3 斎藤 英雄*2 杉本 麻樹*2

要旨

手術をビデオ撮影してモニターで表示することの有用性は以前から認識されている.多くの手術室には、 すでに固定式の術野カメラが設置されている.しかし、これらカメラでは外科医の頭部や手によって術野 の遮蔽が生じ、Open Surgery の動画活用が進まない一因となっていた.この課題を解決するために、多視点 カメラで術野を撮影するという手法がある.本論文では、多視点カメラとして横1列のカメラアレイと、 マルチカメラ搭載型無影灯による撮影手法を提案する.多視点の映像には画像検出を適用し、認識された 術野領域の大小によってカメラを自動で選択することで、遮蔽のない術野映像を表示し続ける.ただし頻 繁なカメラの切り替えは動画の視聴品質(Quality of View, QoV)を損なうので、術野の表示と QoV を両立す るカメラスケジューリングを適用する.また本提案手法を実際の手術に適用し、その有用性を検証する.

キーワード:手術動画,多視点カメラ,術野カメラ,術野検出,カメラスケジューリング

1. はじめに

手術をビデオ撮影してモニターで表示する ことの有用性は以前から認識されている[1]. 多 くの手術室には,すでに固定式(天井吊り下げ 型,無影灯内蔵型など)の術野カメラが設置さ れている.しかし,これらカメラでは外科医の 頭部や手によって術野の遮蔽が生じ,手術工程 が映らなくなる場合がある.このことは,特に 外科医が自身の眼で術野を視認しながら手術 を行う open surgery の領域で,手術動画の活用 がなかなか進まない一因となっていた.

本論文では、多視点カメラで術野を撮影し、 画像検出によって術野が映っているカメラを 自動で選択することで、遮蔽のない術野映像を 表示する手法について提案する.

*1 慶應義塾大学医学部形成外科

- 〔〒160-8582 新宿区信濃町 35〕
- e-mail: jmrbx767@keio.jp
- *2 慶應義塾大学大学院理工学研究科
- *3 慶應義塾大学医学部解剖学教室

2. 関連研究

本研究の先行研究として,無影灯の周囲に設 置した4台のカメラ映像を自動で切り替えた研 究を報告した[2,3].この手法では,無影灯が術 中に移動・傾動するのに対し,カメラの角度は 固定されているために,術中に無影灯が動かさ れ術野の距離が変化すると,術野が撮影されな くなるという課題があった.

本提案手法は,無影灯を動かしても術野を記 録し続けることを目的としている.

3. 提案手法

まず前提として,術野の周囲に多数のカメラ を設置する際には,手術の進行に支障がないよ うに注意する必要がある.

1) カメラアレイによる撮影

手術室に備えられたカメラアームに多数の カメラを設置することで,無影灯の動きとは独 立して,視点の異なる映像を記録できる.

2) マルチカメラ搭載型無影灯による撮影

無影灯のライトユニットはそれぞれ傾動さ

せ,照明の広さや明るさを調整することができる.そこでカメラをライトユニットに設置し, ライトユニットの動きによらず照明とカメラ の方向が一致するようにする.

3) カメラスコアリング

先行研究[2,3]に引き続き, Cheng, et al.[4]の手 法を用いて,色とテクスチャの情報を学習して 術野を検出する.あるカメラ cの時刻 tにおけ る検出領域の大きさをスコア s_t^c と定義する.

4) カメラスイッチング

s^cを比較してカメラを選択する.切替が過多 となると視聴品質(Quality of View, QoV)を損 なうため、切替が生じない最小フレーム数を視 聴者が定義可能とし、先行研究[2,3]に引き続き、 ダイクストラ法を応用して最適化を行う.

4. 実験

実際の手術を撮影し、本提案手法の有効性を 検証した.手術の映像記録および動画データの 二次利用については、慶應義塾大学医学部倫理 委員会で承認を得たうえで、患者本人もしくは 代諾者から書面による同意を得た.

1) カメラアレイによる撮影

天井のカメラアームにカメラ (DSC-RX0, ソ ニー株式会社) を 6 台並べて設置し, それぞれ が術野に向くように傾けた (図 1).

3 人の外科医が互いに頭を出して術野を観察 する手術においても、ほぼ全ての時間において、 いずれかのカメラでは術野の映像が記録され ていた(図2).ただし無影灯がカメラアームに ぶつかると、術野が見えなくなる場合があった. 2) マルチカメラ搭載型無影灯による撮影

スタンド型無影灯 (LEDX II 5S, 第一照明 株式会社) の灯体のライトユニットにそれぞれ カメラ (Phoenix 3.2 MP Model, LUCID Vision Labs Inc.) を設置し, 画角が照光部に一致する よう調整した (図 3).

やはりほぼ全ての時間において、いずれかの カメラでは術野が撮影されたが、術野に照明が あまり届かない場合には、いずれのカメラでも 術野が見られないこともあった(図4).

図1 カメラアームに6台のカメラが設置されて いる(矢印)

図2 視点が横にずれた同時刻の6画像を並べた もの.;上段:3視点で術野が見えている.;下 段:1視点でのみ術野が見えている.

図3 無影灯の5 つライトユニットそれぞれの中 央に1 台ずつカメラが設置されている(矢印)

図 4 ライトユニットに設置したカメラで得ら れた同時刻の5 画像を並べたもの.;上段:4 視 点で術野が見えている.;下段:1 視点でのみ術 野が見えているが,暗い.

図5 口内の術野を検出した例.

3) スイッチング結果

検出器の学習には、それぞれの映像から無作 為に選んだ約 100 枚の画像を用いた.「術野」の 定義は、それぞれの手術が対象とする部位に応 じて行った(図 5).

このスコアによってカメラを選択し(図 6), 最小フレーム数を調整することで,良好な視点 自動切替による映像の表示が可能であった.

5. まとめ

提案手法では、外科医が普段通りに無影灯を 操作して手術を行っても、術野の多視点カメ ラ撮影が可能であった. 今後は、VR・MR等の 展開を見据え、本手法の映像に隠消現実感の技 術を適用したり[5]、自由視点映像を作成したり することも検討したい.

謝辞

本研究は, JST CREST(JPMJCR14E3), AMED(JP18he1902002h0001)の支援を受けたも のです.

利益相反の有無

なし.

図 6 検出結果にもとづいてカメラを選択した 例.

- Yan Xiao, Stephen Schimpff, Colin Mackenzie, et al.: Video Technology to Advance Safety in the Operating Room and Perioperative Environment. Surgical Innovation 14: 52-61, 2007
- [2] 大石圭,斎藤英雄,梶田大樹他:マル チカメラ搭載型無影灯により記録され た手術動画の自動視点切替.動画像処 理実利用化ワークショップ 2019 講演 論文集: 301-308, 2019.
- [3] 大石圭,斎藤英雄,梶田大樹他:多視 点手術動画の自動視点切替.研究報告 コンピュータビジョンとイメージメデ ィア(CVIM) 2019-CVIM-215(18):1-6, 2019.
- [4] Li Cheng, Kris M. Kitani: Pixel-level hand detection in ego-centric video. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR): 3570-3577, 2013.
- [5] 前澤桃子,大石圭,森尚平他:マルチ カメラ搭載型無影灯を使用した手術動 画を利用した作業領域のDR表示.2019-CVIM-215(14): 1-5, 2019.

Multi-Viewpoint Video Recording for Surgery and Automated Camera Switching by Image Recognition Technology

Hiroki KAJITA^{*1}, Kei OISHI^{*1}, Yoshifumi TAKATSUME^{*1}, Hideo SAITO^{*1}, Maki SUGIMOTO^{*1}

*1 Keio University

The usefulness of video recording and monitor display of surgery has long been recognized. In many operating rooms, fixed surgery cameras are already installed. However, with these cameras, the surgeon's head and hands often cause the surgical field to be occluded, and this has been a main factor in the inability to utilize the videos in the field of open surgeries. Multiple-viewpoint camera system is one of the methods to solve this problem. In this study, we propose a multi-viewpoint camera array and multi-camera mounted shadowless lamp to record open surgeries. Image detection is applied to multi-viewpoint images, and a camera is automatically selected according to the size of the recognized surgical fields, thereby to display the process of the surgery without occlusion. However, frequent camera switching impairs the quality of view (QoV) of the videos, so camera scheduling that achieves both the displayed area of the surgical field and QoV is applied. Also, we applied the proposing method to actual surgery and verified its usefulness.

Key words: Surgical videos, Multiple viewpoint cameras, surgical cameras, Surgical field detection, Camera scheduling

覚醒下脳腫瘍摘出術における術中情報を用いた 脳機能マッピング工程同定手法の提案

佐藤 生馬^{*1}, 南部 優太^{*1}, 藤野 雄一^{*1}, 堀瀬 友貴^{*2}, 楠田 佳緒^{*2}, 田村 学^{*2}, 村垣 善浩^{*2}, 正宗 賢^{*2}

要旨

脳腫瘍摘出手術において、熟練医は最大限の腫瘍摘出と最小限の術後合併症リスクを実現するため、患者の脳構造や機能を把握し、独自の判断プロセスにより腫瘍を切除する.この判断プロセスは、熟練医が培った知識や経験にもとづく暗黙知とされており、医療の質の向上や若手医師教育のために可視化が望まれている.本研究では、覚醒下脳腫瘍摘出術において患者毎に異なる腫瘍付近の脳機能を把握する脳機能マッピング時の暗黙知の可視化に向け、術中情報を用いた脳機能マッピング工程同定手法を提案する.本提案手法では、術中 MRI やナビゲーションシステムからの位置情報および顕微鏡などからの動画より特徴量を抽出し、これらの特徴量を用いて2階層からなる階層型隠れマルコフモデルより、手術の流れと脳機能マッピング時の工程を可視化する.そして、過去の臨床データを用いて、本手法により手術工程を同定し、その精度を評価したので報告する.

キーワード: 覚醒下脳腫瘍摘出術,手術工程,ナビゲーションシステム,機械学習,深層学習

1. はじめに

脳腫瘍摘出手術において,熟練医による手術 では最大限の腫瘍摘出と最小限の術後合併症 リスクを実現するため,患者の脳構造や機能を 把握し,独自の判断プロセスにより腫瘍を切除 する.この判断プロセスは,熟練医が培った知 識や経験にもとづく暗黙知とされており,医療 の質の向上や教育支援のためには若手医師な どと共有することが望まれる.そのため,本研 究では熟練医の判断プロセスを可視化するこ とで暗黙知の共有を目指す.

図1 手術工程同定手法の外観

 *1 公立はこだて未来大学大学院 システム情報科学研究科 [〒041-8655 北海道函館市亀田中野町 116-2]
 *2 東京女子医科大学 先端生命医科学研究所 本研究では、覚醒下脳腫瘍摘出術において患 者毎に異なる腫瘍付近の脳機能を把握する脳 機能マッピング時の暗黙知の可視化に向け、術 中情報を用いた脳機能マッピング工程同定手 法を提案する(図1).そして、手術工程モデルを 構築し機械学習による手術工程同定を行い、そ の精度を評価する.

2. 脳機能マッピング工程同定用手術工程 モデルの構築

手術工程および脳機能マッピング工程の同 定するため、術中情報を用いて手術工程モデル を構築する.本研究で構築するモデルの対象と して、熟練医の手技や判断プロセスが含まれる とされる覚醒下脳腫瘍摘出術における MRI 撮 像後の手術準備から腫瘍切除終了までとする. 対象とした症例の手術映像やナビゲーション システムから取得した術具の位置を手動で記 録し、手術工程の要素とした.

構築した手術工程モデルは術中の脳機能位 置同定工程である脳機能マッピング工程の同 定に特化させた2階層から構成される.この手 術工程モデルは1階層目には摘出前処置・皮質 マッピング・腫瘍摘出・白質マッピングの4工 程であり、2 階層目には皮質・白質マッピング の詳細な工程であるの電気刺激準備および電 気刺激・痙攣波への対処および機能野のマーキ ングの2工程から構成される.

3. 機械学習による手術工程同定

本提案手法では、術中情報からの特徴量を用 いて2階層からなる階層型隠れマルコフモデル より、手術の流れと脳機能マッピング時の工程 を同定する.手術工程の同定に使用する術中情 報は、術中 MRI やナビゲーションシステムから の位置情報(ログ情報)および顕微鏡や覚醒下の 脳機能マッピングで使用される IEMAS からの 動画である.これら複数の医療機器から得られ る情報から機械学習および深層学習により手 術工程の特徴量を取得する.そして、本手法で は手術ナビゲーションシステムで術具のマー カの遮蔽問題により、ログ情報が取得できない 場合に対して、顕微鏡画像からの術具検出によ り、特徴量を補完する.

本手法における手術工程同定は,以下の4ス テップで行う.①脳構造上での処置位置の取得, ②使用する術具の種類の取得,③IEMAS動画の 音声より電気刺激時の時間の取得,④取得結果 を用いた手術工程の同定.

- 手術ナビゲーションシステムのログ情報と MRI 画像から医用画像処理によって,脳構 造上の処置位置(腫瘍内部,脳表,正常脳, 脳領域外)を取得する.
- ② 手術顕微鏡動画から機械学習の YOLO (You Only Look Ones)を用いて術具 (バイポーラ, 電気刺激プローブ,剪刀)を取得する.
- ③ IEMAS 動画の音情報より電気刺激装置による脳への電気刺激時の音を機械学習により,抽出して電子刺激時間を取得する.
- ④ ①②で取得した情報から手術工程モデルに もとづいて HHMM (Hierarchical Hidden Markov Model)を用いて工程を同定する.こ の同定処理を1秒ごとに1回行い、リアルタ イムに手術工程の同定を行う.さらに、第1 階層の同定結果に前後2秒での多数決によ る平滑化処理を行った.その後、同定結果お

よび③の情報を用いて,脳へ電気刺激の工程 を同定する.

4. 手術工程同定精度評価実験

左脳に腫瘍があり覚醒下脳腫瘍摘出術を行った1症例(約120分)に対して、手術工程同定精度を評価する.臨床データは本手法で使用する術中 MRI 画像,顕微鏡動画,IEMAS 動画,ナビゲーションシステムの術具位置情報を用いて同定する.同定は、1秒間に1回の同定を行い,あらかじめ手動で作成した正解同定結果と自動同定結果を比較し精度を評価した.

手術工程同定精度の評価結果として、4 工程に 分類した第1階層の同定精度は99.5%であり、摘 出前処置は100%、皮質マッピングは97.1%,腫 瘍摘出は95.8%、白質マッピングは94.7%であ った.皮質・白質マッピングの詳細な工程であ る第2階層の同定精度の平均は93.3%であった. 皮質マッピング時の電気刺激準備および電気刺激 は96.0%、痙攣波への対処および機能野のマー キングは94.9%であった.白質マッピング時の電 気刺激準備および電気刺激は90.3%、痙攣波への 対処および機能野のマーキングは91.8%の精度 であった.そして、音情報を用いた電気刺激時間 の同定精度は18.6%であり、皮質マッピング時は 34.4%、白質マッピング時は2.8%であった.

5. 結語

本研究では、術中情報を用いて脳機能マッピン グ工程同定用手術工程モデルの構築および手術工 程同定を行った.過去の臨床データを用いて、手 動で作成した正解モデルと自動同定精度を評価し た結果、第1階層の同定結果精度は99.5%、第2 階層では93.3%となった.しかしながら、音情報 を用いた電気刺激時間の同定精度は18.6%であっ た.精度が低下した要因として、機械学習による 誤検出とそれら情報を用いた同定の誤判定に原因 がある.特に、音情報はノイズや出力された音が 急に小さくなるなどがあり、精度に影響を与えた. 今後は、更なる精度向上を目指すとともに暗黙知 可視化に向けた同定・解析システムの開発を行う.

謝辞:本研究はAMEDの課題番号 JP18he1602003 の支援を受けた.

利益相反の有無:「なし」

GAN を用いた病理組織画像における異常組織の自動同定法

林 大誠^{*1}, 中山 良平^{*1}, 檜作 彰良^{*1} 黒住 眞史^{*2}, 真鍋 俊明^{*2}

要旨

本研究の目的は、正常組織のみを含む病理組織画像を GAN (Generative Adversarial Nets) に学習させるこ とにより、病理組織画像から異常組織を自動同定するアルゴリズムを開発することである.実験試料は、 ヘマトキシリン・エオジン染色された腫瘍を含む病理組織標本、腫瘍を含まない病理組織標本を倍率 20 でデジタル化した画像を用いた.GAN の学習では、学習用の腫瘍を含まない病理組織画像から抽出した関 心領域を GAN に入力することにより、正常組織構造をネットワークに学習させた.そして、学習済みネッ トワークを用いて、正常組織構造とは異なる構造を有すると評価された関心領域を異常組織として同定し た.学習した GAN を評価用画像データに適用した結果、正答率 91.6%が得られ、提案手法の有用性が示唆 された.

キーワード:GAN, 異常組織同定, 病理組織画像

1. はじめに

近年,がん罹患者数の増加に伴い,確定診断 である病理組織診断の件数も大幅に増大して いる.しかし病理組織診断を実施する病理医は 年々減少し,慢性的な病理医不足が問題となっ ている.そこで,畳み込みニューラルネットワ ーク(CNN: Convolutional Neural Network)を用 いた病理組織の自動診断や診断支援に関する 研究が報告されている[1,2]. CNN を用いた手 法の多くは,病理医により手動で付与されたア ノテーション情報に基づき,各病理組織画像か ら正常組織/異常組織の関心領域を抽出し,関 心領域に対する教師データ(確定診断結果)を CNN に学習させている[3].しかし,多忙な病理 医がアノテーションを付与する必要があり,訓 練データの構築が非常に困難な問題がある.

*1 立命館大学理工学部電子情報工学科
 〔〒525-8577 草津市野路東 1-1-1〕
 e-mail: ri0053he@ed.ritsumei.ac.jp
 *2 滋賀県立総合病院研究所

そこで本研究では、アノテーションが不要な 正常組織のみを含む病理組織画像を学習に用 いて、正常組織とは異なる特徴を有する領域を 異常組織として検知する手法を提案する.深層 学習を用いた異常検知の一つとして、敵対生成 ネットワーク(GAN: Generative Adversarial Nets) がある[4]. GAN は、Generator と Discriminator の2つのネットワークで構成される.これらの ネットワークの敵対的学習により、Generator は 訓練データに似た新しい画像を生成し、 Discriminator は訓練データと生成画像を判別す ることが可能となる.そして、訓練データと生 成画像の差分に基づき、異常検知が実施される.

本研究では、正常組織の関心領域のみを用い て学習させた GAN の Discriminator により、病 理組織画像の各関心領域を正常組織と異常組 織に分類する.

2. 方法

1) 実験試料

実験試料は滋賀県立総合病院で採取され,H &E(ヘマトキシリン・エオジン)染色された25 胸部病理組織標本(非腫瘍:18 症例,腫瘍:7 症 例)のデジタルスライド画像である. バーチャ ルスライドスキャナ (NanoZoomer, 浜松ホトニ クス, 浜松市)により, スキャン倍率 20 でデジ タル化された.

2) GAN を用いた異常組織の自動同定

本研究では, DCGAN (Deep Convolutional GAN) [5]を病理組織画像に適する構成に変更した. Generator は, 300 次元のランダムノイズを入力 とする入力層,次に,正規化層,アップサンプ リング層, 畳み込み層, ReLU (Rectified Linear Unit)活性化関数を1セットとする層の組み合 わせを2セット,そして,正規化層,畳み込み 層, tanh 活性化関数で構成される. 各畳み込み 層のフィルタサイズは3で、フィルタ数は順に 64, 32, 3 である. Discriminator は 200×200 の 生成画像/訓練データを入力とする入力層,次 に, 畳み込み層, LeakyReLU活性化関数, Dropout 層を1セットとする層の組み合わせを4セット, そして, 全結合層で構成される. 各畳み込み層 のフィルタサイズは3で,フィルタ数は16,32, 64, 128 である. また, LeakyReLUの傾きは0.2 と設定し, Dropout 層は 0.25 の割合でノード削 除を行った.

GAN の学習に用いる訓練データの作成として,腫瘍を含まない病理組織画像から,スーパーピクセルおよび閾値処理により,組織を含む200×200の関心領域を抽出した.そして,関心領域を下式により正規化を行った.

$$\dot{x}_i = \frac{x_i - 127.5}{127.5}$$

GAN の各ネットワークの学習において,まず, 一様分布からランダムに抽出したノイズ値 300

腫瘍を含まない病理組織画像

個を Generator に入力し, 200×200 画像を 64 枚 生成する. そして, 生成画像を Discriminator に 入力し, 識別結果に応じて Generator を更新す る. Discriminator の学習は, Generator から生成 した画像 32 枚, 訓練データ 32 枚を Discriminator に入力し, 識別誤差が低下するように Discriminator を更新する. このネットワークの 更新を 1,000,000 回になるまで, 繰り返し, 交互 に実施する.

最後に,正常な病理組織の分布を学習した Discriminator に評価用の画像を入力し,学習済 み分布との違いに基づき,異常組織の可能性を 評価する.

3. 結果と考察

図1に腫瘍を含まない/含む病理組織画像 と各関心領域の評価結果に基づき作成した異 常組織の可能性画像を示す.異常組織の可能性 画像において,暖色は異常組織の可能性が高く, 寒色は低いことを表す.腫瘍を含まない病理組 織画像の異常組織可能性画像において,大部分 の関心領域が異常組織の可能性が低いと正確 に評価されていることがわかる.一方,腫瘍を 含む病理組織画像の異常組織可能性画像では, 異常組織の可能性が高いと評価された関心領 域が部分的に集簇している箇所がみられた.学 習した GAN を評価用 7 画像データに適用した 結果,正答率 91.6%が得られた.

4. まとめ

本研究では、GAN を用いて、病理組織画像に 含まれる異常組織の同定を行った.その結果、 正答率 91.6%が得られ、異常組織可能性画像を

腫瘍を含む病理組織画像

図1 異常組織の可能性画像

(1)

用いて異常組織の同定が可能であることが示 唆された.

謝辞

本研究で使用した病理標本をご提供して頂 いた滋賀県立総合病院の皆様に厚く感謝の意 を表します.

利益相反の有無

なし

- Wei Shao, Liang Sun, Daoqiang Zhang: Deep active learning for nucleus classification in pathology images. 2018 IEEE 15th International Symposium on Biomedical Imaging.
- [2] John X. Qiu, Hong-Jun Yoon, Paul A. Fearn, et al.: Deep Learning for Automated Extraction of Primary Sites From Cancer Pathology Reports. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 22, NO. 1: 244-251, 2018
- [3] Sonia Mejbri, Camille Franchet, Ismat Ara Reshma, et al: Deep Analysis of CNN Settings for New Cancer whole-slide Histological Images Segmentation: the Case of Small Training Sets. 6th International conference on BioImaging (BIOIMAGING 2019), 2019
- [4] Thomas Schlegl, Philipp Seeb"ock, Sebastian M. Waldstein, et al: Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery. arXiv:1703.05921v1, 2017
- [5] Alec Radford , Luke Metz, Soumith Chintala: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434v2, 2016

Computerized Scheme of Identifying Abnormal Tissues on

Pathological Images using GAN

Daisei HAYASHI^{*1}, Ryohei NAKAYAMA^{*1}, Akiyoshi HIZUKURI^{*1}, Mafumi KUROZUMI^{*2}, Toshiaki MANABE^{*2}

> *1 Science and Engineering, Ritsumeikan University *2 Shiga General Hospital Research Center

The purpose of this study was to develop a computerized scheme for identifying abnormal tissues from pathological images using GAN which was trained pathological images including only normal tissues as anomaly detection. In this study, our database consisted of pathological images by scanning pathological specimens with/without tumor with the magnification ratio of 20 times. Those specimens were stained with Hematoxylin and Eosin. In training GAN phase, regions of interest (ROIs) extracted from non-tumor pathological images were input to GAN to learn the normal tissue structure. In testing GAN phase, ROIs with structure different from normal structure were evaluated as abnormal tissues by using trained GAN. The computerized scheme with GAN exhibited the classification accuracy of 91.6%, and can be useful in identifying abnormal tissues on pathological images.

Key words: GAN, pathological images, anomaly detection

3 次元 CT 画像を用いた じん肺の重症度診断支援システム

森 奈々^{*1} 日野 公貴^{*1} 松廣 幹雄^{*2} 鈴木 秀宣^{*2} 河田 佳樹^{*2} 仁木 登^{*2} 加藤 勝也^{*3} 岸本 卓巳^{*4} 芦澤 和人^{*5}

要旨

じん肺は、粉じんを肺に吸入することによって生じる職業性呼吸器疾患である. 我国において毎年 24 万人 前後の粉じん労働者がじん肺健康診断を受診している. じん肺診断では胸部単純 X 線写真を用いているが 近年では CT 画像を用いた定量的な診断法が検討されている.本報告では、じん肺 CT 画像の第 0 型 0/1、 第 1 型 1/0、第 1 型 1/1、第 1 型 1/2、第 2 型 2/2 からマニュアル処理によって粒状影を抽出し、じん肺 CT 画像データベースを作成する. このデータベースを用いて X 線写真の診断結果と粒状影の個数・大きさ・ 重症度別に解析・比較・評価・診断支援システムの開発を行う.

キーワード: CT, CAD, 医用画像処理

1. はじめに

じん肺は,粉じんを肺に吸入することによっ て生じる職業性呼吸器疾患である.日本の粉じ ん作業従事労働者数は昭和 60 年をピークに減 少し,平成 12 年で 35 万人であったが,近年は 約 50 万人前後で推移しており増加傾向となっ ている.じん肺が進行すると肺結核・続発性気 胸・肺がんなどの合併症に罹患しやすくなるた め,健康診断で適切な診断・治療が必要である.

また、じん肺健康診断として胸部単純 X 線撮 影や肺機能検査が実施されている. 胸部単純 X 線写真によって第0型,第1型,第2型,第3

*1 徳島大学大学院先端技術科学教育部
〔〒770-8502 徳島県徳島市南常三島町 2-1〕
e-mail: c501938019@tokushima-u.ac.jp
*2 徳島大学大学院社会産業理工学研究部
*3 川崎医科大学
*4 岡山ろうさい病院

*5 長崎大学

型,第4型に分類され,第1型以上の患者は労 災認定となるが第0型の患者は労災認定の対象 とならないため正確に診断しなければならな い.ここで,近年では胸部 CT 検査による定量 的な診断法が検討されている.本報告では,じ ん肺 CT 画像の第0型0/1,第1型1/0,第1型 1/1,第1型1/2,第2型2/2からマニュアル処 理によって粒状影を抽出し,じん肺 CT 画像デ ータベースを作成する.このデータベースを用 いて X 線写真の診断結果と粒状影の個数・大き さ・重症度別に解析・比較・評価・診断支援シ ステムの開発を行う.

2. 撮影条件と手法

岡山ろうさい病院で診断されたじん肺 25 症 例(0/1 - 5 例, 1/0 - 5 例, 1/1 - 5 例, 1/2 - 5 例, 2/2 - 5 例)を用いて解析を行った.撮影条件を表 1 に示す.これらの CT 画像に(1)じん肺 CT 画 像データベースの作成, (2) 粒状影の定量評価 を適用した.

衣 1	
装置	Aquilion PRIME
管電圧[kV]	120
管電流[mA]	240
スライス厚[mm]	1.0
画素間隔[mm]	0.625, 0.781
再構成間隔[mm]	1.0
再構成関数	FC13-H,FC52

(1) じん肺 CT 画像データベースの作成

(1)-(a) 粒状影のマニュアル抽出

WL500, WW1500 で設定し, Axial 面を用い て右肺尖部,右肺底部,左肺尖部,左肺底部の 順で抽出する.抽出は2回行い1回目と2回目 の読影間隔は半年以上と1週間を置いた.1回 目と2回目の論理和をマニュアル抽出結果とす る.

(1) - (b) CAD を用いた結節の自動抽出

本研究室で開発されている CAD の結節自動 抽出結果とマニュアル抽出結果を重ね合わせ 新たに見直し,未抽出の粒状影があればじん肺 CT 画像データベースに追加する.

(2) 粒状影の定量評価

じん肺の重症度を粒状影の個数,大きさとCT 値,分布型によって評価する.粒状影の大きさ は,粒状影が球であると仮定して,体積から求 められる直径と定義する.病型区分の分類に必 要な粒状影の大きさと分類数の検討をするた めに各大きさ別の粒状影数でクラスタリング を行い,クラス数を求める.

3. 結果

第0型0/1と第1型1/0の粒状影の抽出結果 例を図1に示す.粒状影数を見ると診断結果と 一致しない症例があった.図2に粒状影の直径 と累積頻度の関係を示す.重症度に関わらず直 径 3mm 以上の粒状影では指数関数的に数が増 加しているが 3mm 以下になると緩やかになる 傾向が見られた.

図1 粒状影の抽出結果

次に、大きさ別における粒状影数を用いてクラスタ リングを行った.分類結果をX線写真の重症度分 類と比較すると、3mm以上では十分に分類でき ず、2.5mm以上の微小な粒状影の検出が必要であ る.また、CT分類後の粒状影大きさ別平均CT値 と、部位別における粒状影の大きさと個数の関係を それぞれ図3、4に示す.2-5mmの粒状影は、同じ 大きさでも分類別にCT値の差があった.肺の部位 別における粒状影の個数と大きさの関係では25症 例中18症例が上部に粒状影のある割合が高く、左 肺より右肺のほうが多い傾向が見られた.

図3 CT 分類後における粒状影の大きさと平均 CT 値の関係

図4 肺の部位別における粒状影の個数と大きさの 関係

4. まとめ

じん肺 CT 画像からデータベースを作成し, 粒状影の個数,大きさと CT 値,分布型からじ ん肺の重症度を定量評価し,X線写真の診断 結果と比較・評価した.今後の課題として多 症例の粒状影を統計解析し,高精度なじん肺 診断支援システムの開発を目指す.

利益相反の有無

なし

- H. Suzuki, Y. Kawata, N. Niki, et al: Computer aided diagnosis for severity assessment of pneumoconiosis using CT images, Proc. SPIE Medical Imaging, Vol.9785, pp.978531-1-6, 2016.
- K. Kanazawa, Y. Kawata, N. Niki, et al: Computer-aided diagnosis for pulmonary nodules based on helical CT images, Comput. Med. Imag. Graphics, vol. 22, no. 2, pp. 157– 167, 1998.
- [3] Y. Kawata, N. Niki, H. Ohmatsu, et al: Quantitative classification based on CT histogram analysis of non-small cell lung cancer: Correlation with histopathological characteristics and recurrence-free survival, Medical Physics, vol.39, no.2, pp.988-1000, 2012.
- [4] 松廣幹雄,鈴木秀宣,河田佳樹,他:胸 部マルチスライス CT 画像における葉間裂 抽出法,電子情報通信学会論文誌, Vol.J.96-D, no.4, pp.834-843, April, 2013.
- [5] 滝島任、中村雅夫、千代谷慶三:じん肺 患者の呼吸機能検査ハンドブック. 真興 交易医書出版部、1991、P3-10
- [6] 永井厚志編:呼吸器疾患 第3版.日本医 事新報社,2015,P241-250
- K. Hino, M. Matsuhiro, H. Suzuki, et al: Quantitative assessment for pneumoconiosis severity diagnosis using 3D CT images, Proc. SPIE Medical Imaging, Vol.10575, pp.105753J-1-6, 2018.
- [8] 日野公貴,松廣幹雄,鈴木秀宣,他:胸 部3次元 CT 画像を用いたじん肺の重症度 診断基準に関する粒状影の定量的評価, 電子情報通信学会技術研究報告医用画 像,Vol.118, No.286, pp.13-15, 2018.11

A Computer Aided Diagnosis system for pneumoconiosis severity

using 3D CT images

Nana Mori^{*1},Koki Hino^{*1}, Mikio Matsuhiro^{*2}, Hidenobu Suzuki^{*2},Yoshiki Kawata^{*2},Noboru Niki^{*2} Katsuya Kato ^{*3}, Takumi Kishimoto ^{*4}, Kazuto Ashizawa ^{*5}

*1 System Innovation Engineering Graduate School of Advanced Technology and Science The University of Tokushima *2 Tokushima University *3 Kawasaki Medical School *4 Okayama Rosai Hospital *5 Nagasaki University

Pneumoconiosis is an occupational respiratory illness that occur by inhaling dust to the lungs. 240,000 participants are screened for diagnosis of pneumoconiosis every year in Japan. Radiograph is used for staging of severity rate in pneumoconiosis worldwide. CT imaging is useful for the differentiation of requirements for industrial accident approval because it can detect small lesions in comparison with radiograph. In this paper, we extracted lung nodules from 3D pneumoconiosis CT images by two manual processes and automatic process, and created a database of pneumoconiosis CT images. We used the database to analyze, compare, and evaluate visual diagnostic results of radiographs and quantitative assessment (number, size and volume) of lung nodules. This method was applied to 25 pneumoconiosis patients. Initial results showed that the proposed method can assess severity rate in pneumoconiosis quantitatively. And we analyzed the CT values and the distribution types of result. This study demonstrates effectiveness on diagnosis and prognosis of pneumoconiosis in CT screening. .

Key words: X-ray image, CT, Medical image processing

Generative adversarial network を用いた肺結節の3次元 CT

画像の生成

西尾瑞穂*1.2 野口峻二郎 3 尾上宏治 2 子安翔 2 八上全弘 1.2

村松千左子4藤田広志4富樫かおり2

要旨

GAN による肺結節の3次元 CT 画像の生成を行い,放射線科医による評価を行った.LUNA16のデータセットの888 セットの3次元 CT 画像,1415 個の肺結節を用いて,GAN の学習データとした.トレーニングには1281 個,テストには134 個の肺結節を利用し,L1 loss と GAN loss を混合したものを最適化のためのロスとした.学習時には random erasing をベースにした data augmentation を行った.テスト用の134 個の肺結節につき,ランダムに真の肺結節と生成された肺結節を提示し,二名の放射線科医が評価した.放射線科医には真の肺結節である確信度を入力させた.放射線科医のAUC は0.705 と 0.891 であった.正診率は71.6%と81.3%,感度は71.0%と78.3%,特異度は72.3%と84.6%であった.GAN により真偽の判断が難しい肺結節画像を生成できる可能性が示された.

キーワード:肺結節, CT, 深層学習, 敵対的生成ネットワーク

1. はじめに

近年,画像認識などで深層学習がめざましい 成果をあげており,深層学習の医療への応用に も期待が寄せられている.一般に医用画像の診 断支援には高度な画像認識が必要であり,深層 学習は医用画像の診断支援の医療機器開発に 効果が高いと期待されている.しかしながら,

1 京都大学附属病院 先制医療・生活習慣 病研究センター

京都大学大学院医学研究科 放射線医
 学講座(画像診断学・核医学)

3 大阪赤十字病院 放射線診断科

4 岐阜大学工学部電気電子・情報工学科

* 責任著者:西尾瑞穂.〒606-8507 京都 市 左 京 区 聖 護 院 川 原 町 53. jurader@yahoo.co.jp 深層学習が効果を発揮するためには大量の学 習データが必要であり、医用画像では個人情報 保護や画像収集コストが高いことなどから大 量の学習データを用意することは容易ではな い.そこで, Modeling/Simulation 技術を用いて 擬似の医用画像を生成し、それを医療機器開発 に活用するという方法が考えられる.

論文[1]によると、米国の Food and Drug Administration は医療機器開発において治験の ような randomized controlled trial は必ずしも必 要ないと考えているとのことである.論文[1] では医療機器開発に randomized controlled trials が不必要な場合、これに代わるものとして Modeling/Simulation 技術の活用が期待されて おり、擬似の医用画像の生成にはこうした活用 が期待できる.

敵対的生成ネットワーク (generative adversarial network, GAN)は深層学習による画像 生成の手法で [2],過去 10 年で最も興味深い アイデアの機械学習の手法と評されることが ある.オリジナルの GAN は画像を生成する Generator と生成画像と実画像とを鑑別する Discriminator の二つから構成される.Generator は任意の乱数データから Discriminator を騙す 画像を生成するように学習を行い, Discriminator は実画像と Generator による生 成画像とを鑑別できるように学習を行う.

本研究の目的はGANを用いて肺結節の3Dの CT 画像の生成を行うことである.将来的には 生成画像が医療機器開発に有用かどうかを検 討する予定であるが、本研究ではGAN で生成 された擬似肺結節の病変としての妥当性を検 証することを主目的とする.

2. 方法

本研究は既存の公開済みデータベースを用 いた研究であり、日本の人を対象とする医学系 研究に関する倫理指針に従えば指針の対象外 となる.

本研究では LUNA16 [3] のデータセットに含 まれる 888 セットの 3 次元 CT 画像, 1415 個の 肺結節を用い,このうちトレーニングに 1281 個 の肺結節, テストに 134 個の肺結節を利用した. 個々の肺結節に対し 40x40x40 voxels の volume of interest をセットして CT 画像を切り出し, そ の CT 値を 1000 で除算して正規化を行った. 改 変した 3 次元 Resnet を generator, 改変した 3 次 元 VGG を discriminator とし, GAN を構成した [4] [5]. これは pix2pix のネットワークの 3D 版に相当するものである [4] [5]. L1 loss と GAN loss を混合したものをネットワークの最 適化のためのロスとした.

学習時には random erasing をベースにした data augmentation を行った [4] [6]. 図1にそ の例を示す.本研究ではGANの学習の際には, 真の肺結節の画像の結節部分に対して random erasing に相当する処理を行い,その画像を用い て GAN による肺結節の生成を行った.

テスト用の 134 個の肺結節につき, ランダム に真の肺結節と生成された擬似の肺結節を提 示し,二名の放射線科医が評価した.放射線科 医には真の肺結節である確信度を入力させ,そ れを用いて ROC 解析による Area under the curve (AUC)を計算した.

(A)

(B)

(C)

図1 真の肺結節の画像, GAN の入力に使われた画像, 生成された肺結節の画像. (A)(B)(C)はそれぞれ真の肺結節の画像, GAN の入力に使われた画像, 生成された肺結節の画像である. (A)(B)(C) の上段・中段・下段は同一の肺結節の横断像, 冠状断像, 矢状断像の3 スライスの画像である. (B)は, (A)から random erasing に相当する処理を行い, 肺結節の全体もしくは一部を削除したものである. GAN は(B)から(C)を生成する. (A)と(C)との間で, L1 loss と GAN loss を 混合したものを低減するように GAN の学習が行われる.

3. 結果

肺結節を評価した二名の放射線科医の AUC は 0.705 と 0.891 であった. 正診率は 71.6%と 81.3%,感度は 71.0%と 78.3%,特異度は 72.3% と 84.6%であった. ここで,感度は放射線科医 が真の肺結節を真の肺結節と評価した割合,特 異度は擬似肺結節を擬似肺結節と評価した割 合とした.生成された擬似結節の画像を図 2,3 に示す.

図 2 放射線科医が真の肺結節と評価した擬似 結節

図 3 放射線科医が容易に擬似結節と評価した 擬似結節

4. まとめ

GAN によって, 放射線科医による真偽の判断 が難しい肺結節の3次元 CT 画像の肺結節を生 成できる可能性が示された.

謝辞

本研究は JSPS 科研費 JP19H03599 の助成を受けたものです.

利益相反の有無

なし.

- Faris O, Shuren J. An FDA Viewpoint on Unique Considerations for Medical-Device Clinical Trials. N Engl J Med. 2017 Apr 6;376(14):1350-1357.
- [2] Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X. Improved Techniques for Training GAN. arXiv:1606.03498
- [3] LUNA16. <u>https://luna16.grand-</u> challenge.org/
- [4] Jin D, Xu Z, Tang Y, Harrison AP, Mollura DJ. **CT-Realistic** Lung Nodule Simulation from Conditional 3D Generative Adversarial Networks for Robust Segmentation. Lung arXiv:1806.04051
- [5] Isola P, Zhu JY, Zhou T, Efros AA. Imageto-Image Translation with Conditional Adversarial Networks. arXiv:1611.07004
- [6] Zhong Z, Zheng L, Kang G, Li S, Yang Y. Random Erasing Data Augmentation. arXiv:1708.04896

Generation of 3D CT images of lung nodule using generative adversarial

network

Mizuho Nishio^{*1,2}, Shunjiro Noguchi³, Koji Onoue², Sho Koyasu², Masahiro Yakami^{1,2}, Chisako Muramatsu⁴, Hiroshi Fujita⁴, Kaori Tokashi²

1 Preemptive Medicine and Lifestyle-related Disease Research Center, Kyoto University Hospital

2 Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine

3 Department of Radiology, Osaka Red Cross Hospital

4 Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University

* Corresponding author

Generation of 3D CT images of lung nodule was performed using generative adversarial network (GAN), and the generated images were evaluated by radiologists. 1415 lung nodule depicted on 888 sets of 3D CT images were used, which were obtained from LUNA16. Mixture of L1 loss and GAN loss were utilized for optimization target of GAN network. Data augmentation based on random erasing was performed during training of GAN. For test set of 134 lung nodules, either true lung nodule or generated nodule were given to two radiologists, then the two radiologists recorded their confidence score of being true nodule. Receiver operator characteristics analysis was performed, and area under the curve (AUC) was calculated. AUC of the two radiologists was 0.705 and 0.891, respectively. Accuracy, sensitivity, and specificity of the two radiologists were as follows: accuracy, 71.6% and 81.3%; sensitivity, 71.0% and 78.3%; specificity, 72.3% and 84.6%. These results indicate that it might be possible to generate lung nodules which were difficult for radiologists to judge whether the lung nodules are true nodules or not.

Key words: lung nodule, CT, deep learning, generative adversarial network

眼底画像における OCT 検査結果を用いた CNN による

網膜神経線維層欠損解析

渡邊 颯友*1 村松 千左子*2 周 向栄*3 畑中 裕司*4

原 武史*3 藤田 広志*3

要旨

緑内障は日本における中途失明原因の第1位とされており,40歳以上の20人に1人が緑内障と推定されている.しかし,早期の緑内障は自覚症状が非常に少ないため,早期発見のためには定期検査が必要である.定期検査の中でも特に眼底検査では,緑内障診断の指標の一つとして網膜神経線維層(RNFL)欠損の 有無を調べる.また,OCT検査は精密検査であり,網膜神経線維層の厚みを定量する.しかし,定期検査 においては一般的にOCT検査ではなく眼底検査が行われる.そこで,我々は同時期に得られた眼底画像と OCT検査結果をそれぞれ学習データ、教師データとして全畳み込みニューラルネットワークの学習を行い, 眼底画像単体から RNFL が薄い領域を特定するコンピュータ支援診断システムを構築した.評価方法は, 視神経乳頭中心部から眼底画像を8方向に分割し,各領域の一致率を調べた.結果として,眼底画像単体 から OCT検査結果を用いて RNFL を解析することに成功した.

キーワード:緑内障,網膜神経線維層欠損(NFLD),眼底画像,OCT

1. はじめに

緑内障は日本における中途失明原因の第1位 とされており、40歳以上の20人に1人が緑内 障と推定されている[1].しかし、早期の緑内障 は自覚症状が非常に少ないため、早期発見のた めには定期検査が必要である.定期検査の中で も特に眼底検査では、緑内障診断の指標の一つ

*1 岐阜大学大学院自然科学技術研究科 知能理工学専攻

〔〒501-1193 岐阜市柳戸 1-1〕

e-mail: naberyu@fjt.info.gifu-u.ac.jp

*2 滋賀大学データサイエンス学部

*3 岐阜大学工学部電気電子・情報工学科 *4 滋賀県立大学工学部電子システム工 学科

投稿受付: 2019年3月29日

として網膜神経線維層欠損(NFLD)の有無を調 べる.NFLDは、最も早期に生じる緑内障性眼 底変化であり、網膜神経線維層(NFL)への障 害が厚みの減少として現れる[2].また、OCT検 査は精密検査であり、網膜神経線維層の厚みを 定量する.しかし、定期検査においては一般的 に OCT 検査ではなく眼底検査が行われる.そ のため、定期検査において、眼底画像を用いて OCT 検査のような精度の高い検査を行うこと ができれば、緑内障の早期発見に有益となる.

本研究では、同時期に得られた眼底画像と OCT 検査結果を組み合わせて深層学習を行い、 眼底画像上で NFLD を解析することによって、 眼底画像単体における NFLD の診断精度向上を 目指した.

2. 方法

最初に, 眼底画像(図 1)と OCT 眼底画像(図 2) から血管画像を作成した.まず, 眼底画像の緑 色(G)成分に対して, ブラックトップハット変換 を行うことで, 血管領域を抽出し, 眼底血管画 像(図 3)を作成した.また, 眼底血管画像を用い て血管消去画像(図 4)を作成した.同様に OCT 眼底画像に対してもブラックトップハット変 換を行うことで, 血管領域を抽出し, OCT 血管 画像(図 5)を作成した.

次に,作成した血管画像と OCT 血管画像は, モダリティが異なるため、位置合わせを行った. まず,血管画像と OCT 血管画像の抽出結果は, 視神経乳頭部分で大きく異なるため, OCT 厚み マップに示される DISC 領域を用いて, OCT 血 管画像から視神経乳頭部分を削除した.その後, 眼底血管画像上の視神経乳頭部分を中心とし た 220×220 のテンプレートを作成し, OCT 血 管画像上でテンプレートマッチングを行うこ とで,位置合わせを行った.位置合わせの際は, x,y軸に対して平行移動,回転,拡大・縮小の ずれが見られたため, x 軸(-25≦x≦25, 1 ピク セルずつ), y 軸(-25 \leq y \leq 25, 1 ピクセルずつ), 回転(±8度,2度ずつ),拡大縮小(75~100%,5%) ずつ)の範囲で画像に変化を加えて位置合わせ を行った.また、時間短縮のために、血管画像と OCT 血管画像は半分の大きさにリサイズした 後に位置合わせを行い,評価値には SAD を用 いた.

血管画像の位置合わせに用いた値をもとに, 眼底画像とOCT カラーマップ(図 6)に対しても 同様に位置合わせを行った.その後,位置合わ せを行った OCT カラーマップから, RNFL 厚が データベース平均と比較して小さい領域(赤色 領域)とやや小さい領域(黄色領域)を抽出し,教 師画像を作成した.

そして, 眼底画像を学習画像とし, ペアとな る教師画像とを FCN に入力し, 深層学習を行っ た. データ拡張には, γ変換と左右反転を使用 し, 学習回数は 40epochs とした.

最後に、出力画像にラベリングを行い、面積の 小さい NFLD 候補領域に対して閾値処理を行う ことで,候補領域の削除を行った.

評価方法は、全133 症例のうち、データセット1、データセット2、データセット3を27 症例とし、データセット4、データセット5を26 症例として、5 分割交差検証を行った.結果画像の評価では、視神経乳頭を中心として、教師画像を8 方向に分割し、各方向の不正解数、一致率、真陰性率を評価に用いた.

本研究は岐阜大学の倫理審査委員会の承認 を得ている.

図1 眼底画像

図 2 OCT 眼底画像

図4 血管消去画像

図3眼底血管画像

図 5 OCT 血管画像 図 6 OCT カラーマップ

3. 結果

5 つのデータセットの平均は、1 症例当たり の不正解数は 1.79(方向), 正解率は 40%, 真陰 性率は 70%となった.

4. 考察

OCT 検査結果は詳細な情報を含んでおり,そ の情報を使用することにより, 眼底画像上で NFLD 領域を解析することができたが, 一致率 が 50%に満たない領域が多く存在した. これは 学習画像,教師画像共に NFL 厚が減少している 領域の境界線が曖昧であることが原因の一つ であると考えられる. そのため, 今後は一致率 に加え類似度などを考慮した学習方法を検討 する必要があると考える.

5. まとめ

眼底画像と OCT 検査結果を組み合わせた学 習を行うことで,眼底画像上で RNFL を解析す ることに成功した.

謝辞

本研究の一部はマツダ財団による研究助成 と文部科学省科学研究費補助金(新学術領域) (No. 26108005)により行われました

利益相反の有無

なし

- Yamamoto T, Iwase A, Araie M, et al.: The Tajimi study report 2: prevalence of primary angle closure and secondary glaucoma in a Japanese population. Ophthalmology 112: 1661-1669, 2005
- [2] 井上洋一:どう診る?緑内障視神経乳 頭,メジカルビュー社,東京,2006,pp80-93

Analysis of nerve fiber layer defects on fundus images using CNN

trained with OCT data

Ryusuke WATANABE^{*1}, Chisako MURAMATSU^{*2}, Xiangrong ZHOU^{*3}, Yuji HATANAKA^{*4}, Takeshi HARA^{*3}, Hiroshi FUJITA^{*3}

> *1 Department of Intelligence Science and Engineering, Graduate School of Natural Science and Technology, Gifu University

> > *2 Department of Data Science, Shiga University

*3 Department of Electrical, Electronic and Computer Engineering, Gifu

University

*4 School of Engineering, The University of Shiga Prefecture

Glaucoma is the first leading cause of blindness in Japan. However, glaucoma only has a few warning signs or symptoms. Thus, screening is important to detect glaucoma in early stages. Fundus examination, in which fundus photographs are used, is one of the screening methods for the detection of nerve fiber layer defect (NFLD). In contrast, optic coherence tomography (OCT) examination is not a screening, but a complete check-up, in which the thickness of the whole retina as well as the thickness of the retinal nerve fiber layer is measured. Therefore, we investigated the learning system using both a fundus photograph and OCT examination result to perform a better analysis on fundus examination using the fundus alone. A convolutional neural network (CNN) with deconvolutional layers was trained to detect regions with decreased NFL. As to the evaluation, we divided the output image of CNN into eight segments around the optic nerve head. In each segment, the detected region was considered as a true positive if more than half of the region was overlapped with the gold standard regions. As a result, we could analyze NFL on fundus images using CNN trained with OCT data.

Key words: Glaucoma, Nerve Fiber Layer defect (NFLD), Fundus Image, OCT

小児腸閉塞患者の CT 像における

CycleGAN を用いた電子洗浄手法の検討

西尾 光平^{*1} 小田 絋久^{*1} 千馬 耕亮^{*2} 北坂 孝幸^{*3} 伊東 隼人^{*1} 小田 昌宏^{*1} 檜 顕成^{*2} 内田 広夫^{*2} 森 健策^{*1,4,5}

要旨

本研究では、小児腸閉塞患者のCT像における、CycleGANを用いた電子洗浄手法を提案する.これまでの 腸管閉塞部位検出手法は造影されていない残渣を含んだ腸管を対象としており、残渣と濃度値の類似した 腹水などを誤抽出する場合があった.そこで、腸管内の濃度値を空気と同程度に変換し、残渣が含まれて いないCT像の生成(電子洗浄)を目指す.多くの電子洗浄手法は残渣が造影されたCT像に対する手法で あり、血液の造影のみである小児腸閉塞患者のCT像に適用することは困難である.そこで、本研究では CycleGANを用いた電子洗浄手法について検討する.残渣の多い小児腸閉塞患者のCT像と残渣の少ない大 腸CT検査画像を学習データとして、CycleGANによる双方向それぞれの画像生成モデルを学習する.その 後、残渣の多い画像から残渣の少ない画像への生成モデルを小児腸閉塞患者のCT像に適用する.実験の 結果、小児腸閉塞患者のCT像から残渣の少ないCT像を得ることができた.

キーワード: Computer-Aided Detection (CADe), 腸閉塞, 電子洗浄, 小児外科

1. はじめに

腸閉塞(イレウス)患者の約5分の1は,放 置すると腸管壊死等の重篤な状態を引き起こ すため,緊急手術が行われる [1].手術が必要 か否かの判断には,腹部 CT 像において拡張し た腸管を辿り,閉塞部位の位置や状態を確認す る必要がある.これは,救急医などイレウス診

*1 名古屋大学大学院情報学研究科
〔〒464-8601 名古屋市千種区不老町〕
e-mail: knishio@mori.m.is.nagoya-u.ac.jp
*2 名古屋大学大学院医学系研究科
*3 愛知工業大学情報科学部
*4 名古屋大学情報基盤センター
*5 国立情報学研究所医療ビッグデータ
研究センター

断の経験の浅い医師には容易でなく,自動で閉 塞部位を検出し,診断を支援するシステムが求 められる.

イレウス診断では、血管造影 CT 像により腸 壁を造影することで、拡張した腸管を辿ること を容易にしている(図1参照).従来研究では、 この腸壁が造影されていることに着目し、拡張 した腸管を抽出し探索することにより腸管閉 塞部位の検出を行った [2].しかし、とりわけ 小腸では、腸管内に含まれる残渣が腹水等と濃 度値の差が小さいことや、腸管は複雑に折り重 なっており、精度が低下する問題があった.そ こで本研究では、抽出が困難である残渣を電子 的に洗浄し、残渣が含まれていない CT 像を生 成することで腸管閉塞部位検出の精度向上を

図1 血管造影 CT 像の例. (a) 腸壁の判別が困難な例. (b) 腸壁の判別が容易な例

目指す.多くの電子洗浄手法は残渣が造影された CT 像に対する手法であり,小児腸閉塞患者の CT 像に適用することが困難である.そこで,本研究では CycleGAN [3]を用いた電子洗浄手法について検討する.

2. 手法

本手法は、残渣を含む小児腸閉塞患者の CT 像と残渣を含まない大腸 CT 検査画像を学習デ ータとし、CycleGAN による双方向それぞれの 画像生成モデルを学習する.得られた残渣を含 む CT 像から残渣を含まない CT 像を生成する モデルにより残渣を電子的に洗浄する.手法の 概要図を図 2 に示す.2 つの生成器 G,F はそれ ぞれ、残渣を含む画像から残渣を含まない画像 に変換する生成器(G) とその逆の残渣を含まな い画像から残渣を含む画像へ変換する生成器 (F)である.また、2 つの識別器 D_x,D_y はそれぞ れ、変換前の画像と生成画像を識別する識別器 である.識別器 D_y 残渣を含まない変換前の画

図2 手法の概要図

像と残渣を含む画像から G によって生成され た画像を正しく識別するようにモデルを学習 するのに対し,生成器 G は変換前の画像と識別 できない画像を生成するようにモデルを学習 する. 識別器 Dx,生成器 F も同様にモデルを 学習する. さらに,変換前の画像と対応した画 像を生成するため,サイクルー貫性を利用する. 生成器 G により生成した画像から生成器 F を 用い生成した画像は元の画像と一致している ことが望ましい. その逆のサイクルを含め,

 $\mathcal{L}_{cyc} = \mathbb{E}_{x \sim P(x)} \left[\parallel F(G(x)) - x \parallel_1 \right]$

学習に用いる残渣を含む画像は、それぞれ小

児腸閉塞患者の血管造影 CT 像から残渣を含む 腸管がパッチ内に 10%以上含まれるパッチを Axial 平面から切り出し,使用する. 同様に,残 渣を含まない画像は,成人の大腸 CT 検査画像 から残渣を含まない腸管パッチ内に 10%以上 含まれるパッチを Axial 平面から切り出し,使 用する. また, CT 像の Axial 平面上で-60~60 度 の回転をランダムに行い,パッチを切り取る.

3. 実験と結果

小児腸閉塞患者の血管造影 CT 像 7 症例,成人 の大腸 CT 検査画像 8 症例を用い,実験を行っ た.CT 像の仕様は,画像サイズ 512×512×(257-701)画素,ピクセルサイズ 0.39-0.63 mm,スラ イス間隔 0.40-1.00 mm であった.それぞれ 2 症 例ずつをテストデータ,それ以外の症例を学習 データとする.パッチサイズを 128×128 画素 (残渣を含む腸管のパッチ:2464 枚,残渣を含 まない腸管のパッチ:2385 枚),λ=5 とし,

図4 スライスの結果例. 左:変換前の画像. 右: 生成画像

200epoch モデルの学習を行った. 学習後,小児 腸閉塞 CT 像のテストデータからランダムで切 り出したパッチに対し,残渣を含む画像から残 渣を含まない画像へ変換する生成器 G を適用 し生成した画像の例を図3に示す.また,スラ イスから 64 画素間隔でパッチを切り出し,生 成器 G を適用し生成した結果を組み合わせて 結果のスライスを作成した(図4).生成した結 果が重なっている部分は平均値とした.

4. 考察

提案する CycleGAN を用いた電子洗浄手法に より,造影されていない残渣を含む CT 像から 残渣を含まない CT 像を生成することが可能で あった.また,残渣を含まない CT 像を生成す ることで腸管閉塞部位検出の精度向上に対し ても有用であると考えられる.しかし,腸管が 大きく拡張していない,一部の腸管しか写って いないなど残渣を含む腸管が小さく写る画像 において,残渣を含む腸管が小さく写る画像 において,残渣を含まない画像の生成に失敗す ることを確認した.そのため,パッチの切り出 す部分により残渣が残り,図4で示すように残 渣を完全に消すことが出来なかったと考えら れる.

5. むすび

本稿では、CycleGAN による造影されていな い残渣を含む CT 像からの電子洗浄手法を提案 した.小児腸閉塞患者の CT 像から残渣の少な い良好な CT 像を得ることができた.今後,電 子洗浄の精度向上を図るとともに、腸管閉塞部 位検出精度の比較により定量評価を行うこと を考えている.

謝辞 本研究の一部は堀科学芸術振興財団, JSPS/MEXT 科研費 (26108006, 17H00867, 17K20099), AMED-NII (19lk1010036h0001) なら びに JSPS 二国間交流事業によった.

利益相反の有無なし

- [1] 加藤治文 他編:標準外科学第13版.医学書院, 2013
- [2] 西尾光平 他: Fast Marching Algorithm に基づく小児 CT 像からの腸管閉塞部 位検出手法.第37回日本医用画像工学 会大会: 90-92, 2018
- [3] Zhu J, Park T, Isola P, Efros A: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV: 2223-2232, 2017

A Study on Electronic Cleansing using CycleGAN

on CT Volumes of Pediatric Ileus Patients

Kohei NISHIO *1, Hirohisa ODA *1, Kosuke CHIBA*2, Takayuki KITASAKA*3,

Hayato ITOH *1, Masahiro ODA *1, Akinari HINOKI*2, Hiroo UCHIDA*2, Kensaku MORI*1,4,5

*1 Graduate School of Informatics, Nagoya University

*2 Nagoya University Graduate School of Medicine

*3 School of Information Science, Aichi Institute of Technology

*4 Information Technology Center, Nagoya University

*5 Research Center for Medical Bigdata, National Institute of Informatics

In this paper, we propose electronic cleansing on CT volumes of pediatric intestine obstruction patients that bloodvessels are contrast enhanced. Our previous obstruction detection method was designed to process intestines that contain non-contrast-enhanced residual materials. This method segments regions of outside intestines, e.g. abdominal dropsy, which have similar intensities residual materials. We replace intensities of voxels inside the intestines by those of the air to generate CT volumes that do not contain residual materials. Since intestines that contain non-contrast-enhanced residual materials, conventional electronic cleansing methods cannot be applied. Therefore, we introduce CycleGAN for electronic cleansing. We produce bidirectional image translation models between 1) pediatric CT volumes of ileus patients that contain much amount of residual materials, and 2) CT volumes for CT colonography that contain little amount of residual materials. Using the models, 1) the pediatric CT volumes are converted as if 2) CT volumes for CT colonography. Experimental results showed that CT volumes that contain less amount of residual materials were obtained from pediatric CT volumes.

Keywords: Computer-Aided Detection (CADe), Ileus, Electronic cleaning, Pediatric surgery

低線量 CT 画像に基づいた骨ミネラル量の推定法

山田 凌大*1 石原 匡彦*2 原 武史*1 周 向栄*1

片渕 哲朗*3 藤田 広志*1

要旨

核医学画像の定量解析の中で,骨に集積する放射性薬剤のSUVの計算では,全身の骨ミネラル量の測定が 重要である.本研究は,低線量CT画像を用いた骨ミネラル量の推定法の開発を目的とした.等方化した CT画像に閾値処理や空間フィルタを利用し,骨格抽出を行う.骨格のMIP画像を基に骨面積を定める. 骨面積に骨密度を乗じた値を骨ミネラル量の推定値とする.日本人健常者2411人に対し行われた体組成計 測におけるDXAの測定データにより,全身の骨ミネラル量の回帰式が定められている.この回帰式から算 出される症例の全身の骨ミネラル量と,107症例のCT画像に基づき推定した胴部骨ミネラル量の相関係数 は0.86であった.また,骨格を解剖学的構造に基づいて分類し,部位ごとの骨ミネラル量の推定も可能で ある.以上より,CT画像に基づく骨ミネラル量の定量解析の有用性が示唆された.

キーワード:骨ミネラル量,低線量 CT 画像

1. はじめに

PET 検査や SPECT 検査といった核医学検 査は悪性腫瘍の診断に用いられている. 放射 性薬剤の集積程度の判定量的指標として Standardized Uptake Value(SUV)が扱われてい る. SUV は,患者の単位体重あたりの薬剤投 与量に対する組織の薬剤集積量の比で表され る. SUV を骨のみに適用することを考えると, このときの SUV は,単位骨量(骨ミネラル量) あたりの薬剤投与量に対する骨組織の薬剤集 積量の比となる.骨についての SUV の計算に は骨ミネラル量の測定が重要となる.

*1 岐阜大学大学院自然科学技術研究科 知能理工学専攻

〔〒501-1194 岐阜県岐阜市柳戸 1-1〕
e-mail: ryama@fjt.info.gifu-u.ac.jp
*2 岐阜大学医学部附属病院放射線部
*3 岐阜医療科学大学保健科学部

本研究では、PET/CT 検査で撮像された低 線量 CT 画像 107 症例から骨格を抽出し、骨 ミネラル量を推定する方法の開発を目指した.

2. 方法

等方ボクセル化した CT 画像から, 閾値処 理やラプラシアンフィルタにより骨格を抽出 する.また,解剖学的構造に基づき,細線化 処理等を用いて,骨格を頭部,脊柱,腕部, 骨盤,脚部に分類する[1].骨格の MIP 画像を 作成し,骨面積を定める.骨面積に骨密度を 乗じた値を骨ミネラル量の推定値とする.骨 密度には,日本人健常者 2411 人を対象に行っ た体組成計測データ[2]による,年代別平均骨 密度を用いる.

3. 実験

体組成計測データ[2]において, DXA の測定 結果により, 年齢, 性別, 身長, 体重を変数 とする全身の骨ミネラル量の回帰式が定めら
れている.回帰式より算出される全身の骨ミ ネラル量と、本手法により求められる骨ミネ ラル量との相関係数を求める.

なお,使用した CT 画像には撮像時の患者 の姿勢や撮像範囲の違い(図 1)があるため, 頭部,腕部,脚部を除き(図 2),胴部のみの 骨ミネラル量の算出値を用いた.

図1 使用画像の MIP 画像

図2 胴部のみの MIP 画像

4. 結果

本手法により求められた胴部の骨ミネラル 量と、回帰式より算出される全身の骨ミネラ ル量との相関係数は 0.86 であり、強い相関を 示した.

縦軸を胴部の骨ミネラル量,横軸を全身の 骨ミネラル量とし,BMIによって色を変えて プロットした散布図を示す(図3).BMIが高 い程,全身の骨ミネラル量に対し胴部の骨ミ ネラル量が低くなる傾向が見られた.回帰式 では体重が重い程骨ミネラル量が高く算出さ れるが,本手法では体重による影響を受けず に骨ミネラル量の推定が行えている.

図3 BMI 別散布図

5. まとめ

低線量 CT 画像から骨格を抽出し, 骨ミネ ラル量の推定を行った.本手法により推定し た胴部の骨ミネラル量と,体組成計測データ の回帰式から算出される全身の骨ミネラル量 との相関係数は0.86と強い相関を示した.CT 画像を利用することで,より正確な骨ミネラ ル量の推定が可能であることが示唆された.

謝辞

本研究を進めるにあたり,有益なご助言を いただきました研究室の方々に感謝の意を表 します.本研究の一部は,文部科学省科研費・ 新学術領域研究(26108005)および基盤研究 C(17K10455,18K12102)の補助によって行 われました.

利益相反の有無

なし

文 献

- [1] 林達郎,周向栄,原武史 他:体幹部 X線CT像における自動的な骨格の構 造認識手法の開発.第25回日本医用 画像工学大会,OP3-4,2006
- Ito H, Ohshima A, Ohto N, et al.: Relation between body composition and age in healthy Japanese subjects. European Journal of Clinical Nutrition 55, 462-470, 2001

Estimation of bone mineral content based on low-dose CT images

Ryota YAMADA^{*1}, Tadahiko ISHIHARA^{*2}, Takeshi HARA^{*1}, Xiangrong ZHOU^{*1}, Tetsuro KATAFUCHI^{*3}, Hiroshi FUJITA^{*1}

*1 Department of Intelligence Science and Engineering, Graduate School of Natural Science and Technology, Gifu University

*2 Department of Radiology Services, Gifu University

*3 Faculty of Health Science, Gifu University of Medical Science

Measurement of whole body bone mineral content is important in calculation of SUV of radiopharmaceutical accumulated in bone in quantitative analysis of nuclear medicine image. This study aimed to develop a method to estimate bone mineral content using low dose CT images. Bone extraction is performed using threshold processing and spatial filter on the isotropic CT image. The bone area is determined based on the MIP image of the bone. The value obtained by multiplying the bone area by the bone density is used as the estimated value of the bone mineral content. The regression data of whole body bone mineral content is defined by the measurement data of DXA in body composition measurement performed on 2411 healthy Japanese people. The correlation coefficient between whole body bone mineral content of the case calculated from this regression equation and trunk bone mineral content estimated based on the CT image of 107 cases was 0.86. In addition, it is possible to classify the bone based on the anatomical structure and estimate the bone mineral content of each part. These results suggest the usefulness of quantitative analysis of bone mineral content based on CT images.

Key words: bone mineral content, low-dose CT

胸部 CT 像中の肺結節の良悪性鑑別における自動抽出され

た画像特徴の可視化

平島 翔*1 平野 靖*1 木戸 尚治*2 岩野 信吾*3 本田 健*4

関 順彦*4 金 亭燮*5

要旨

肺に関する病気には、CT 像上に肺結節と呼ばれる高 CT 値の陰影が写し出されるものがある. 医師はその CT 像から画像所見の有無や程度を評価することにより、肺結節の良性・悪性を判断している. また、近年では Deep Learning を用いた画像診断支援などの研究が活発に行われている. しかし、Deep Learning の判断過程は解釈が難しく、なぜその結果が得られたのかが分からない. このことから、判断結果に対して医師や患者が納得しない可能性があり、説明できる AI(Explainable AI, XAI)に関する研究も進められ始めている.

本研究では Deep Learning によって構築された CADx(Computer-Aided Diagnosis)システムの判断結果の根拠を明示的にするために, Deep Learning が抽出した画像特徴の可視化を目的とする. これにより, CADx システムの判断結果に対する信頼性の向上が期待できる.

本稿では、肺結節周辺の3次元画像を用いて CNN (Convolutional Neural Network)の学習と識別を行い、 Guided Grad-CAM(Guided Gradient-weighted Class Activation Mapping)を用いることで CNN の抽出した画像特 徴をクラスごとに可視化した.これにより、肺結節の良悪性鑑別においての CNN の注目箇所を特定した.

キーワード:画像所見, CT, Deep Learning, Grad-CAM, XAI

1. はじめに

肺がんなどの肺に関する病気には,CT 像上 に肺結節と呼ばれる高 CT 値の陰影が写し出さ れるものがある.医師はその CT 像から画像所 見の有無や程度を評価することにより,肺結節

*1 山口大学大学院創成科学研究科電 気電子情報系専攻

〔〒755-8611 宇部市常盤台 2-16-1〕

- e-mail: b059vg@yamaguchi-u.ac.jp
- *2 大阪大学大学院医学系研究科
- *3 名古屋大学医学部放射線医学教室
- *4 帝京大学医学部附属病院
- *5 九州工業大学大学院工学研究院

の良性・悪性を判断している[1].また,近年で は Deep Learning を用いた画像診断支援などの 研究[2][3]が活発に行われている.しかし,Deep Learning の判断過程は解釈が難しく,なぜその 結果が得られたのかが分からない.このことか ら,判断結果に対して医師や患者が納得しない 可能性があり,説明できる AI(Explainable AI, XAI)[4]に関する研究も進められ始めている.

そこで、本研究ではコンピュータによって得 られた判断結果の根拠を明示的にするために、 Deep Learning が抽出した画像特徴の可視化を 行う.これにより、Deep Learning を用いた画像 診断支援の結果に対する信頼性の向上が期待 できる.

Deep Learning にはいくつかの手法があるが,

画像を入力として特徴を認識・検出するために は一般的に CNN(Convolutional Neural Network) を用いる. CNN は人間の視覚野のニューロンの 結合と似たニューラルネットワークであり,画 像認識に対して高いパターン認識能力を示す [5]. 従来手法では,人の手で画像認識に有効な 特徴を特徴量として算出し,その特徴量をもと に分類アルゴリズムを構築して分類していた. しかし CNN により,人の手による特徴量の設 定をせずにデータ分類が可能になった.

抽象度の高い認識能力を獲得した CNN が, 実際に画像のどこに着目しているか特定する 手法として Grad-CAM(Gradient-weighted Class Activation Mapping)がある[6]. これは着目して いる特徴箇所をクラスごとにヒートマップで 強調するものであるが,解像度が低く,見てい る内容の詳細がわからない.また,拡張手法で ある Guided Grad-CAM はクラスごとにピクセ ルレベルで出力するため,より詳細な情報を得 ることができる.

本研究では、まず医師によって良悪性に関す るラベルが与えられた肺結節周辺の CT 像を用 いて、CNN の学習を行い、良悪性を分類する識 別器を作成する.作成した識別器に肺結節周辺 画像を入力して良悪性を識別する.このときに、 Guided Grad-CAM を用いることで抽出された画 像特徴が画像中のどこに対応するかを可視化 することができる.

2. 提案手法

本研究での手法の流れを図1に示す.また, 以下に提案手法の詳細を示す.

1) CT 像の等方性ボクセル化

撮影された CT 像は CT 像ごとにサイズや解 像度が異なる. さらに一般的にボクセルの形状 は立方体ではなく z 軸方向に長く伸びた直方体 になっている. 等方性ボクセル化によって 3 軸 方向全ての解像度を等しくすることで,肺結節 の立体的な形状判断や既存構造の認識が容易 になる. 一般には, xy 面内の解像度に比べ, z 軸方向の解像度が低い傾向にある. 本研究では, 各 CT 像の z 軸方向の解像度を線形補間法によ って xy 平面の解像度に統一した.

2) 肺結節画像の切り出し

着目する肺結節に対し肺野全体の CT 像は非 常に大きいため、肺結節を中心に切り出しを行 った.その際, CNN の予測結果に影響を与えな いよう,結節の周囲構造(胸壁や血管など)との 関係を損なわないサイズを試行錯誤的に決定 した.本研究では、肺結節を中心とし,60×60 ×60[voxel]の大きさで画像を切り出した.

3) 画像の水増し

Deep Learning では学習する際にデータ量が少 ない場合,過学習が発生することが多い.過学 習とは,モデルが学習データに過剰に適合し, 未知データでは精度が低く,汎化性がない状態 のことである.過学習を抑制するために,平行 移動・回転・鏡映を用いて学習に用いる画像枚 数を水増しした.本研究では 1[volume]の3次 元画像に対し85通りの座標変換を行うことで, 86[volumes]の3次元画像を生成した.

4) 階調変換

CT 像は一般的に 4096 階調の 3 次元画像である.しかし,データ量が多いため階調数を減ら す必要がある.また,肺結節周辺画像中の良悪 性鑑別に有用と考えられる CT 値の濃度域は限 定的であるため,画像から-1000~200[HU]をと り,256 階調に変換した.

5) CNN を用いた肺結節の良悪性識別 肺結節周辺画像の内,80%を学習データ, 20%をテストデータとして, CNN の学習を行い, 良悪性の識別器を作成した.なお,学習データ については前述の方法で水増しを行った.ネッ

トワークのモデルを表1に示す.また,学習率 を 0.00005,減衰率を 0.0005,バッチサイズを 32 とした.

表1 CNN モデル

	フィルタ サイズ	ストラ イド	出力マップ サイズ	チャネル 数	活性化 関数
input	-	-	60×60×60	1	-
convolution	3×3×3	1	60×60×60	16	ReLU
max pooling	2×2×2	2	30×30×30	16	-
convolution	3×3×3	1	30×30×30	32	ReLU
convolution	3×3×3	1	30×30×30	32	ReLU
max pooling	2×2×2	2	15×15×15	32	-
fully connect	-	-	-	16	ReLU
fully connect	-	-	-	1	sigmoid

6) Guided Grad-CAM

データセットから原画像の肺結節周辺画像
 を識別器に入力し、良悪性の識別を行い、
 Guided Grad-CAM を用いて予測結果を可視化した. Guided Grad-CAM の処理を以下の式(1)と(2)より示す.

$$a_n^c = \frac{1}{Z} \sum_i \sum_j \sum_k \frac{\partial y^c}{\partial A_{ijk}^n} \tag{1}$$

まず,予測クラスcの確率スコア $y^c \varepsilon n$ 番目の 特徴マップのボクセル(i,j,k)における強度 A^n_{ijk} について微分して勾配 $y^n/\partial A^n_{ijk}$ を計算した.次 にそれらの全ボクセルについて,特徴マップサ イズZを用いて平均をとることで,クラスcのn番目のフィルタに関する重み係数 $a^c_n \varepsilon$ 計算し た.この重み係数 a^c_n が大きいほど,その特徴マ ップ A^n_{ijk} がそのクラスcにとって重要であると いうことである.

$$L^{c}_{Grad-CAM} = ReLU\left(\sum_{n} a_{n}^{c} A^{n}\right)$$
(2)

式(1)の重み係数 a_n^c によりn個のフィルタの加重 平均を計算し,活性化関数 $ReLU(x) \equiv \max\{x, 0\}$ を適用したものをヒートマップ出力として定 義した.式(2)の結果を従来手法である Guided Backprop[7]と掛け合わせて出力することで,クラスごとにピクセルレベルで可視化した.

3. 実験

1) 実験データ

実験では、2種類のデータセットを使用した. 1 つは帝京大学医学部附属病院で撮影された胸 部 CT 像 42 症例、もう 1 つは、名古屋大学医学 部附属病院で撮影された胸部 CT 像 38 症例で ある.また、本研究では医師の評価した肺結節 の良悪性を正解ラベルとした.CT 像の詳細を 以下に示す.

帝京大学医学部附属病院で撮影された症例
・症例数:42症例(良性2症例,悪性40症例)
・スライスサイズ:512×512~632×632[pixel]

- ・スペーシングサイズ: 0.529~0.742[mm]
- ・スライス厚: 0.5~3.0[mm]
- ・スライス枚数::257~649[枚]

名古屋大学医学部附属病院で撮影された症 例

・症例数:38 症例(良性 38 症例)

・スライスサイズ: 512×512[pixel]

- ・スペーシングサイズ: 0.625~0.702[mm]
- ・スライス厚:0.5[mm]
- ・スライス枚数::531~771[枚]

2) 評価方法

肺結節の良悪性について CNN を用いて学習 と識別を行い,水増しを行っていないテストデ ータに対して CNN が出力した識別結果が正解 ラベルと一致した場合を正解とした.データセ ットから切り出した肺結節画像群を5つに分け, 1つをテストデータ,残りの4つを学習データ として,5分割交差検証によって評価を行った. データセットの内訳を表 2 に示す.単位は [volumes]である.

\square	set_1	set_2	set_3	set_4	set_5	合 計
良 性	8	8	8	8	8	40
悪 性	8	8	8	8	8	40
合 計	16	16	16	16	16	80

表2 良悪性鑑別実験に用いたデータセット

4. 結果

良悪性鑑別実験における識別率を表3に示す. 単位は[%]である.

\setminus		テストデータ				平均
	set_1	set_2	set_3	set_4	set_5	± 標準 偏差
識別率	93.8	87.5	93.8	87.5	87.5	90.0 \pm 3.1
誤差	0.09	0.13	0.38	0.20	0.50	-

表3 良悪性鑑別の識別率

表3から、最も識別率の高い set_1 と set_3 の うち、学習時の識別率の高く、誤差の低い set_1 をテストデータとしたモデルから Guided Grad-CAM を用いて悪性の画像特徴の可視化を行う. 入力画像, Grad-CAM の結果, Guided Grad-CAM の結果を図 3~図7 に示す.また,注目度の高 い箇所を赤く,注目度が低くなるにつれて徐々 に緑,青と表示している.Grad-CAM をそのま ま表示すると全体的に青い画像になるため,最 大値を1,最小値を0に注目度を正規化し,0.1 以下の場合色を付けていない.

(a)入力画像

(b)Grad-CAM (

(c)Guided Grad-CAM

図 3 すりガラス濃度の所見を持つ 悪性結節[8]

(a)入力画像

(b)Grad-CAM (c)Guided Grad-CAM

図 4 やや辺縁が不明瞭,すりガラス濃度, 胸膜陥入像[8]

(a)入力画像

(b)Grad-CAM (c)Guided

Grad-CAM 図 5 ノッチ,スピキュラ,肺血管・気管支 の集束像[8]

(a)入力画像 (b)Grad-CAM (c)Guided Grad-CAM

図6 肺血管・気管支の圧排像[8]

(a)入力画像
 (b)Grad-CAM
 (c)Guided
 Grad-CAM
 図 7 ノッチ, 肺血管・気管支の集束像[8]

5. 考察

1) 良悪性鑑別実験のについて

本研究ではまず、肺結節の良悪性を識別する CNN モデルを作成した. CNN の識別結果につ いて考察を行う. 肺結節の良悪性鑑別の識別率 は 90.00±3.01[%]であった. 無作為に 2 クラス 分類した場合の識別率が 50[%]であることを考 慮すると、精度の良い結果といえる.しかし本 研究では、良性と悪性でデータが撮影された施 設が異なることから, 良悪性鑑別の識別率が向 上した可能性が考えられる。画像特徴の可視化 は行えるため, 良悪性の識別には成功している が, 改めて撮影条件を揃えたデータを用いて実 験を行う必要があると考えられる。また、表3 から、識別率が 93.8[%]と 87.5[%]の 2 パターン しかないことが分かる.これは、識別率の算出 に用いた水増しを行っていないテストデータ が 16[volumes]しかなく、1[volumes]あたりの識 別率への影響が大きいためである. このことか ら、水増しを行っていないテストデータを増や ことで、より精度と信頼性の高い結果を得られ ることが予想される.

2) 画像特徴の可視化について

図 3~図 7 は水増しを行っていない肺結節画 像を良悪性について,良悪性鑑別実験で作成し た CNN モデルを用いて識別し,抽出した悪性 の画像特徴を Grad-CAM と Guided Grad-CAM を 用いて可視化した結果である.それぞれの画像 について考察を行う.

図3は、すりガラス濃度の肺結節画像から得られた画像である.この肺結節について医師と CNN がともに悪性であると判断している.この 図では、すりガラス濃度の肺結節全体を画像特 徴として可視化している.これは、すりガラス 濃度の肺結節が悪性の画像特徴であると CNN が判断したと考えられる.また、図から胸壁に ついても注目していることが分かる.医師による評価では胸壁に関する所見はないとなって いるため、CNN が悪性と識別するのに注目して いる特徴は、医師と全く同じであるとは限らな いことが分かる.

図4は、やや辺縁が不明瞭、すりガラス濃度 であり、胸膜陥入像の所見がみられる肺結節画 像から得られた画像である.この肺結節につい て医師と CNN がともに悪性であると判断して いる.この図では、CNN が肺結節や胸壁を画像 特徴として可視化している.肺結節の辺縁や濃 度については注目度が高いことが分かる.しか し、胸膜陥入像については青色で表示され、あ まり注目されておらず、所見とは異なる箇所を 最も注目している.このことから、この画像に おいて CNN が悪性であると識別する画像特徴 は、医師が診断に用いる所見より重視する箇所 があるということが分かる.

図5は、ノッチ、スピキュラ、肺血管・気管 支の集束像の所見がみられる肺結節画像から 得られた画像である.この肺結節について医師 とCNN がともに悪性であると判断している. この図では、スピキュラ、肺血管・気管支の集 束像を特徴箇所として抽出していることが分 かる.しかし、ノッチを画像特徴として抽出し ていない.これは、CNN はあくまで良悪性につ いて識別を行っており、肺結節の所見の有無を 学習に用いていないため,所見をすべて表示していないからである.

これらのことから, CNN が自動抽出した悪性 の画像特徴は, 医師が診断に用いる所見と同じ 箇所であることが多いが, それとは異なる画像 特徴も抽出している.特に胸壁を画像特徴とし て抽出した結果が多くみられた.これは, 医師 が診断に用いる一般的な画像所見とは異なる 画像所見が存在する可能性が考えられる

6. まとめ

本研究では、良悪性鑑別における CNN の識 別結果の根拠を明示的にし,信頼性を向上する ために,自動抽出した画像特徴の可視化を行う ことを目的とした.そこで、本稿では CT 像よ り切り出した肺結節周辺の3次元画像を用いて CNN の学習と識別を行い, Guided Grad-CAM を 用いることで CNN の抽出した画像特徴を可視 化する手法を提案した. 良悪性鑑別に用いた CNN の識別率は 90.00±3.01[%]であった.本研 究では, CNN のパラメータを試行錯誤的に決定 したため、今後は、パラメータを調整すること でより精度のよい抽出が行えると考える.また, 可視化した画像特徴から, CNN がどこに着目し て良悪性を識別しているかが分かった.本手法 を用いることにより、今後、CNN による識別結 果の根拠を明示的することで, 信頼性が向上す ることが期待できる.

今後の課題として, Deep Learning を用いた新 しい所見の発見や所見の重要度の評価などが 考えられる.

謝辞

御助言及び御協力を頂きました本研究室の 大学院生,学部生の皆様に心よりお礼申し上げ ます.本研究は日本学術振興会科学研究費補助 金新学術領域研究(26108009),および基盤研究 (B)(17H02110)による支援を受けた.

利益相反の有無

なし.

文 献

- 森谷浩史,秋元達也,中川学他:肺結節 の CT/MRI 診断,臨床画像,26,144-160, 2010
- [2] Tu X, Xie M, Gao J, et al. : Automatic Categorization and Scoring of Solid, Part-Solid and Non-Solid Pulmonary Nodules in CT Images with Convolutional Neural Network, Scientific Reports, 7, Article number: 8533, 2017
- [3] 上野翔子,杉山治,西尾瑞穂他:患者情報を考慮した胸部 CT 画像の診断支援の試み,SIG-AIMED,004-04,2017
- [4] Gunning D. :Explainable Artificial Intelligence (XAI), DARPA, DARPA-BAA-16-53, 2016
- [5] Krizhevsky A, Sutskever I, Hinton G E: ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012
- [6] Selvaraju R R, Cogswell M, Das Abhishek, et al. :Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, arxiv, 1610.02391, 2017
- [7] Springenberg J T, Dosovitskiy A, Brox T, et al . :Striving for Simplicity: The All Convolutional Net, arxiv, 1412.6806, 2015
- [8] 日本肺癌学会編:臨床・病理肺癌取扱い利 用規約.第7版,金元出版,2010

Visualization of automatically extracted image features in benign /

malignant discrimination of lung nodules in chest CT images

Kakeru HIRASHIMA^{*1}, Yasushi HIRANO^{*1}, Shoji KIDO^{*2}, Shingo IWANO^{*3}, Takeshi HONDA^{*4}, Nobuhiko SEKI^{*4}, Hyoungseop KIM^{*5}

- *1 Graduate School of Sciences and Technology for Innovation, Yamaguchi University
- *2 Graduate School of Medicine, Osaka University
- *3 Nagoya University Graduate School of Medicine
- *4 Teikyo University Hospital
- *5 Graduate School of Engineering, Kyushu Institute of Technology

Lung nodules in CT images are presented as regions with high CT number. The doctor judges the benignancy / malignancy of the lung nodule by evaluating the presence or absence, and extent of the medical findings of tumors in from CT images. Recently, researches on diagnosis support using Deep Learning have become actively. However, the judgement process in Deep Learning is difficult to interpret.

In this paper, we propose to visualize image features extracted from Deep Learning in order to clarify the grounds of results obtained by CAD (Computer-Aided Diagnosis) systems based on Deep learning.

In this paper, we used three-dimensional image cut out the peripheral regions of lung nodules from the original CT images. We created discrimination model using CNN (Convolutional Neural Network) and carried out the discrimination for those images. We visualized image features extracted from CNN by using Guided Grad - CAM (Guided Gradient-weighted Class Activation Mapping). As a result, the attention points of CNN were specified.

Key words: Medical findings, CT, Deep Learning, Grad-CAM, XAI

CT 画像を用いた脊柱海綿骨の骨密度定量化

李 新*1 光本 浩士*1 平野 雅嗣*2

山崎 克人*3 田村 進一*4

要旨

近年,高齢化に伴い,骨粗鬆症患者が年々増加している.このため,骨粗鬆症患者の CT 画像を対象としたコンピュータ支援システムの開発がなされ骨密度の計測が報告されている.

本稿ではより精密な計測を目的にし,まず,抽出した脊柱の各スライスに対し,海面骨と皮質骨の境界を検出し,海綿骨領域のデータ値を用いた CT 値の平均を求める.その結果,脊柱に沿った骨密度の変化,椎骨ごとの変化を計測することができた.

キーワード:骨粗鬆症、海綿骨、皮質骨、領域拡張処理

1. はじめに

近年,高齢化に伴い,骨粗鬆症患者が年々増加 している.その影響により医師による CT 像の読 影が膨大化し,多大な時間と労力が必要になり, 見落としが危惧されている.このため,骨粗鬆症 患者の CT 画像を対象としたコンピュータ支援 システムの開発がなされている.先行研究とし て高橋ら[1]のシステムでは,安定して骨粗鬆診 断が行えているが,プログラムはオープンにな っていない.骨密度は設定した楕円内のみ計測 している.より細かい計測をするにはより精度 のよい手法を開発しなければならない.また,海 綿骨の抽出に関し,近藤ら[2]は Snakes による 手法を検討している.この手法はパラメータの 設定によって輪郭の持つ形状や濃度値などに

*1 大阪電気通信大学大学院 [〒572-8530 寝屋川市初町 18-3] e-mail: mi18a003@oecu.jp *2 新居浜工業高等専門学校 *3 栄宏会小野病院

*4 (株) NBL 研究所

左右され,試行錯誤によってすべての輪郭が抽 出可能となる値を決める必要がある.

本稿では,三次元 CT 画像から脊柱データを抽 出し,脊柱データを用い,海綿骨と皮質骨の領域 分割処理を行い,海綿骨の骨密度を計測する手 法を提案し,椎骨内での変化を計測した.

2. 骨粗鬆症

骨粗鬆症とは,骨の強度が低下し骨折しやす くなる病気である.全身の骨がもろくなるため, 軽い力が加わるだけで様々な部位の骨折が起 こる.骨粗鬆症になると,立った姿勢から転んだ くらいでも,椎体(背骨),大腿骨近位部(足の付け 根)などに骨折を起こしやすくなる.

2.1 皮質骨と海綿骨

骨は,皮質骨と海綿骨に分けられる.外側にあ る皮質骨はカルシウムやリンを主成分とする 硬い骨で,海綿骨は骨髄腔内に広がる骨梁と呼 ばれる小さな骨の柱の集合体である(図1).

海綿骨は表面積が大きく,骨髄と広く接し,骨 代謝回転は皮質骨に比べて約 10 倍と言われて いる.従って,初期の骨量減少が認められるのは 海綿骨である.従って,骨粗鬆症に経過観察のた めには,海綿骨の骨密度を計測すべきである.

3 脊柱抽出処理の流れ

処理の流れを図2に示す.CT データを読み込 み,メディアンフィルタでスパイクノイズを除 去し,二値化処理を行う.領域拡張の開始点を決 め,領域拡張処理をし,脊柱領域のみを抽出する.

3.1 開始点決定手法

脊柱抽出には、領域拡張法を使用する。領域 拡張処理とは、円、球などの構造要素を設定し、構 造要素内のすべての点がある条件を満たす際、 この構造要素を領域に含み、満たさない場合は 含まない.この処理を指定した開始点から繰り 返すことにより構造要素ごとに領域を抽出す ることができる処理である.従って、構造要素の 大きさにより脊柱と肋骨が分離できるが、開始

図 2 脊柱抽出処理

点を肋骨部や骨以外の位置に設定すると脊柱 抽出はできない.

従来手法として北坂ら[3]は領域拡張の開始 点を,入力画像の中央のスライス(入力された n 枚のスライスのうち n/2 枚目のスライス)にお ける最大連結成分の重心としている.しかし,こ の手法では開始点が椎孔と呼ばれる穴に設定 される事があり,領域拡張法が動作しない.

対策として,円形度を用いた脊柱抽出処理を 用いることにより脊柱領域を安定的に抽出す ることができる手法を開発した.

3.2 空洞処理

空洞処理とは、スライス画像の骨領域内に存 在する大きな空洞を埋める手法である.領域分 割処理でスライス画像を生成する.骨の輪郭を 抽出し、点(0,0)を開始点として輪郭の外部領域 を領域拡張処理で埋める.処理後の画像を白黒 反転し、骨領域内部に存在する大きな空洞を埋 める.

4. 皮質骨と海綿骨の領域分割処理 4.1 処理の流れ

処理の流れを図 3 に示す.脊柱データを読み 込み,各スライス画像を生成する.そして,スライ ス画像ごとの重心位置を求め,極座標変換し画 素値の移動平均を行う.その画素値から境界点 を求め,境界点の移動平均を行う.境界点座標を 極座標から直交座標に変換し,皮質骨と海面骨 の境界を決める.

4.2 脊柱スライス画像の極座標変換

極座標とは(*r*, θ)で点の位置を示す方法である(式(1)).

$$r = \sqrt{x^2 + y^2}, \theta = \tan^{-1}\frac{y}{x} \tag{1}$$

スライス画像の重心位置(*px*,*py*)を中心(*cx*,*cy*) に平行移動し,CT データと骨領域データを同時 に 0 から 359 度になるまで 1 度ずつ回転(0)さ せ,その際の骨領域データと同じ座標に位置す る CT データの画素値を中心から上(*r*)へ出力画 像に代入していた.

4.3 境界点計算

原点(0,0)から縦軸下方向に1ピクセルずつ調 ベ,縦軸の画素値の最大値より9/10以下の画素 値を検出したとき,その座標を境界点とする.そ して横軸1度進め,横0から360度の範囲で繰 り返し,合計360点を検出する.

境界点決定後,座標の逆変換(式(2))行うこと で極座標から直交座標へ戻すことができる.最 後に画像座標へ変換(式(3))を行い,各点を線で 結ぶことで領域境界を決定することができる

$$x = r\cos\theta, y = r\sin\theta \tag{2}$$

$$dx = cx - x, du = cy - y \tag{3}$$

5. 海綿骨の骨密度計算

皮質骨と海綿骨の境界を決定した後,領域拡張 処理を用い,境界の外部領域に 255 を代入する. 海面骨のみの領域を求める.処理後,海綿骨領域 の座標を利用し,元データである CT データの CT 値を海綿骨領域に代入し,骨密度(BMD)を計 算する.

5.1 骨密度の計算

海綿骨領域内の CT 値が高い点のみに対し,メ ディアンフィルタ処理を行う.処理した後,海綿 骨領域内の CT 値の合計と面積から平均 CT 値 を求め,これを骨密度(BMD)とする.

6. 実験結果

CT 画像 388 枚の中,脊柱のスライス画像であ る 210 枚用い実験を行った.図 4(a)の白いライ ンは海綿骨と皮質骨の境界を表す.図 4(b)は海 綿骨領域のみを表す.スライスごとの骨密度を 計測した結果が図5に示す.

(a) 境界輪郭

(b) 海綿骨領域 図 4 海綿骨の領域分割

図 6 の(a)と(b)は椎骨ごとの骨密度を示 す.(a)では骨密度は一定に保っている.(b)の骨 密度は周辺部が高くなっている.(a)と比較する と,椎骨内での変化が大きくなっている.(b)では 下半身に向かって骨密度が若干大きくなって

(b) スライス番号:127~149 図 6 椎骨の骨密度

いることが見られる.

131 番目と 138 番目の海綿骨領域のスライス を図 7 に示す.図 6(b)から見ると 131 番目の骨 密度が 138 番目より大きいため、該当スライ ド画像を示す。

7. まとめ

本稿では、三次元 CT 画像から脊柱を抽出する ため、領域拡張の開始点を、円形度を基準とした 脊柱のスライス画像から選択している.次に骨 粗鬆症が進行すると脊柱内に空洞が存在し、空 洞が大きいため、領域拡張処理が止まってしま い、空洞処理を追加した.抽出した脊柱データの スライス画像を極座標変換し、海綿骨と皮質骨 の境界を検出した.そして、海綿骨のみの領域を 用い、海綿骨の骨密度を計測する手法を提案し、 椎骨内での骨密度の変化を計測した.

今後の課題として,骨梁を立体的に把握し,そ の大きさを定量化したい.

(a) 海綿骨領域:131 番

(b) 海綿骨領域:138番 図7海綿骨領域

利益相反の有無

なし

文 献

- [1] 高橋秀次,鈴木英宣,仁木登他:胸部マルチスライス CT 画像を用いた骨粗鬆 症診断システム.信学論 D,vol.J96-D,no.4:892-900.2013
- [2] 近藤一光,尾川浩一,長岡智明他: Snakes を用いた脊椎形状認識と骨粗 鬆症診断への応用,法政大学計算科学研 究センター報告,17:73-77,2004
- [3] 北坂孝幸,小川浩史,横山耕一郎他:解 剖学的知識に基づく非造影 3 次元腹部 X 線 CT 像からの複数臓器領域の抽出, コンピュータ支援画像診断学 論,vol.9,no.1:1-14,2005

Bone Density Quantification in The Spinal Column Cancellous Bone

Using CT Images

Xin LI*1, Hiroshi MITSUMOTO*1, Masatsugu HIRANO*2, Katsuhito YAMASAKI*3, Shinichi TAMURA*4

*1 Osaka Electro-Communication University Graduate School of Engineering

*2 Niihama National College of Technology

*3 Eikokai Ono Hospital

*4 NBL Technovator Co., Ltd.

In recent years, osteoporosis patients are increasing year by year with the aging of the population. For this reason, measurement of bone density for which development of a computer support system for CT images of osteoporosis patients has been made has been reported.

In this paper, for the purpose of more precise measurement, for each slice of the displaced and extracted spine, the boundary between the sea surface bone and the cortical bone is detected, and the average of the CT values using data values of the cancellous bone region is calculated. It was possible to measure changes in bone density along the spine and changes from vertebra to vertebra.

Key words: Osteoporosis, Cancellous bone, Cortical bone, Region growing method

二段階分類による胸部 X 線画像を用いた

異常部位検出システムの検討

堂園貴弘*1 吉村裕一郎*2 田中久美子*3

中田孝明*3 織田成人*3 中口俊哉*2

要旨

集中治療室における移動困難な重症患者の経過観察のため X 線ポータブル撮影が用いられる.しかし,座位や 仰臥位などの様々な体位での撮影となるため,一般的な立位での撮影と臓器状態に差異が生じることで読影が困 難であり,診断精度の低下が課題となっている.そこで本研究では胸部 X 線ポータブル画像からの肺疾患の診断 能を向上するため深層学習の適用を試みた.提案システムは,無気肺と肺炎を1クラスとして異常なし,胸水の3 クラスで分類後,無気肺または肺炎と分類された画像を2クラス分類する2段階分類を行う.評価実験には千葉 大学医学部附属病院で収集されたデータと米国立衛生研究所のデータの2種類を用いた.データ拡張として左右 反転と±7度回転処理を行い,データ数を14倍に拡張し,評価方法は3分割交差検証法を用いた.結果として, 提案する2段階分類手法は4クラス同時分類時よりもモデル全体の分類精度が向上することを確認できた.

キーワード:深層学習,胸部X線ポータブル画像,畳み込みニューラルネットワーク

1. はじめに

術後の患者の術後管理,院内で発生した重症患者,他院からの紹介や救急外来から直接入院した重 症患者の治療を目的に病院内に集中治療室が設置されている.ここでは,移動が困難な重症患者に対 して胸部 X 線ポータブル装置を用いることで,治療に必要な気管内チューブなどのデバイスの位置異 常を発見することや併発している病状を診断している.胸部 X 線ポータブル画像は,CT 画像や MRI 画像に比べて情報量が限られるため,病変部の見落としなどにより治療介入が遅れる懸念がある.ま た,ポータブル画像を撮影する際,座位や仰臥位での撮影が主となり,立位で撮影された X 線画像と は臓器状態に差異が生じるため,診断が困難である要因となっている.先行研究において,胸部 X 線 画像に対する診断感度は約 64%[1]とされており,制度の改善が求められている.

そこで、本研究では、ICU 患者の胸部 X 線ポータブル画像からの診断精度向上を目的とする画像認 識技術を用いた診断支援システムを検討する.画像認識技術に用いられる手法として、Convolutional

*1 千葉大学大学院融合理工学府基幹工学専攻医工学コース

〔〒263-8522 千葉市稲毛区弥生町 1-33〕 e-mail: dozono0224@chiba-u.jp

- *2 千葉大学フロンティア医工学センター
- *3 千葉大学大学院医学研究院救急集中治療医学

図1VGG16の構造

Neural Network (CNN)がある.これは、近年医用画像分野においても多く用いられている手法であり、Neural Network を多層化し、畳み込み処理を繰り返すことで自動的に画像特徴を抽出することが可能である.

CNN を用いた先行研究として,胸部 X 線画像を用いた多クラス分類実験が挙げられる[2]. この研究 では入力画像を 14 種の病状に分類しているが,課題としてクラス間における精度差が大きく,全クラ スに対応できていない.そこで,本研究の目的を関連研究において低精度であるクラスの精度改善に よる高精度分類モデルの構築とする.本研究は,[2]において低精度となっている肺炎と無気肺に加え て,胸水,異常なしを対象にする.

2. 提案手法

2.1. 使用手法

本研究においては、CNN の中でも画像認識コンテスト ILSVRC2014 において、高成績をおさめた VGG16 で実験を行う.このモデルは、畳み込み層が 13 層、全結合層 3 層からなるシンプルな構造と なっている(図 1).実験に使用する際には、ILSVRC2014 データセット(1000 クラス、120 万枚の一般物 体画像)で学習済みの重みを使用して転移学習をする.転移学習を導入することで、学習時にランダム に初期値を設定した場合と比較して高い性能が期待できる[2].転移学習した後、再学習するにあたり 全結合層の構造を改良した(図 2).通常学習する際、誤差発散防止のために学習率を小さくして行う. しかし、欠点として学習が遅くなってしまうため収束するまで長い時間を要する.そこで、正規化処理 である Batch Normalization を全結合層に追加した.その結果、大きな学習率を設定することが可能とな

Flatten
Batch Normalization
ReLU関数
Dropout
Softmax関数

図2 用いた全結合層の構造

り、学習時間の短縮がすることが確認できた.

2.2. 2 段階分類手法

事前実験において、肺炎を除いた無気肺と胸水,異常なしの3クラス分類および無気肺を除いた肺炎と胸水,異常なしの3クラス分類で行ったところ,無気肺,肺炎の分類精度が0.886,0.723であったが,対象とする4クラス全てを同時に分類した際には無気肺,肺炎の分類精度が0.526,0.605と他のクラスよりも低精度だった.このことから,無気肺と肺炎を他のクラスと同時に分類することが困難であると判明した.

そこで、無気肺と肺炎を1クラスとして胸水や異常なしと分類後に、別のネットワークモデルで無 気肺と肺炎の2クラスに分類する2段階分類手法を構築した(図3).1度に分類するクラスを減少させ て対象クラスを限定する段階的な分類を行うことで、精度向上が期待できると考え、今回検証実験を 行った.

3. 実験

本実験で使用する画像は、千葉大学医学部附属病院救急科で撮影された胸部 X 線ポータブル画像(以下、病院データとする)とアメリカ国立衛生研究所が公開しているデータ(以下、NIH データとする)の2 種類である.2種類の画像を使用するにあたり、前処理として、両データの画像サイズを1024×1024pixel に統一するための病院データのトリミングおよびリサイズと、全データのコントラスト調整にガンマ 補正を用いた.使用枚数は無気肺と肺炎、胸水、異常なし各418枚である.これらの画像に対して3分割交差検証を用いて、2つの実験を行った.

3.1. 無気肺と肺炎を1クラスとし、胸水や異常なしと分類する3クラス分類(段階1)

まず,提案手法の段階1にあたる無気肺と肺炎を1クラスとしてまとめ,胸水や異常なしと分類する3クラス分類と4クラス同時分類の精度比較を行った.実験条件は,学習率0.0001,学習回数500回,バッチサイズ16とし,データ拡張に左右反転,±7度回転を用いた.モデルの各クラスの精度を,F値において評価した.モデル作成時,無気肺と肺炎をまとめて1クラスとする際,各209枚ずつ計418枚とし,他2クラスとの枚数を統一した.

実験結果を表1に示す. 無気肺と肺炎を1クラスにまとめたことで, 他のクラスとの識別性能が向上し, またモデル全体の精度も改善された. 深層学習モデルにおける分類において, 同時に他のクラスと

	4クラス同時分類	2段階分類手法の段階1の出力
無気肺	0.526	0.001
肺炎	0.605	0.801
胸水	0.794	0.840
異常なし	0.854	0.896

表1 3.1 節実験結果

の分類が困難な無気肺と肺炎を1つのクラスにまとめて分類させることの有効性が示唆された.

3.2. 無気肺と肺炎の 2 クラス分類(段階 2)

次に提案手法の段階2にあたる無気肺と肺炎の2クラス分類と4クラス同時分類の精度比較を行った.実験条件は、3.1節の実験と同様である.使用枚数は、無気肺と肺炎の各418枚である. 作成した モデルの精度検証を行う際には、段階1において無気肺または肺炎と判断された画像を使用した.

2段階分類手法全体の結果を表2に示す. 無気肺を除く他3クラスでは, 精度向上が確認できた. 無気肺の精度が低下した要因としては, 段階1において4クラス同時分類時よりも使用枚数を減らした ことが考えられる. このことから, 無気肺のほうが肺炎よりもモデルでの判断が困難であることが示 唆される.

以上のことから、2 段階分類を導入することで、4 クラス同時分類に比べ、複数のクラスにおいて精 度向上が可能であることが考えられる.

4. まとめ

集中治療室における胸部 X 線ポータブル画像を用いた深層学習による自動診断支援システムの構築 を目的に、本研究では2段階分類手法を提案した.無気肺、肺炎、胸水、異常なしを対象として VGG16 を用いて実験で検証したところ、提案手法の有効性が無気肺を除き示唆された.今後は、使用画像の調 整を行ったうえでの実験、VGG16以外の CNN モデルの検討や分類根拠提示方法を検討する.

利益相反の有無

なし

	4クラス同時分類	2段階分類手法
無気肺	0.526	0.483
肺炎	0.605	0.667
胸水	0.794	0.840
異常なし	0.854	0.896

表 2 2 段階分類手法 結果

文献

- [1] Nazerian P, Volpicalli G, Vanni S, et al.: Accuracy of lung ultrasound for the diagnosis of consolidations when compared to chest computed tomography. The Amerian Journal of Emergency Medelicine Vol. 33: 620-625, 2015
- [2] Nima T, Jae S, Suryakanth G, et al.: Convolutional Neural Network for Mdelical Image Analysis: Full Training or Fine Tuning? IEEE Transactions on Medecal Imaging Vol. 35: Issue 5, 2016
- [3] Rajpurkar P, Irvin J, Zhu K, et al.: CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. [online] Available: <u>https://arxiv.org/abs/1711.05225:2017</u>

Investigation of abnormal site detection system

using chest X-ray image by Two-step classification

Takahiro DOZONO^{*1}, Yuichiro YOSHIMURA^{*2}, Kumiko TANAKA^{*3} Takaaki NAKADA^{*3}, Shigeto ODA^{*3}, Toshiya NAKAGUCHI^{*2}

*1 School of Engineering, Chiba University

*2 Center of Frontier Medical Engineering, Chiba University

*3 Department of Emergency and Critical Care Medicine, Graduate School of Medicine

Chest X-ray portable radiography is used for the follow-up of severe patients who have difficulty moving in the intensive care unit. However, since imaging is performed in various postures such as sitting position and supine position, interpretation is difficult due to the difference of image in organ status of standing position, and the reduction in diagnostic accuracy is low. In this study, we tried to apply deep learning to improve the diagnosis of lung diseases from chest X-ray portable images. The proposed system is classified into two-step: three classes of images classified of atelectasis and pneumonia as one class, not emergency or pleural effusion, and two classes of images classified as atelectasis or pneumonia. For evaluation experiments, two types of data collected at Chiba University Hospital and data from the National Institutes of Health were used. We performed left-right inversion and \pm 7-degree rotation processing as data expansion, expanded the number of data to 14 times, and used the three-part cross validation method as the evaluation method. As a result, it has been confirmed that the proposed two-step classification method improves the classification accuracy than the four-class classification model.

Key words: Deep Learning, Chest portable X-ray images, Convolutional Neural Network

ブロックマッチング 5D フィルターを用いたダイナミック

PET スキャンのための画像ノイズ除去

大手 希望*1 橋本二三生*1 垣本 晃宏*1 磯部 卓志*1

犬伏 知生*1 得居 葵*1 吉川 悦次*1 大村 知秀*1

尾内 康臣*2

要旨

陽電子断層撮影装置(positron emission tomography; PET)による PET リガンドの取込みの定量には、ダイナ ミックスキャンが必要となる.ダイナミックスキャンは、短時間フレームの繰り返しよりなるため、デー タがノイジーになりやすい.そこでダイナミック PET 画像のノイズ除去のために、ブロックマッチング 4D フィルター(block matching and 4D filter; BM4D)を時空間に拡張した BM5D を提案する. BM5D は. 類似し た 4D パッチを集めて 5D のグループとし、それをまとめて変換することでスパース性を増強し、信号とノ イズを分離しやすくする.計算機シミュレーション、健常ボランティア実験データにより、BM5D,ガウシ アンフィルター, BM4D の性能を比較した. BM5D は最も高いピーク信号対雑音比、構造化類似度を示し、 実験データにおいて最も良好な画像を示した.

キーワード:画像ノイズ除去,画像フィルタリング,画像復元, Positron emission tomography (PET)

1. はじめに

陽電子放射断層撮影装置(positron emission tomography; PET)によるダイナミックスキャン は、PETトレーサーの取込みの定量に不可欠で ある.しかし、ダイナミックスキャンは短時間 フレームの繰り返しで構成され、雑音の多い画 像となりやすい.そのため、ガウシアンフィル タ(Gauss)による平滑化が良く用いられている が、画像エッジがぼけてしまう問題がある.そ こで、非局所平均フィルタ (non-local means; NLM)やブロックマッチング3Dフィルタ(block

*1 浜松ホトニクス株式会社中央研究所 〔〒434-8601 浜松市浜北区平口 5000〕 e-mail: <u>kibou@crl.hpk.co.jp</u> *2 浜松医科大学 matching and 3D filter; BM3D) などのエッジ保存 型平滑化フィルタが提案されている. Dutta ら は、ダイナミック PET 画像のノイズ除去のため に NLM を時空間に拡張した[1].また, Maggioni らは、BM3D を 3D 画像に拡張した BM4D を開 発した[2].しかし、これまでダイナミック PET 画像のノイズ除去のために BM4D を時空間に 拡張する研究はなされていない.そこで本研究 では、ダイナミック PET 画像ノイズ除去のため に BM4D を時空間に拡張した BM5D を提案し、 その性能を評価する.

方法

1) BM5D

BM5Dは、ダイナミック PET 画像のノイズ除 去のために BM4D を時空間に拡張したもので ある.図1に BM5D の処理の流れを示す.本実 装ではパッチサイズをハード閾値処理では4×

図1 提案 BM5D の処理の流れ.ハード閾値処理(左),ウィーナーフィルタリング(右)の2ステップからなる. 参照パッチに類似した 4D パッチを集めて 5D グループとし、まとめてノイズ除去す

 $4 \times 4 \times N$, ウィーナーフィルタリングでは $5 \times 5 \times 5 \times N$ とした. ここで, Nは総フレーム数であり, 雑音の標準偏差 σ により平滑化の強さを調整する.

2) 計算機シミュレーション

本手法の有効性を確認するため、数値脳ファ ントムによるダイナミック[¹⁸F]FDG PET シミ ュレーションを行った.フレームを4×30秒, 4×40秒,4×60秒,4×180秒,14×300秒に 分割し,総カウント5×10⁸相当のポアソンノイ ズを付与した.

4) 健常ボランティアの PET 計測

浜松医科大学の倫理委員会の承認のもと [¹¹C] MeQAA [3] を投与された健常ボランティ アを頭部用 PET 装置(Hamamatsu HITS-655000 [4])にて計測した.フレーム分割は4×30秒, 20×60秒, 8×300秒とした.

3. 結果

図2に計算機シミュレーションにおけるピー ク信号対雑音比(peak signal to noise ratio; PSNR), 構造化類似度(structural similarity measure; SSIM) の結果を示す.図3に冠状面における実験デー タの結果を示す.

図2 シミュレーション結果. PSNR(左)と SSIM(右).

4. 考察およびまとめ

本研究では、ダイナミック PET 画像のノイズ 除去のために BM4D を時空間に拡張した BM5D を提案した. シミュレーション結果より, BM5D は他手法と比較し, すべてのダイナミックフレ ームにおいて PSNR, SSIM が向上した. また, 実機での PET 計測においても同様の結果がえ られた. これらの結果より BM5D のダイナミッ ク PET 画像ノイズ除去の有効性が示唆された.

図3 冠状面における実験データの結果. 左からノイ ジー, Gauss 4mm, BM4D σ=1, BM5D σ=1. 利益相反の有無 なし

文 献

- [1] Dutta J, Leahy R M, Li Q: Non-local means denoising of dynamic PET images. PLoS ONE 8: e81390, 2013
- [2] Maggioni M, Katkovnik V, Egiazarian K et al: A nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans Image Process 22: 119-133, 2013
- [3] Nakaizumi K, Ouchi Y, Terada T et al: In vivo depiction of α7 nicotinic receptor loss for cognitive decline in Alzheimer's disease. J Alzheimers Dis 61: 1355-1365, 2018
- [4] Watanabe M, Saito A, Isobe T et al: Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors. Phys Med Biol 62: 7148-7166, 2017

Image Denoising for Dynamic PET Scans Using a Block Matching and 5D Filter

Kibo OTE^{*1}, Fumio HASHIMOTO^{*1}, Akihiro KAKIMOTO^{*1}, Takashi ISOBE^{*1}, Tomoo INUBUSHI^{*1}, Aoi Tokui^{*1}, Etsuji YOSHIKAWA^{*1}, Tomohide OMURA^{*1}, Yasuomi OUCHI^{*2}

*1 Hamamatsu Photonics K.K.

*2 Hamamatsu University School of Medicine

Dynamic positron emission tomography (PET) scans are required to estimate the uptake of PET ligands quantitatively. Since such dynamic short-frame PET scans are noisy, we propose block matching and 5D filtering (BM5D) that extends BM4D to time space for accomplishing dynamic PET image denoising. The proposed algorithm is based on an enhanced sparse representation in transform domain. Sparsity is enhanced by grouping similar 4D patches of dynamic PET images (e.g., time-activity curves in a small volume) into an array of 5D data known as a "group." Because of the similarity between the grouped patches, the transform of a 5D group can achieve a highly sparse representation of the true signal, and the noise can be well separated by shrinkage. We used both computer simulation data and experimental data comparing the methods with BM5D, Gaussian filter, and BM4D. In simulation, the proposed algorithm improved the peak signal to noise ratio, as well as the structural similarity measure, in all time frames, compared to the other methods. In computation of real experimental data, the proposed algorithm enables efficient denoising of dynamic PET images.

Key words: Image denoising, Image filtering, Image restoration, Positron emission tomography

Super-resolution of clinical CT volumes with modified

CycleGAN using micro CT volumes

Tong ZHENG^{*1}, Hirohisa ODA^{*1}, Takayasu MORIYA^{*1}, Takaaki SUGINO^{*1}, Shota NAKAMURA^{*2}, Masahiro ODA^{*1}, Masaki MORI^{*3}, Hirotsugu TAKABATAKE^{*4}, Hiroshi NATORI^{*5}, and Kensaku MORI^{*1,6,7}

Abstract

This paper presents a super-resolution (SR) method with unpaired training dataset of clinical CT and micro CT volumes. For obtaining very detailed information such as cancer invasion from pre-operative clinical CT volumes of lung cancer patients, SR of clinical CT volumes to μ CT level is desired. While most SR methods require paired low- and high-resolution images for training, it is infeasible to obtain paired clinical CT and μ CT volumes. We propose a SR approach based on CycleGAN, which could perform SR on clinical CT into μ CT level. We proposed new loss functions to keep cycle consistency, while training without paired volumes. Experimental results demonstrated that our proposed method successfully performed SR of clinical CT volume of lung cancer patients into μ CT level.

Keywords : Super-resolution, Clinical CT, µCT, CycleGAN, Unpaired learning

1. Introduction

Lung cancer causes largest number of deaths per year among cancers of male [1]. Currently, precise diagnosis of lung cancer mainly depends on clinical CT volumes. However, we could not obtain enough pathological information due to its low resolution. Super-resolution (SR) of clinical CT into μ CT-like level is desired.

Deep learning-based methods have been proved to outperform other methods in SR. These approaches are often supervised, requiring aligned pairs of low-resolution (LR) and high-resolution (HR) patches to train a model. However, it is infeasible to obtain spatially corresponding patch pairs of clinical CT and μ CT because registration between them is difficult. SR methods that can be trained by using unpaired images are desired.

*1 Graduate School of Informatics, Nagoya University [Furou-cho, Chikusa-ku, Nagoya 464-0814, Japan]

e-mail: tzheng@mori.m.is.nagoya-u.ac.jp

*2 Nagoya University Graduate School of Medicine

*3 Sapporo-Kosei General Hospital

*4 Sapporo Minami-sanjo Hospital

- *5 Keiwakai Nishioka Hospital
- *6 Information Technology Center, Nagoya University

*7 Research Center of Medical Bigdata, National Institute of Informatics

Figure 1 Network structure used for training. Compared to original CycleGAN, proposed method uses loss functions for maintaining cycle consistency. We calculate SSIM loss between *A* and *A*^{SR}, *B* and *B*^{LR}. Further, we calculate downsample loss between average-pooled *A*^{SR} and *A*, as well as upsample loss between *B* and upsampled *B*^{LR}.

One of the first approaches that formalizes the possibility to transpose from a source domain to a target domain in the absence of paired examples is called CycleGAN [2]. For instance, pictures of the zebra are converted into those of the horse. Nevertheless, CycleGAN is not designed for SR.

In this paper, we propose an SR method of clinical CT into μ CT-level by our modified CycleGAN. Unpaired clinical CT and μ CT volumes are used for training.

2. Overview

In prior to inference, training of the network is required using clinical CT and μ CT volumes. For inference, patches clipped from clinical CT volumes are input. In our study, scale of original μ CT volumes is at least 8-times larger than the clinical CT volumes. Because of this, we consider 8-times SR to be the most proper.

Input of our networks are 2D patches clipped from the volumes. The input clinical CT patch size is 32×32 pixels, while input μ CT patch size is 256×256 pixels.

1) Network Structure

Figure 1 shows the network structure of our proposed method. The first input is clinical CT patch A, and generator G_1 generates corresponding SR patch A^{SR} from A. Similar to CycleGAN, the generator G_1 is aimed to produce image patches that are similar to the ones in the target domain (μ CT domain) by trying to fool the discriminator D_1 . Vice versa, the same work is done upon μ CT patch B by using generator G_2 and discriminator D_2 to keep the consistency of proposed framework.

2) Loss functions

Like CycleGAN, our method uses cycle consistency while training the network. However, in SR problem, the cycle consistency between corresponding LR and SR image is different with that in image translation problem. In SR problem, corresponding LR and SR image are desired to have similarity in structure and average intensity, while the loss function

used in original CycleGAN could not obtain this.

Here we propose serval loss functions in our pipeline to create the cycle consistency (blue blocks in Fig. 1). Without cycle consistency, the network would simply produce arbitrary patch in the target domain with no relationship to the structures contained in the input patch.

The first loss function we proposed to keep cycle consistency is downsample loss. It is defined to maintain similarity while transforming clinical CT volume to µCT scale as

 $l_{\text{downsample}}(\mathbf{A}) = \text{MSE}(\mathbf{A}, f(\mathbf{A}^{\text{SR}})),$

where f() is an average pooling function, reducing the size of A^{SR} to the same as A, since A^{SR} is SR patch, 8 times larger than A. MSE is the mean squared error. Analogously, we name the second loss function the upsample loss as

 $l_{\text{upsample}}(\boldsymbol{B}) = \text{MSE}(\boldsymbol{B}, g(\boldsymbol{B}^{\text{LR}})),$

where g() is the nearest-neighbor interpolation function, upsampling the size of generated clinical-CT like B^{LR} to the original size of B.

Although the first and second loss function could keep the cycle consistency while training network, both loss functions depend on intensity differences between generated and target image patches, which is not very well matched to perceived visual quality. Here we propose third and fourth loss functions, which we name as clinical-SSIM loss and micro-SSIM loss

$$l_{\text{clinical-SSIM}} = \frac{1}{\text{SSIM}(A, f(A^{\text{SR}}))},$$

$$l_{\text{micro-ssim}} = \frac{1}{\text{SSIM}(B,g(B^{\text{LR}}))}$$

where SSIM is the structural similarity proposed in paper [3]. While training our model, third and fourth loss function helps protecting the model from generating blurred image patches.

3) Training

We perform training process using 2D clinical CT patches as input of Generator G_1 and 2D μ CT patches as input of Generator G_2 . Output of Generator G_1 is the generated μ CT-like SR patches. Discriminator D_1 is used to discriminate output of Generator G_1 is real or fake. Furthermore, for more stable training, we mixed downsampled μ CT patches in clinical CT patches as input. The percentage of downsampled μ CT patches is 25%.

4) Inference

For testing, we input 2D patch clipped from clinical CT volumes into the trained Generator G_1 . Output is a SR patch based on the input patch.

	μCΤ	Clinical CT
pixels in one slice	1024×1024 pixels	512×512 pixels
number of slices	545~1082 slices	435~554 slices
size of each pixel	34~53µm	0.625mm
slide thickness	34~53µm	0.6mm

Table 1 Profiles of clinical CT and µCT volumes

Figure 2 Example and comparison of proposed method. (a) original clinical CT, (b) proposed SR result, (c) bicubic interpolation, and (d) CycleGAN (without proposed loss functions).

3.Experiments and results

We utilized five lung cancer cases in the experiment. Clinical CT volumes were acquired by SOMATOM Definition flash (SIEMENS, Germany) from lung cancer patients. After surgical dissection of the lung cancers, μ CT volumes of the dissected specimens were acquired by a μ CT scanner, inspeXio SMX-90CT Plus (SHIMADZU, Japan). The profiles of clinical CT and μ CT volumes are listed in Table 1.

In our experiment, we used clinical CT and μ CT volumes obtained from same patients, meaning one patient has one clinical CT volume and one μ CT volume. We used 5 cases of clinical CT and μ CT for training in our experiment. The epoch number is 200. For testing, we used 1 case of clinical CT.

SR results of our proposed method were compared to bicubic-interpolation and original CycleGAN, as shown in Fig. 2. We could obtain more details from SR results than bicubic-interpolation results. Lung anatomies, such as the bronchus looks more clearly than bicubic-interpolation. Original CycleGAN's result has produced very different results from original clinical CT volumes.

4. Discussion and conclusion

We proposed a novel SR method with unpaired training dataset of clinical CT and micro CT volumes. New loss functions are introduced to keep cycle consistency in SR task. Experimental result showed that our method could apply

SR on clinical CT to μ CT level.

Because training of proposed method is unpaired, we do not have corresponding ground truth for certain input, quantitative evaluation of output result becomes difficult. Our future work is quantitative evaluation of SR results.

Competing interests

None.

Acknowledgement

Parts of this research was supported by MEXT-JSPS KAKENHI (26108006, 17H00867, 17K20099), the JSPS Bilateral International Collaboration Grants, the AMED18lk1010028s0401, the AMED19lk1010036h0001 and the Hori Sciences & Arts Foundation.

References

[1] Vital Statistics Japan (Ministry of Health, Labour and Welfare)

- [2] Zhu J, Park T, Isola P, et al.: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. IEEE International Conference on Computer Vision: 2242-2251, 2017
- [3] Zhou W, Alan C, Hamid R, et al.: Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans Image Processing 13: 600-612, 2004

µCT を用いた改良版 Cycle-GAN による臨床用 CT 像の超解像処理

鄭 通*1, 小田 紘久*1, 守谷 享泰*1, 杉野貴明*1, 中村 彰太*2, 小田 昌宏*1,

森 雅樹*3, 高畠博嗣*4, 名取 博*5, 森 健策*1,6,7

- *1 名古屋大学大学院情報学研究科
- *2 名古屋大学大学院医学系研究科
- *3 札幌厚生病院
- *4 札幌南三条病院
- *5 恵和会西岡病院
- *6 名古屋大学情報基盤センター
- *7 国立情報学研究所医療ビッグデータ研究センター

本稿では、臨床用 CT 像の超解像手法を提案する. 肺がん症例の臨床 CT 像から腫瘍の浸潤状況など疾患に 関する情報を取得するため、肺臨床 CT に超解像を適用し、 μ CT レベルの解像度を得る手法が求められてい る.多くの超解像手法における教師あり学習では、対応関係のある低解像度と高解像度の画像ペアが必要 となるが、臨床 CT と μ CT の画像ペアは正確に位置合わせを行うことが困難である. 我々は CycleGAN を 改良し、臨床用 CT 像と μ CT 像間の相互変換において一貫性を保持するための新しい損失関数を導入する ことによって、ペアなしの超解像手法を実現する.実験の結果、臨床 CT 像の μ CT レベルへの超解像が可 能であった.

キーワード: 超解像, 臨床 CT, µCT, CycleGAN, ペアなし学習

視覚情報提示による頭部 PET 体動抑制手法の開発

鈴木 海斗*1 岩男 悠真*2 高橋 美和子*2 山谷 泰賀*2,3

要旨

近年、頭部 PET 装置の開発が進むなど PET の高解像度化が進む中,体動による画質劣化への関心が高ま っている.バンド等を用いて物理的に被験者を拘束することはあまり望ましくはない.画像再構成時に体 動を補正する手法が報告されているが,既存装置への組み込みが困難であるため実用化は進んでいない. そこで,本研究では,非拘束かつ撮像システムに依存しない体動抑制法の開発を目的とした.具体的には, Kinect を用いて被験者の体動を計測し,体動をリアルタイムに可視化することで被験者自らが体動を抑制 できるシステムを開発した.実際の頭部の体動の特性を分析し,認識が容易な体動の可視化手法について の検討を行うことでシステムを改良し,システムの有効性を複数の被験者を対象としたボランティア試験 により検証した.結果として開発システムにより体動の標準偏差が 50.1%と大きく抑制できることを確認 した.

キーワード:体動抑制,頭部 PET

1. 研究背景

近年開発された新しい Positron emission tomography (PET)用標識薬剤により, アルツ ハイマー病をはじめとする認知症診断に有効 なタウタンパクやアミロイドβといった物質 の可視化が可能となった[1]. こうした背景の もと,脳に特化した頭部専用 PET 装置が求め られていることから、放射線医学総合研究所 (放医研)では半球形の検出器配置を特徴と する図1のようなヘルメット型 PET の開発に 取り組んできた[2].

座位姿勢での測定が可能なヘルメット型 PET では、仰臥位で測定する一般的な全身用 PET に比べ、日常の生活状態に近い体制での

*1 千葉大学大学院融合理工学府

〔〒263-8522 千葉市稲毛区弥生町 1-33〕 e-mail: k.suzuki@chiba-u.jp

*2 国立研究開発法人量子科学技術研究 開発機構放射線 放射線医学総合研究所 *3 千葉大学 フロンティア医工学セン ター

投稿受付: 2019年5月15日

PET 検査が可能になるほか,装置小型化などのメリットもあると期待される.

また,空間分解能は逐次近似画像再構成法 で約1.4mmであり,2~3mm 解像度の全身用 市販 PET 装置と比較して優れた性能を持つ ことが示されている.一方で座位による測定 でも,被験者の頭部の動きを十分に抑制でき るかどうかはまだ明らかになっていない.被 験者の体動は,画質の大幅な低下に繋がるた めできる限り抑制する必要がある.

図1 放医研が開発したヘルメット PET

2. 研究目的

本研究では,座位スタイルでの測定を行う 頭部 PET の体動を抑制するシステムについ ての検討を行う.具体的には,非接触かつ PET 機器とは完全に独立した構成の体動抑制シス テムの開発し,被験者の体動を可視化して提示することで,被験者自らが体動を抑制可能 な手法の検討を行う.

3. 提案手法

本研究では、被験者の体動を Kinect により 取得し、体動の情報を可視化して画面に表示 して被験者自らが画面を見ながら頭部位置を 調整可能なシステムを構築した.システム要 件として、リアルタイムに体動を取得・可視 化が可能なこと、およびヘルメット型 PET 装 置の空間分解能を許容量の目安として平行移 動は 2mm、回転量は2度以内の精度に体動を 抑えることを目標とした.頭部位置の計算を リアルタイムに行うため本研究では Kinect SDK による人体トラッキング機能を用いた. C++.NET Framwork,および OpenGL を用いた システムを開発した.

4. 実験

本システムを使用した場合と使用しない場合 の対象実験(20分間)によって体動の変化が あるかどうかを検証した.実験の結果,表 1 のように提案システムの効果が認められる結 果が得られた.また,本実験での x,y,z 軸の方 向は図 2 の通りである.

表1 システムの有無による体動の差

体動の平均±SD	平行移動[mm]	回転[度]
システムあり	1.85±0.94	1.41±0.61
システムなし	12.98±4.21	5.22±1.86

本システムでは3軸に対しての移動量と回 転の6パラメータを一画面に表示していてお り,被験者が慣れるまで時間がかかったため, 表示するパラメータを減らすことを検討する ため再実験を行った.被験者の体動を6パラ メータごとに測定し,主成分分析を行ったと ころ図3ような結果が得られた.各パラメー タの軸は先ほどの実験と同様である.このこ とからx軸とz軸が独立に大きな体動をし ていると考えられる.

5. まとめ

体動を可視化する提案システムによって頭部 体動を抑える方法のコンセプト実証に成功し た.今後は,可視化表示する情報を絞り込む ことで,利用者が理解しやすい動き情報提示 方法を検討していく予定である.

利益相反の有無

なし

文 献

- [1] Maruyama, M., et al., Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron, 79, 1094—1108,2013
- [2] Tashima, H. et al., "Development of the Helmet-Chin PET Prototype", IEEE NSS-MIC 2015 M3CP-97, 2015.

Development of the motion suppress system using the visual

information for head dedicated PET measurement

Kaito SUZUKI^{*1}, Yuma IWAO^{*2}, Miwako TAKAHASHI^{*2}, Taiga YAMAYA^{*2,3}

*1 Chiba University Graduate School of Science and Engineering

*2 National Institutes for Quantum and Radiological Science and Technology -QST

*3 Chiba University Center for Frontier Medical Engineering

In head PET devices that are currently attracting attention, one of the issues is to prevent deterioration of the acquired image due to body movement.

Conventional methods include a method of physically constraining a subject using like a band, and a method of correcting body movement at the time of image reconstruction. However, the current situation is that many problems remain because of the increased burden on subjects and the difficulty of incorporating into existing equipment. So, in this research, we study for the purpose of development of the motion suppression method which does not depend on the imaging system. Specifically, we developed a system that can control the motion of the subject by acquiring the motion of the subject using Kinect and visualizing the motion in real time. We analyzed the characteristics of human motion in the human head and examined the method of visualizing the motion that was easy to recognize, and verified the effectiveness of the system by a volunteer test for multiple subjects. As a result, it was confirmed that the standard deviation of body movement can be suppressed to 50.1% by the development system.

Key words: Motion suppress, head dedicated PET

著者紹介

鈴木 海斗 (すずき かいと) 2019年千葉大学工学部メディカルシステム工学科卒. 現在,千葉大学大学院融合理工学府基幹工学専攻医工 学コース博士前期課程在籍. 岩男 悠真 (いわお ゆうま) 2015 年 横浜国立大学大学院環境情報学府・博士後期 課程修了. 2015年より放射線医学総合研究所・博士 研究員,2018年より同研究所研究員,現在に至る. 博士(情報学). 医用画像処理に関する研究に従事. 高橋 美和子 (たかはし みわこ) 2008年 東京大学大学院医学系研究科 博士課程修 了、2008年東京大学医学部附属病院助教、2014年同 講師、2018年放射線医学総合研究所・主幹研究員。 臨床 PET 研究に従事 山谷 泰賀 (やまや たいが) 2000年東京工業大学(東工大)大学院物理情報工学 専攻博士課程修了。放射線医学総合研究所(放医研) ポスドク、東工大助手を経て、2004年より放医研研 究員。2009年よりチームリーダー。専門は医用画像 工学。特にPET イメージング機器開発の研究に従事。

静止型 SPECT システムを用いた心筋画像再構成

藤代 鷹平*1 村田 一心*2 本村 信篤*3 尾川 浩一*2

要旨

マルチピンホールコリメータを装着した SPECT システムは、検出器を回転させることなく多方向から 検出器へ進入するガンマ線の飛来方向を推定可能であり、静止型 SPECT システムとして使用できる.静 止型 SPECT システムを用いた心筋画像再構成における問題点は、データ収集角度が一定程度限定される こと、肝臓等の他の臓器による散乱線の影響、高集積臓器によるストリークアーチファクトなどである. 本研究では、静止型 SPECT におけるこれらの問題点を検討するために、モンテカルロ法による光子輸送 計算を用い、臨床に近い状態で収集された投影データを作成し、心筋画像の評価を行なった.ファントム は DMCAT ファントムを用い、3検出器 (11 ピンホールコリメータ)のジオメトリを想定し、画像再構成に は ML-EM 法を用いた.この結果、3 個の検出器を1 回だけ 60 度だけ回転したデータ収集では、ピンホー ル投影データには散乱線が含まれるものの、臨床上使用可能と思われる画像を得ることができた.

キーワード:心筋 SPECT イメージング, マルチピンホールコリメータ, モンテカルロシミュレーション, DMCAT ファントム

1. はじめに

心疾患は世界的な死因の一つであり [1], 医用画像処理技術の飛躍的な発展は心疾患の 診断精度向上に大きく貢献している.心疾患 の診断方法としては,機能評価に優れている SPECT が用いられている.近年 SPECT にお いては,複数のガンマカメラにコリメータを 装着することで,検出器を回転させる必要が ない静止型 SPECT システムが開発されてい る.静止型 SPECT システムは,検出器を回転 させる必要がないため,データ収集時間の短 縮やシステム時間分解能の向上による動態機 能イメージングが期待されている.

静止型 SPECT システムを用いた心筋画像 再構成における問題点は、データ収集角度が 限定されること、肝臓等の他の臓器による散 乱線の影響,高集積臓器によるストリークア

*1 法政大学大学院理工学研究科
〔〒184-8584 小金井市梶野町 3-7-2〕
e-mail: yohei.fujishiro.7m@stu.hosei.ac.jp
*2 法政大学理工学部

〔〒184-8584 小金井市梶野町 3-7-2〕*3 キヤノンメディカルシステムズ株式会社

ーチファクトなどによる心筋再構成画像の定 量性の低下である.

本研究では,静止型 SPECT システムによ る心筋画像再構成のシミュレーションを行い, 心筋画像の評価を行なった.

2. シミュレーション方法

本研究では、キヤノンメディカルシステム ズから販売されている3検出器型SPECTシス テム GCA9300R を想定している.GCA9300R を静止型 SPECT システムとして使用するた めに、マルチピンホールコリメータ(11 ピン ホールコリメータ)を装着した.これにより、 多方向から検出器へと進入してくるガンマ線 の飛来方向を推定可能なシステムを構築し た.

そして,静止型 SPECT システムで取得し た心筋再構成画像が臨床上使用可能かどうか の検討を行うために、3 次元 DMCAT ファン トムを用いてシミュレーションを行なった. 3 次元 DMCAT ファントムは、1 秒を1 周期と して 16 位相の画像で構成されている.図 1 は第1位相における3 次元 DMCAT ファン トムの画像である.また、光子輸送計算およ び画像再構成には研究室内ソフトウェアを用 いて行なった.

次に,光子輸送計算および画像再構成で用 いたジオメトリを図2に示す.回転中心か らコリメータまでの距離は 300 mm, コリメ ータから検出器表面までの距離は 76 mm と した. 再構成画像は 64×64×64 ボクセル (ボ クセルサイズ: 6.25×6.25×6.25 mm³), 検出器 は 256×512 ピクセル (ピクセルサイズ: 0.8×0.8 mm²), エネルギー分解能 10% FWHM @ 140 keV, 固有空間分解能 4 mm FWHM と した. Triple Energy Windows 法 [2] を用いた 散乱線除去を行うために、メインウィンドウ を 126~154 keV, サブウィンドウを 119~ 133 keV と設定した. シミュレーションにお けるデータ収集は心電同期を想定しており, 3検出器を一度だけ回転させることで6角度 位置のデータ収集を行なった.

図 2. シミュレーションジオメトリ

画像再構成には逐次近似再構成手法の 1 つである ML-EM 法 [3] を適用し,繰り返 し回数は 100 回とした.データ補正として 散乱線補正,吸収補正,コリメータ開口補正 [4],感度補正 [5] を適用した.また,後処理 として,フィルタ次数 2 遮断周波数 20/64 の バタワースフィルタを再構成画像にかけてい る.

3. 結果

第1位相の原画像と心筋再構成画像を図3 に、そのプロファイルを図4に示す.プロファ イルは、図3に示す矢印の位置で計算した.

原画像再構成画像図 3. 第1位相の原画像と再構成画像

図 4. 第1位相の原画像と再構成画像のプロ ファイル (上: #36,下: #38)

次に,第8位相の原画像と心筋再構成画像 を図5に,そのプロファイルを図6に示す. プロファイルは,図5に示す矢印の位置で計 算した.

図 5. 第8位相の原画像と再構成画像

図 6. 第 8 位相の原画像と再構成画像のプロ ファイル(上: #36,下: #38)

4. 考察

図4と図6から、心電同期を想定して取得 した投影データによる再構成画像は原画像の 特徴を再現できていることがわかる.これは、 マルチピンホールコリメータを装着した3検 出器型 SPECT システムを一度だけ回転させ ることを許せば再構成するのに十分な投影デ ータを得られるのではないかと考えられる.

また,図3と図5の再構成画像の両端に直 線状のアーチファクトが見受けられる.これ は,3つの検出器が正三角形の形で固定され ているため,アーチファクトが生じたと考え られる.このアーチファクトを除去するため には,回転中心からコリメータまでの距離を 離して再構成空間を大きくするという方法が 考えられるが,この方法は再構成画像の空間 分解能が低下してしまうというデメリットが ある.

5. まとめ

本研究では、3 検出器型 SPECT システム にマルチピンホールコリメータを装着した SPECT システムを一度だけ回転させて 6 角 度位置データ収集することで、心筋画像再構 成を行なった.その結果、比較的アーチファ クトが少なく臨床上使用可能と思われる心筋 再構成画像を得ることができた.

利益相反

本研究の一部はキヤノンメディカルシステ ムズ株式会社の研究費を受けて実施された.

謝辞

本研究は、文部科学省科学研究費補助金、 基盤研究(C) 19K12849による助成を受けた.

文 献

- [1] Choi S, Kim H, Oh J, et al.: Segmentation of the left ventricle in myocardial perfusion SPECT using variational level set formulation. IEEE Nucl Sci Symp, 3060-3064, 2007
- [2] Ogawa K, Harata Y, Ichihara T, et al.: A practical method for position dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imag 10: 408-412, 1991
- [3] Shepp L. A, Vardi Y: Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag 1: 113-122, 1982
- [4] Andreyev A, et al.: Pinhole SPECT reconstruction using blobs and resolution recovery. IEEE Trans Nucl Sci 53: 2719-2728, 2006
- [5] Jansen FP, et al.: Uniformity correction using non-uniform floods. IEEE Nucl Sci Symp Conf Record (NSS/MIC), 2314-2318, 2010
Myocardial image reconstruction using a stationary SPECT system

Yohei FUJISHIRO^{*1}, Kazumi MURATA^{*2}, Nobutoku MOTOMURA^{*3}, Koichi OGAWA^{*2}

- *1 Graduate School of Engineering, Hosei University
- *2 Faculty of Science and Engineering, Hosei University
- *3 Canon Medical Systems

A gamma camera equipped with a multi-pinhole collimator can acquire photons that enter a detector with many different angles, and so it is able to establish a stationary SPECT system with several gamma cameras. However, if we apply this system for the myocardial imaging, there are some issues such as limited angles, scattered photons emitted from surrounding organs, streak artifacts due to highly accumulated organs, etc. In this study, we evaluated the feasibility of the stationary SPECT system for the myocardial imaging with a 3D-DMCAT phantom. We assumed the geometry consisted of a triple head gamma camera with multi-pinhole collimators. And the ML-EM algorithm was used to reconstruct an image. In addition, we performed an attenuation correction, scatter correction, and efficiency correction of pinholes. The simulation results showed that we could reconstruct myocardial images with reasonable quality when we rotated three detectors once by 60 degrees.

Key words: myocardial SPECT imaging, multi-pinhole collimator, Monte Carlo simulation, DMCAT phantom

マルチ CNN による MRI 画像におけるノイズ低減

金子 幸生*1 野口 喜実*1 尾藤 良孝*2 荻野 昌宏*1

要旨

MRI(核磁気共鳴撮像装置)は、頭部をはじめ様々な部位の検査に用いられているが、撮像時間が長い点が 課題である.近年、撮像時間の短縮に関する研究が進んでおり、画像再構成に対して畳み込みニューラル ネットワーク(CNN)を適用する研究が注目されている.本研究では、MRI撮像の高速化を目指して、少 数の計測データから再構成された低画質画像に対するノイズ低減について検討を行った.MRI装置を用い て通常撮像および撮像時間を1/2とした撮像実験を行い、撮像画像データから約 90,000 枚の学習パッチを 作成した.学習パッチに含まれる輝度情報の特徴を基にサブセットに分類し、各サブセットに対してネッ トワークを作成した.撮像時間 1/2 の画像を領域分割し、各領域ごとに最適なネットワークを選択し、画像 を出力した.結果、単一 CNN の場合と比べ、本手法では PSNR が約 0.5 dB 向上し、ノイズ低減効果を確 認した.

キーワード: MRI, 画像再構成, 高画質化, CNN

1. はじめに

MRI (Magnetic Resonance Imaging: 核磁気共 鳴撮像装置)は、頭部をはじめとして様々な部 位の検査に用いられているが、撮像時間が長い 点が課題である. MRI 撮像における高速撮像技 術としては、各受信コイルのk空間データと受 信コイルの感度分布の違いを利用する Parallel Imaging[1]や、近年では、k空間信号を間引いて 計測し、未計測信号を復元する Compressed Sensing[2]のような手法の開発が進んでいる.し かし、Compressed Sensing では、繰り返し最適 化処理に時間がかかる課題がある.

その中, Deep Learning を用いた画像処理技術 の研究が急速に進んでいる[3]. 画像処理でよく 用いられる CNN (Convolutional Neural Network)

*1 株式会社 日立製作所 研究開発グループ

〔〒185-8601 東京都国分寺市東恋ヶ窪1 丁目 280 番地〕

e-mail: yukio.kaneko.zy@hitachi.com

*2 株式会社 日立製作所 ヘルスケア ビジネスユニット は多数のフィルタ処理で構成されている為,繰 り返し処理が不要で,GPU (Graphical Processing Unit) 等の並列計算に適用しやすく,高速な処 理が期待できる.

これらの状況を踏まえ、本報告では、MRI 検 査のスループット向上を目的とし、Deep Learningを用いた画像処理技術として、MRI 画 像の高速撮像時における高画質化に関する検 討を行った.具体的には、3T MRI 装置において ルーチンで撮像されている画像を基準として、 撮像時間を 1/2 に減らした高速撮像法により低 画質画像を取得し、Deep Learningを用いること により画質改善効果が得られるか確認した.ま た、さらなる画質改善を目指し、複数の CNN を 用いた学習によるノイズ低減方法について検 討した.

2. 方法

はじめに、3T MRI 装置を用いた健常ボラン ティア撮像実験により、学習用のデータを取得 した.具体的には、頭部ルーチン撮像(T2強調 画像)、および Parallel Imaging による高速撮像 を行った. Parallel Imaging では、k 空間上の信 号を特定の間隔で間引いて複数受信コイルで 同時に計測する. 今回は, k 空間データを 1/2 に 間引き, 撮像時間を 1/2 とした高速撮像の場合 について検討した.

次に、学習データ用の画像からパッチの切り 出しを行った.今回は、画像1枚当たり512× 512の画素サイズに対し、32×32のサイズのパ ッチを複数枚取得した.結果、学習用データセ ットとしてとして92928パッチ、バリデーショ ンデータセットとして49152パッチを作成した.

作成したパッチを入力として, SRCNN (Super-Resolution Convolutional Neural Network) による学習を行った. さらに,本報告では,学 習パッチに含まれる輝度情報の特徴を基にサ ブセットに分類し,各サブセットに対してネッ トワークを作成した[4].(以下,マルチアダプテ ィブ CNN 再構成 (Multi-Adaptive Convolutional Neural Network Reconstruction : MA-CNNR)と呼 ぶ.)図1に MA-CNNR の構成図を示す.なお, 今回は学習パッチを2つに分類し,2つのネッ トワークを作成した.

最後に,撮像時間 1/2 の画像を領域分割し, 各領域ごとに最適なネットワークを選択した 上で,推定画像を出力し,ノイズ低減効果を検 討した.

なお、本研究のボランティア撮像データは、 (株)日立製作所研究開発グループで定める倫 理審査基準に則り審査され、すべての被験者か らインフォームド・コンセントを得た上で取得 された.

図1 MA-CNNR の構成図

3. 結果

図2に、単一 CNN を用いた場合の結果を示 す.(b)の高速撮像時の画像に比べ,(c)の方が画 像のざらつきが減っていることがわかる.また, (d)と比べ,(e)の方が(a)の正解画像(ルーチン撮 像)との差が小さくなっており,CNNによりノ イズ低減されていることがわかる. さらに,単 - CNN の場合と比べ, MA-CNNR では PSNR で 約 0.5 dB 向上し, MA-CNNR によるノイズ低減 効果の向上を確認した.

図2 ノイズ低減結果. (a)正解画像 (ルーチン撮像), (b)高速撮像画像, (c)CNN による推定 画像, (d) (a)と(b)の差分画像, (e) (a)と(c)の 差分画像.

4. まとめ

MRI 検査のスループット向上を目的とし, 複数 CNN によるノイズ低減技術を開発した. 結果, 単一 CNN の場合と比べ, MA-CNNR においてノイズ低減効果が高くなり, MA-CNNR による MRI 画像の高画質化の可能性が示唆された.

利益相反の有無

著者は株式会社日立製作所の社員である.

文 献

[1] Pruessmann KP, et al., SENSE: Sensitivity Encoding for Fast MRI. Magnetic Resonance in Medicine 42:952-962, 1999.

[2] Lustig, M et al., Sparse NRU: The Application of Compressed Sensing for Rapid MR Imaging. Magnetic Resonance in Medicine 58: 1182-1195 2007.

[3] Bo Z et al., Image reconstruction by domaintransform manifold learning, NATURE 555(7697), 487-492, 2018.

 [4] 野口 喜実他, クラスタリングに基づく CNN 選択による MRI 高画質化の検討, OP2-8, JAMIT, 2018.

Noise Reduction for MRI by Using Multi-CNN

Yukio KANEKO*1, Yoshimi NOGUCHI*1, Yoshitaka BITO*2, Masahiro OGINO*1

*1 Research and Development Group, Hitachi, Ltd.*2 Healthcare Business Unit, Hitachi, Ltd.

One of the issues for MRI (Magnetic Resonance Imaging) is long scanning time. Recently, the deep learning techniques for high-speed or high-quality scanning in MRI have been reported. The purpose of this study is the development of the noise reduction technique for high-speed scanning in MRI by using deep learning. First, we conducted the volunteer study by MRI system. The routine images were obtained as high quality images, and the under-sampling images by using parallel imaging (scanning time is 1/2) were obtained as low quality images. The CNN (Convolutional Neural Network) was constructed with these images. In this study, we developed MA-CNNR (Multi-Adaptive CNN Reconstruction) technique, and training patches were divided into several subsets, according to the characteristics of intensity distribution in each patch. In this study, two CNNs were trained by using two subsets. We evaluated the effect of noise reduction in the cases of conventional CNN and MA-CNNR. It was demonstrated that MA-CNNR contributes to noise reduction in the low quality images by parallel imaging more than conventional CNN. PSNR (Peak Signal to Noise Ratio) increased by 0.5 dB in the case of MA-CNNR. It is shown that MA-CNNR technique can contribute to improving image quality for high-speed scanning.

Key words: MRI, Image Reconstruction, High Image Quality, CNN

全身撮影可能な立位 CT の開発:

ファントムスタディ、人体に対する重力の影響

横山 陽一*1 山田 祥岳*1 名倉 武雄*2 中原 健裕*1

成田 啓一*1 山田 稔*1 南島 一也*3 荻原 直道*4 陣崎 雅弘*1

要旨

【目的】①立位 CT の物理特性の評価,②大血管と骨盤底への重力の影響を評価すること.【方法】ファン トムを用いて立位 CT と臥位 CT,それぞれの物理特性の評価を行った.健常人ボランティアを対象に立位 CT と臥位 CT を同日に施行,大静脈と大動脈の面積と骨盤底の変化を評価した.【結果】立位 CT と臥位 CT 両者の物理特性に有意差は見られなかった.仰臥位と比較して直立位では,上大静脈の面積は有意に小 さく,横隔膜の高さでの下大静脈の面積に有意差は見られず,下大静脈下端部での面積は有意に大きくな った.一方,大動脈の面積に関しては姿勢による有意差は見られなかった.骨盤底は直立位で下降した. 【結論】立位 CT と臥位 CT の性能はほぼ同等であり,立位 CT は,人体に対する重力の影響を評価するの に有用であった.

キーワード: 臥位 CT, 立位 CT, 人体に対する重力の影響の可視化, 大血管・骨盤底への重力の影響

【背景】

人間の臓器・解剖学的構造は重力の影響を大きく 受け,多くの疾患や症状は姿勢によって変化するこ とが知られている.現在 CT は多くの疾患の診断に 活用されている.しかし,1972年に開発されて以来 現在に至るまで,臥位撮影のみ行われてきた.人は 基本的に立位や座位で活動しており,これらの姿勢 における多くの病態や身体機能の評価が CT で行 えていなかった.こうした現状を打破すべく産学 共同で立位 CT の開発を行い,2017年に当院に第一 号機が導入された.これまで US による仰臥位と側 臥位での下大静脈の変化を検討した報告や,MRI による臥位と座位での骨盤底の位置の違いを検討 した報告はあるが,我々が知る限り,立位と臥位で の大血管径の違いや骨盤底の位置の違いについて の論文報告はない.

- *1 慶應義塾大学医学部放射線科学教室 (診断)
- *2 慶應義塾大学医学部整形外科学教室
- *3 慶應義塾大学病院放射線技術室
- *4 慶應義塾大学理工学部機械工学科

【目的】①立位 CT の物理特性の評価, ②大血管と 骨盤底への重力の影響を評価することであった. 【方法】

 今回使用した撮像装置の詳細を示す.立位 CT として,TSX-401R,臥位 CT として,Aquilion ONE Vision edition を用いた.いずれもキヤノ ンメディカルシステムズ社製であり,ガント リー回転速度は 0.275 秒/回転, 320 列(16cm 幅)の面検出器を備えている.これらの撮像装 置を用いて物理評価用ファントムおよび健常 人ボランティアを撮像した.

 物理評価用ファントムは Catphan 504 phantom (The Phantom Laboratory 社製)を用いた.こ のファントムは CTP528, CTP486, CTP404の 3 つのモジュールから構成されている. CTP528を用いて x-y 平面および z 軸方向の変 調伝達関数(MTF:modulation transfer function) を解析し空間分解能を評価した.CTP486を用 いて一平面のノイズパワースペクトラム

(NPS: noise power spectrum)を解析しノイズ
 特性を評価した. CTP404 を用いて CT 値を解
 析した.前述のファントムを立位 CT および臥
 位 CT で撮像した. 正確度を向上させるため,
 立位 CT および臥位 CT の各々で同じスキャン
 位置で5回撮像を行った.

- 健常人ボランティア撮像の詳細を示す.対象 3. は 30 代から 60 代の各年齢層男女 4 名ずつ, 計32名の無症候性ボランティアとした. 倫理 委員会によって承認され、被験者全員より書 面による同意を得た. 全身の正常な解剖学的 構造を評価するために, 喫煙歴, 糖尿病, 高血 圧,高脂血症などの疾患や手術既往を有して いる場合,対象から除外された.被験者は同日 に立位 CT と臥位 CT を撮像された. 撮像条件 は管電圧:120kVp, ガントリー回転速度:0.5 秒/回転, 80 列, ノイズインデックス:頭部 CT は SD4 for 5mm, 体幹部 CT は SD 15 for 5mm, ヘリカルピッチ: 頭部 CT は 51,体幹部 CT は 65 とした. 取得された立位・臥位 CT 画像に 関して下記項目を測定した.
- 大血管の断面積と扁平率[(長径-短径)/(長径)]
 を測定した.測定部位は以下の6つの部位である.

大静脈:

- (1) 腕頭静脈合流部直下の上大静脈
- (2) 横隔膜貫通部高位の下大静脈
- (3) 下大静脈下端部(総腸骨静脈合流部頭 側の部位)
- 大動脈:
 - 上行大動脈(Sinotubular junction: ST junction 高位)
 - (2) 横隔膜貫通部高位の大動脈
 - (3) 腹部大動脈下端部(総腸骨動脈分岐部頭側の部位)
- ② 骨盤底の計測項目
- (1) 膀胱頚部から恥骨尾骨線 (PC line) までの
 距離
- (2) 肛門直腸接合部(Anorectum junction)
 から恥骨尾骨線(PC line)までの距離
- ① は最初に心臓血管放射線科医に、②は最初に泌尿生殖器放射線科医によって32名分の計測が行われた。①、②ともに最初の測定の1ヶ月後に、同じ計測者と一般放射線科医によって16名分の計測が行われた。いずれもランダム化された状態で計測を行い、観察者間・観察者内一致率の評価も行った。
- 4. 統計解析に関しては下記の通りである.

①血管の断面積と扁平率,②骨盤底の計測項目の 立位と臥位における測定値の変化はウィルコクソンの符号順位検定を用いて評価した.

②の骨盤底の計測項目における男女間の差に関し てはマン・ホイットニーの U 検定を用いて評価し た.全ての計測データは市販の統計解析ソフトウ ェア (SPSS ver.24, IBM 社)を用い, P 値 0.05 未満 (両側)を有意とし,観察者間および観察者間一致 率は,級内相関係数 (ICC)で評価した.

【結果】

1. ファントムスタディ

立位 CT のノイズ特性と空間分解能は, 臥位 CT と 同等であった. 立位 CT の平均 CT 値は, 臥位 CT と同様に, 正確であった.

2. 健常人ボランティア撮像

大血管の断面積と扁平率

被験者の平均年齢は48.4±11.5 歳 (30-68 歳), 平均 の BMI は, 22.5±3.0kg/m² (16.7-30.6kg/m²) であっ た。立位では臥位と比較して,上大静脈の断面積は 80%減少し (39.9±17.4 対 195.4±52.2mm², P < 0.001),下大静脈下端部では37%増大した (346.6± 96.9 対 252.5±93.1 mm², P<0.001)。扁平率は上大 静脈では 56%増大した (0.42±0.14 対 0.27±0.12, P<0.001).一方で下大静脈下端部では58%減少し た (0.15±0.08 対 0.36±0.16, P<0.001). 横隔膜貫 通部においては断面積および扁平率に有意差を認 めなかった (428.3±87.9 対 426.1±82.0mm², P = 0.866; 0.44±0.08 対 0.42±0.08, P=0.096). 大静 脈の結果と対照的に,大動脈の断面積・扁平率は 3 つの測定部位のいずれにおいても姿勢による有意 差を認めなかった.

②骨盤底の計測項目

致率は良好であった.

膀胱頚部から恥骨尾骨線 (PC line) までの距離, 肛 門直腸接合部 (Anorectum junction) から恥骨尾骨線

(PC line) までの距離はいずれとも臥位と比較して
 立位で有意に下降した(下降距離 9.4±6.0mm, P<
 0.001; 8.0±5.6mm, P<0.001).

立位による膀胱頚部の下降は、女性が男性に比して有意に下降した(12.2±5.2対 6.7±5.6 mm, P=0.006).一方で、肛門直腸接合部(Anorectum junction)から恥骨尾骨線(PC line)までの距離の変化に関しては男女間での有意差は認めなかった(女性:9.1±5.7 mm;男性6.9±5.4 mm, P=0.196).
①、②のいずれにおいても観察者間・観察者内の一

【考察】

ファントムスタディにて立位 CT の空間分解能, ノ イズ特性, CT 値は, 従来の臥位 CT と同程度であ り,立位 CT と従来の臥位 CT は,物理的な性能が 同等であると考えられた。

健常人ボランティア撮像にて,重力によって大静 脈の断面積が変化していた。すなわち,臥位と比し て立位において上大静脈の径は有意に小さくなり, 横隔膜貫通部の高さでは径に有意な変化は見られ ず,下大静脈下端部では有意に大きくなった.大動 脈の面積は全ての部位で有意差は見られなかった. 重力が大動脈と大静脈に及ぼす影響の違いは,お そらく血管壁の弾性の違いによるものと考えられ る.大静脈で見られた変化は,上半身では低い静水 圧を示し,下半身では高い静水圧を示すという,過 去のシミュレーション研究に一致しているが [1], 今回それを初めて CT で可視化したと言える。今後, 立位 CT 画像が中心静脈圧の推定に有用である可 能性が示唆される。

骨盤底は臥位と比較し立位で下降していた. MRI を用いた以前の研究では,座位と臥位で女性の骨 盤底の位置に差がないことが報告されている [2] が,本研究によって,立位では,骨盤底が下降する ことが示され,また,以前に報告されている臥位で 努責した時と同様の骨盤底の変化が,立位でも生 じることが示された。また,膀胱頚部が下降する傾 向は,男性よりも女性においてより顕著であった. 女性は骨盤底機能障害のリスクが高いことが知ら れている [3]. 我々の結果は,膀胱を囲む女性の骨 盤底が実際に弛緩していることを示しており,こ れは女性で尿失禁が起こりやすい理由を示唆する ものかもしれない. 【結論】ファントムスタディにて,立位 CT の性能 は従来の臥位 CT とほぼ同等であった.大静脈の断 面積,扁平率は重力の影響を受け,体位によって変 化した.骨盤底は臥位に比して立位で有意に下降 した.膀胱頚部は男性より女性で有意に下降した. 立位 CT は人体に対する重力の影響を可視化する 点で有用であると考えられる.また,従来の臥位 CT では明らかにすることができなかった機能性疾患 の病態解明に有用である可能性がある.

利益相反の有無

あり キヤノンメディカルシステムズ社

文 献

[1] Mookadam F, Warsame TA, Yang HS, Emani UR,

Appleton CP, Raslan SF. Effect of positional changes on inferior vena cava size. Eur J Echocardiogr 2011;12:322-325. doi: 10.1093/ejechocard/jer018

[2] Fielding JR, Versi E, Mulkern RV, Lerner MH, Griffiths DJ, Jolesz FA. MR imaging of the female pelvic floor in the supine and upright positions. J Magn Reson Imaging 1996;6:961-963.

 [3] Bitti GT, Argiolas GM, Ballicu N, et al.
 Pelvic floor failure: MR imaging evaluation of anatomic and functional abnormalities. Radiographics 2014;34:429-448. doi: 10.1148/rg.342125050

[4] MacLennan AH, Taylor AW, Wilson DH,Wilson D. The prevalence of pelvic floor disorders and their relationship to gender, age, parity and mode of delivery. BJOG 2000;107:1460-1470.

Development of Upright CT with area detector for whole body scans:

Phantom study, effect of gravity on human body

Yoichi Yokoyama^{*1}, Yoshitake Yamada^{*1}, Takeo Nagura^{*2}, Takehiro Nakahara^{*1}, Keiichi Narita^{*1}, Minoru Yamada^{*1}, Kazuya Minamishima^{*3}, Naomichi Ogihara^{*4},

Masahiro Jinzaki*1

*1 Department of Diagnostic Radiology, Keio University School of Medicine

*2 Department of Orthopedic Surgery, Keio University School of Medicine

*3 Division of Radiological Technology, Keio University Hospital

*4 Laboratory of Evolutionary Biomechanics, Department of Mechanical Engineering, Keio University

[Objective] The purpose of this study was to evaluate the performance of upright CT in a phantom study and the effect of gravity on large vessels and the pelvic floor. [Methods] We compared the physical characteristics in a phantom between upright and supine CT. Asymptomatic volunteers underwent both CT examinations. The area of vena cava and aorta and the changes of pelvic floor were evaluated. [Results] The performance of upright CT was comparable to that of supine CT. In the upright position compared with the supine position, the area of SVC was significantly smaller, the area at the level of the diaphragm was similar, and the area of IVC was significantly larger, while the areas of aortas were not significantly different; the pelvic floor descended in the upright position. [Conclusion] Upright CT was comparable to supine CT in physical characteristics and useful in clarifying the effect of gravity on human body.

Key words: supine CT, upright CT, visualization of the gravity effect on human body, gravity on large vessels and the pelvic floor

GAN を用いた人工股関節全置換術術後 CT 画像の

金属アーチファクト低減

阪本 充輝*1 日朝 祐太*1 大竹 義人*1 高尾 正樹*2

菅野 伸彦^{*2} 佐藤 嘉伸^{*1}

要旨

人工股関節全置換術において、術後 CT 画像の解析は人工股関節設置位置や筋骨格形状の評価に重要な役 割を果たす.しかし術後 CT 画像では、金属製のインプラントによって発生するアーチファクトが画像解 析の精度を大幅に低下させる要因となる.我々はこれまでに、解析的方法とシミュレーション画像を用い て学習した CNN (Convolutional Neural Network)を組み合わせることで、術後 CT 画像での筋肉セグメンテ ーション精度を向上させる手法を提案してきた.しかし、学習に用いたシミュレーション画像と術後実画 像には乖離があり、それが術後実画像でのセグメンテーション誤差の原因であると考えている.そこで本 研究では、GAN (Generative Adversarial Network)を活用し、シミュレーション画像と術後実画像からの変 換結果の分布が近づくような画像変換手法について検討する.本稿では定量評価のため、アーチファクト の程度を変化させて生成したシミュレーション画像で実画像を代替して実験を行い、本手法の有効性を検 証した.

キーワード:金属アーチファクト低減, Generative Adversarial Network, ドメインシフト

1. はじめに

人工股関節全置換術(THA)において,術後 CT 画像の解析は人工股関節設置位置や筋骨格 形状の評価に非常に重要である.しかし術後CT 画像では,金属製のインプラントによるアーチ ファクトが画像解析の精度を大幅に低下させ る要因となる.我々はこれまでに,解析的方法 である NMAR (Normalized Metal Artifact

*1 奈良先端科学技術大学院大学先端科 学技術研究科情報科学領域

[〒630-0192 生駒市高山町 8916-5]
e-mail: sakamoto.mitsuki.si2@is.naist.jp
*2 大阪大学大学院医学研究科
投稿受付: 2019 年 5 月 22 日

Reduction) [1]とシミュレーション画像を用いて 学習した CNN (Convolutional Neural Network) を組み合わせる事で,術後 CT 画像での筋肉セ グメンテーション精度を向上させる手法を提 案してきた[2]. しかし,学習に用いたシミュレ ーション画像と術後実画像には乖離があり,そ れが術後実画像でのセグメンテーション誤差 の原因であると考えている.

このような学習データとテストデータに乖離のある問題はドメインシフトと呼ばれ,Lucら[3]や Shrivastava ら[4]によって敵対的学習を応用した手法が提案されている.

本研究では、シミュレーション画像と術後 CT 画像からの変換結果の分布が近づくような GAN (Generative Adversarial Network) を活用し た画像変換について検討する.本稿では、画像 変換精度の定量評価のため、シミュレーション 画像を用いた実験によって本手法の有効性を 検証した.

2. データセット

本研究では、大阪大学医学部付属病院で撮影 された THA 術前 CT 画像 20 症例、THA 術後 CT 画像 59 症例を用いた. これらは全て片側疾 患の症例である. マトリックスサイズは 512× 512、スライス間隔は 1.0~6.0 mm で撮影した 後、ボリューム全体が 1.0 mm となるように補 間した.

3. 手法

3.1 概要

本手法は、NMAR 適用後の術後実画像から術 前画像への変換を行う関数を推定する事を目 的とする.まず,術前画像から[1]と同様の手法 により術後シミュレーション画像を生成し,ペ アの画像集合を構築する.本稿ではこれを sourceドメインと呼び,一方,術後実画像集合 を targetドメインと呼ぶ.targetドメインでは対 応するペアの術前実画像は得られないため,教 師データなしで両ドメインの乖離による影響 を低減する必要がある.そこで本手法では, sourceドメインと targetドメインそれぞれから 変換した結果の分布が近づくような関数を GAN により推定する.

3.2 GAN による金属アーチファクト低減

NMAR 適用後のシミュレーション画像 xを 術前実画像 tへ変換する生成器をGとすると, この生成器は source ドメイン I_{source} のペアの 画像集合を用いて,式(1)の誤差関数を最小化す ることにより求められる.

$$\mathcal{L}_{source} = \sum_{(x,t) \in I_{source}} ||G(x) - t||_1$$
(1)

次に, source ドメイン I_{source} と target ドメイン I_{target} から変換した結果の分布を近づけるため, 術前実画像 t と術後実画像 y からの変換結果 を判別する識別器Dを導入する. その誤差関数 は式(2)で表される.

$$\mathcal{L}_{target} = \sum_{t \in I_{source}} \log D(t) + \sum_{y \in I_{target}} \log(1 - D(G(y)))$$
(2)

以上より, GAN の誤差関数は,式(1)に式(2) をペナルティ項として加えて定義される(ただ し, λ はペナルティ項の重みを調整するハイパ ーパラメータ).従って,最適な生成器 \hat{G} は, 式(4)の最適化で求められる.

$$\mathcal{L}_{total} = \mathcal{L}_{source} + \lambda \mathcal{L}_{target} \tag{3}$$

$$\hat{G} = \arg\min_{C} \max_{D} \mathcal{L}_{total} \tag{4}$$

4. 実験

4.1 概要

本稿では画像変換精度の定量評価のため、シ ミュレーション画像を用いた実験によって本 手法の有効性を検証した.

本実験では術後実画像の代わりに,アーチフ アクトシミュレーションのパラメータを変化 させて生成したシミュレーション画像を使用 した(図1).ただし術前実画像においては,イ ンプラントを疑似的に挿入した部分は[-10,10] HU内のランダムな整数値で置換した.

提案法の生成器には U-Net[5]を, 識別器には PatchGAN[6]を使用し,式(3)において $\lambda = 0.01$ とした.また,学習用画像は 256×256 にリサ イズし,インプラントが挿入されている側の みをクロップする事で入力画像のサイズは 128 ×256 とした.さらに-150 HU 以下の画素値は 0,350 HU 以上の画素値は 255 となるよう に,その間を線形に変換した.

以上の条件の下,識別器を用いず U-Net のみ で学習した場合の結果をベースラインとし,4-

図 1 シミュレーションで生成した source ドメインと target ドメインの例

fold 交差検証によって提案法による結果と比較 した.

4.2 結果

本実験での結果について述べる.本実験では 各症例の大腿骨小転子の位置を統計形状モデ ルにより求め,特にアーチファクトが激しい小 転子より上のスライスにおいて評価を行った (図 2(a)).また,画質評価指標には Mean Absolute Error を用いた.

表1に、ベースラインである U-Net を source ドメインのデータのみで学習・テストした場合 の結果と学習データの症例数を示す.また、表 2に Target ドメインのテストデータを用いて評 価した場合の結果を示す.提案法では8症例(約 1200 スライス)の Target ドメインの画像を学習 に使用した. U-Net は source ドメインではアー チファクトを低減できているが、ドメインシフ トを考慮していないため target ドメインでは誤 差が大きくなっている. 一方, 提案法は U-Net と比較して target ドメインでアーチファクトを より低減できており, MAE の平均値に有意に差 が見られた. さらに図2に示した変換結果を見 ると,特に入力画像と正解画像の誤差が大きい スライスで提案法による効果が大きいことが わかる.

表 1 source ドメインでのテスト結果

	# Subjects	MAE		
	Source	Avg+Std		
NMAR		14.253 ± 2.938		
U-Net	8	10.784 ± 2.113		

表 2 target ドメインでのテスト結果

	# Subjects		MAE		
	Source	Target	Avg+Std		
NMAR			22.114 ± 7.273		
U-Net	8	0	16.533 ± 5.790 ⁻	١.	
提案法	8	8	14.669 ± 3.170 _	1	

5. まとめ

本研究では、GANによってドメインシフトを 解消するアプローチを取り入れ、THA 術後 CT 画像におけるアーチファクト低減手法を提案 した.シミュレーション実験によって、提案法 は特に、アーチファクトの影響が大きい領域に おいて効果的である事を示した.一方、小転子 付近などの領域では、提案法の精度が低下した 例が見られた.それらの領域では source ドメイ ンと target ドメインの分布が近いために識別器 による判別が困難になり、生成器の学習が不安 定になった可能性がある.その対策として、各 スライスのアーチファクトの程度に応じて提 案法と GAN を用いない既存手法を使い分ける

図 2 target ドメインでのテスト結果

事が考えられる. 今後は, 術後 CT 画像からの 金属材質やノイズスケールの推定について検 討していく.

謝辞

本研究の一部は, KAKENHI 19H01176 及び KAKENHI 26108004 の支援による.

利益相反の有無

なし

文 献

- [1] Meyer E, Raupach R, Schmidt B, et al.: Normalized metal artifact reduction(NMAR) in computed tomography. Medical phisyics 37: 5482-5493, 2010
- Sakamoto M, Hiasa Y, Otake Y, et al.:
 Automated segmentation of hip and thigh muscles in metal artifact contaminated CT using CNN. Proc. SPIE Conf. 11050, 2019
- [3] Luc P, Couprie C, Chintala S, et al: Semantic segmentation using adversarial networks. NIPS Workshop on Adversarial Training, 2016
- [4] Shrivastava A, Pfister T, Tuzel O, et al.: Learning from simulated and unsupervised images through adversarial learning. CVPR 2107-2116, 2017
- [5] Ronneberger O, Fischer P, Brox T.: U-net: Convolutional Neural Networks for biomedical image segmentation. MICCAI 234-241, 2015
- [6] Isola P, Zhu J Y, Zhou T, el al.: Image-to-Image translation with conditional adversarial networks. CVPR 1125-1134, 2017

Metal Artifact Reduction from Postoperative CT images of Total Hip

Arthroplasty using GAN

Mitsuki SAKAMOTO^{*1}, Yuta HIASA^{*1}, Yoshito OTAKE^{*1}, Masaki TAKAO^{*2}, Nobuhiko SUGANO^{*2}, Yoshinobu SATO^{*1}

*1 Graduate school of Information and Science, Nara Institute of Science and Technology *2 Graduate school of Medicine, Osaka University

In total hip arthroplasty, analysis of postoperative CT images is important to evaluate surgical outcome. However, the metal artifact due to the replaced metallic implant degrades the measurement accuracy. In this study, we proposed a method to improve the segmentation accuracy at postoperative CT images by combining Normalized Metal Artifact Reduction (NMAR) and Convolutional Neural Network (CNN). We assumed that However, there is a gap between the simulated images used in training and the real postoperative images. Therefore, by utilizing a Generative Adversarial Network (GAN), we proposed an image translation method in which the difference of gray level distribution of the results of simulated and real images is minimized. Preliminary results from a simulation experiment showed the effectiveness of the proposed method.

Key words: Metal Artifact Reduction, Generative Adversarial Networks, Domain Shift

複数の皮膚毛細血管における血流速度推定の自動化

塚本 唯斗*1 瀧本 麦*2 中野 和也*3 大西 峻*3 羽石 秀昭*3

要旨

皮膚毛細血管は、組織の健常性に関わる重要な血管系である. 毛細血管のモニタリングにより組織状態の 把握が可能となるが、このための定量評価手法は発展途上にある. 当研究室では、皮膚毛細血管の定量評 価に向け、撮影装置及び血流速度推定手法の開発を進めてきた.しかし、従来手法は血管内の局所的な画素値 に着目したオプティカルフローに基づいた手法であるため、体動やノイズの影響を受けやすい問題があった.そこ で本研究では、血管内全域の画素値を考慮することで、ノイズや血球動態にロバストな手法構築を行った.被験者 3名の前腕部内側の皮膚毛細血管に対して提案手法を適用し、血流速度の推定を行った.提案手法による血流 速度推定値の妥当性検証のため、手動追跡及び従来手法で推定した血流速度との比較を行った.その結果、従 来手法と比較し推定誤差の低減を確認したことにより、提案手法の有効性が示唆された.

キーワード:皮膚毛細血管,血流速度,深層学習

1. はじめに

皮膚毛細血管とは、皮膚表面に分布する直径 5-20 μmの血管であり、生命維持において重要 な役割を担う.毛細血管の観察により組織の健 常性及び疾患の状態把握が可能である[1].し たがって、血行動態を定量化することで疾患の 定量評価が期待できる.そこで、我々は皮膚毛 細血管における血行動態の定量評価に向け、撮 影装置の構築及び血流速度の推定を進めてき た[2].しかし、先行研究の推定手法である Lucas-Kanadeによるオプティカルフロー法[3] は、体動やノイズの影響を受けやすく推定値に 影響を及ぼす.また、画像内に存在する特定の 血管のみを対象とした解析技術であるため、複 数の毛細血管における血流速度分布の把握が

*1 千葉大学大学院融合理工学府 〔〒263-8522 千葉市稲毛区弥生町 1-33〕 e-mail: y.tsukamoto@chiba-u.jp

- *2 花王株式会社
- *3 千葉大学フロンティア医工学センター

困難といった課題がある.そこで本発表では, 体動やノイズにロバストかつ複数の毛細血管 に対して適用可能な血流速度推定手法を提案 する.また,提案手法を適用し,血流速度推定 値の妥当性を検証した.

2. 皮膚毛細血管撮影装置

皮膚毛細血管撮影装置の外観を図 1(a)に示す. 図 1(a)に示すように,白色 LED リング照明 (OPDR-LA74-48W-2,オプティクス・エフエー), CCD カメラ(GS3-U3-15S5, FLIR)及びレンズ (#88-354, Edmund Optics, Work Distance: 13.5 mm, 10X/0.17)を組み合わせた撮影装置である.矩形 の開口部を有する金属板に皮膚を密着させ,開 口部の下から白色光を照射させて撮影する機 構となっている.撮影時には,開口部にカバー ガラスを置き,カバーガラスと皮膚の間をオリ ーブオイルで満たす.これにより皮膚表面の反 射を低減させ,血管の視認性を向上させる.本 撮影装置を用いて,0.89×0.67 mm² の視野を 1384×1032 pixels, 30 fps の条件で撮影する.取 得画像例を図 1(b)に示す.

図1 皮膚毛細血管撮影装置 (a) 装置の外観,(b) 取得画像例

図2 血流速度推定フロー

3. 血流速度推定手法

3.1. 概要

手法の流れを図2に示す.まず,取得動画像 のグリーン成分に対し,テンプレートマッチン グを用いて,被験者の体動によるブレを補正す る.そして,取得動画像中の血管を深層学習に 基づく領域抽出手法により抽出する.作成した 血管抽出画像に対して細線化処理を施し,血管 中心線の座標をB-spline 曲線で補間することで 血管の中心を通る曲線 *l*を算出する.曲線 *l*に 対する法線ベクトルn上の画素値を体動補正後 動画像から取得し,曲線1の位置ごとに並べる ことで血管内画素値分布画像を作成する.これ をフレーム順に並べることで時系列の血管画 像を作成し,現れる赤血球の移動による像の傾 きから血流速度を算出する.この一連の処理を 抽出された血管全てに対して行う.

3.2. 血管抽出手法

深層学習に基づく領域抽出手法を用いて血 管領域の抽出を行う. 学習モデルとして U 字型 の畳み込みニューラルネットワークベースの モデル [4]を用いた. 学習時は,皮膚毛細血管 像 1384×1032 pixels からランダムなパッチ画像 512×512 pixels を切り出し,ミニバッチ学習と してモデルへ入力する. この時,パッチ画像に 対してランダムにガンマ補正処理(γ=0.9~1.1)を 施すことにより学習データを水増しした.

学習データには,成人男女の健常者 5 名から 各 3 枚ずつ取得した皮膚毛細血管像計 15 枚を 使用した.パッチ画像は,被験者 1 名につき 10 枚ずつ,合計 150 枚生成した.Ground Truth と して取得画像から目視で確認できる血管領域 を手動でアノテーションした画像を作成した. 学習済みネットワークを未学習の被験者の皮 膚毛細血管像に適用することで血管抽出画像 を生成し,血流速度の推定が可能な長さを持つ 血管を抽出するためラベリング処理を用いた ノイズ除去を行った.

3.3. 血流速度算出方法

血流速度は、時系列の血管画像に現れる赤血 球の像の傾きから算出する.まず、Canny 法に より赤血球の像をエッジとして抽出する.次に 時刻 $t_{i-}t_{i+1}$ 間に存在する各エッジの座標を最小 二乗法により直線に近似し、傾きの平均値 $m_{1i,d+1}$ を算出する.時刻 t_i における血流速度 v_i は次式 のように求めることができる.

$$v_i = m_{t_i, t_{i+1}} \cdot w \cdot p \cdot f \tag{1}$$

w は血管内画素値分布画像の幅, p は画素分解 能, f はフレームレートである.

4. 実験と結果

成人男女の健常者3名に対し,前腕内側の皮 膚毛細血管を撮影し,提案手法を適用した.精 度評価のため,被験者1名あたり毛細血管5本 に対して手動追跡及び従来手法で推定した血 流速度との比較を行った.手動追跡では,手動 により赤血球の先頭座標を追跡し,その移動量 から速度を算出し,従来手法は,Lucas-Kanade によるオプティカルフロー法を用いて推定し た移動量から速度を算出した.また,精度評価 は,取得動画像から血流が確認できる血管に限 定して実施した.

被験者1名分の血流速度分布を図3に示す. 各毛細血管による血流速度にばらつきがある ことを確認した.これは,撮影時の金属板への 皮膚の押し当て具合により生じたものと考え られる.また,血流速度が0µm/sの血管は,取 得動画像から赤血球の流れが確認できないた め,推定が困難であった.また,被験者1名分 の精度評価の結果を図4に示す.従来手法と比 較し,提案手法の方が概ね手動算出値に近い血 流速度を算出可能であることを確認した.

被験者3名分の手動算出値と従来手法,提案 手法間の最大絶対誤差及び平均絶対誤差の算 出結果を表1に示す.提案手法と従来手法を比 較すると,手動算出値との推定誤差が改善され ていることが確認できる.また,提案手法と手 動算出値との間の誤差要因としては,手動追跡 は明瞭に確認可能な赤血球の先頭から算出し た速度であるのに対し,提案手法は,複数の赤 血球による像の傾きを平均化し算出した速度 であるため,それぞれで血流速度の算出対象と なる赤血球の数が異なる点が考えられる.

5. まとめ

皮膚毛細血管撮影装置を用いて撮影した動 画像から血流速度を推定する手法を提案した. 提案手法を適用した結果,従来手法と比較して 推定誤差の低減を確認し,提案手法の有効性が 示唆された.今後は,血流状態を変化させた場 合の血流速度の推定精度の評価を行うととも に血管抽出精度の向上を検討する.

図3 血流速度分布

表1 手動算出値との誤差

	従来手法	提案手法
最大絶対誤差 [μm/s]	29.03	13.22
平均絶対誤差 [μm/s]	13.28	4.02

利益相反の有無

なし

文 献

- [1] Maldonado G, Guerrero R, et al.: Nailfold capillaroscopy in diabetes mellitus. Microvascular Research 112: 41-46, 2017
- [2] 瀧本麦他:ヒト皮膚毛細血管観察シス テムの構築と血流速度の分布解析.メ ディカルイメージング連合フォーラム 2018,沖縄,2018,pp.105-108
- [3] Lucas B, Kanade T: An iterative image registration technique with an application to stereo vision. Proceedings of Imaging Understanding Workshop, Vancouver, 1981, pp.121-130
- [4] Cui Y, Zhang G, et al.: A Deep Learning Algorithm for One-step Contour Aware Nuclei Segmentation of Histopathological Images. arXiv:1803.02786, 2018

Automated estimation of blood flow velocity in skin capillaries

Yuito TSUKAMOTO^{*1}, Baku TAKIMOTO^{*2}, Kazuya NAKANO^{*3}, Takashi OHNISHI^{*3}, Hideaki HANEISHI^{*3}

*1 Graduate School of Science and Engineering, Chiba University

*2 Kao Corporation

*3 Center for Frontier Medical Engineering, Chiba University

Skin capillaries are an important blood circulatory system regarding the health of tissues. The tissue condition can be assessed by monitoring capillaries, however the quantitative evaluation method of skin capillaries is yet to be sufficiently developed. Therefore we have developed an image capturing system and an estimation method of blood flow velocity for quantitative evaluation of skin capillaries. The conventional method based on optical flow is affected by body movement and noise because it focuses on local pixel values in blood vessels. In this study, we proposed a robust estimation method for this problem. The proposed method was applied to the skin capillaries inside the forearm of three subjects, and the accuracy was verified by comparison with the blood flow velocity calculated by manual tracking. The results showed that the estimation errors were decreased compared to the conventional method. In conclusion, we confirmed the effectiveness of the proposed estimation method.

Key words: Skin capillary, Blood flow velocity, Deep learning

TMS 検査のための脳 MRI 画像からの誘導電流強度の回帰

とその推定誤差分散推定

牧 豊大*1 酒井 隆志*2 Ilkka Laakso*4 宇川 義一*5 村上 丈伸*5

横田 達也*1 平田 晃正*2 本谷 秀堅*1

要旨

本研究では TMS 検査において, 頭部に配置したコイルが脳内に誘発する電流強度分布を高速に高い精度で 回帰する DNN について報告する. TMS 検査に際して, 脳内に生じる誘導電流分布が患者頭部に配置する コイルの位置と向きを変化させたときにどのように変化するかを推定することは重要である. このため既 に, 患者の頭部 MR 画像より脳内の各位置における電気特性をモデル化し, 誘導電流分布を高速にシミュ レートする手法が開発されてきた. しかし電気特性分布のモデル化のためには, 現状ではこの領域分割に 数時間を要することが問題となっていた. そこで我々は, DNN を用いることにより、頭部 MR 画像とコイ ル位置から直接実時間で誘導電流分布を回帰するシステムを構築した. DNN の学習には 37 人の頭部 MR 画像からシミュレーションにより求めた 261,072 通りの誘導電流分布のデータを利用した. また, DNN に より回帰する誘導電流分布の推定誤差を自己評価するための手法も併せて提案する.

キーワード: TMS 検査, VCM, DNN, U-Net, ベイズ推論

1. はじめに

経頭蓋磁気刺激法(TMS: Transcranial Magnetic Simulation)は神経的で精神的な病気の治療やリ ハビリテーションを目的として提案された手 法である[1]. TMS はコイルを用いて磁場を作 り,それを頭皮に当てることで,脳内に磁場に よる非侵略的な刺激を行う手法である.さらに 脳の特定部位を刺激したときの被験者の反応 を観察することで,刺激した部位が司っている 体の部位を特定できる.本研究は後者に焦点を 当てる.脳の部位と体の部位を対応づけるため には,コイルによって誘発された脳内の電流強

*1 名古屋工業大学大学院情報工学専攻 *2 名古屋工業大学大学院電気・機械工学 専攻

*4 Aalto University

*5 福島医科大学

度を推定することが必須である.このため頭部 MRI 画像から算出された VCM を用いる有限要 素法[3]が提案されているが,推定に数時間必要 である.そこで,DNN を用いた高速な電流強度 の回帰手法を提案する.

2. DNN を用いた電流強度の推定手法

本研究では、頭部 MRI 画像と脳に磁場を与え るコイルの位置と姿勢からそのコイルによっ て誘発される電流強度を, DNN を用いて回帰す る. DNN の入出力のサイズを削減するために, コイル直下の領域のみを考慮する.本研究では U-Net[4]を DNN のアーキテクチャとする.目的 関数は DNN の出力と教師信号の間の 2 乗誤差

図 1 U-Net の構造

図2回帰結果
 図3 真値
 とする. U-Net のアーケティクチャを図1に示す. 加えて, DNN を用いた電流強度の推定を定量化するために, [4]で提案されたベイズアプローチを採用する. この手法では DNN の係数に
 Dropout を適用することで, DNN を用いて回帰モデルの係数Wの事後確率分布を近似的に変分推論することができる. DNN の目的関数は,
 Wの事後確率分布とそれを近似する関数の KL 情報量となり, 次式の通りである.

$\frac{1}{2N}\sum_{i=1}^{N} \left\| Y_{i} - \widehat{Y}_{i} \right\|_{2}^{2} + \sum_{m \in M} \frac{l^{2}(1-p)}{2\tau N} m^{2} \quad (1)$

Nは学習データの総数,Yは DNN の出力信号, Ŷは教師信号,pは Dropout を行う確率,MはW を Dropout する前のパラメータ, l^2 は各Wの事 前分布 $N(0, l^{-2})$ の確度,τは回帰モデルの出力の 分布 $N(Y, \tau^{-1})$ の確度を表す.Yは DNN の出力を 表す.回帰結果はYの期待値で評価する.

2. 実験

本実験では、図1に示した U-Net の各畳み込 み層のカーネルに Dropout を適用させ誘導電流 強度を回帰する.テストデータの教師信号とそ の推定結果を図2,3にそれぞれ示す.本研究で は、誘導電流強度は比例尺度であると仮定し, 推定の曖昧性を変動係数で表現する.推定の曖 昧性は入力した MRI 画像により引き起こされ るため,MRI 画像と重ねたものを図4に示す. 図4より脳の皺と皺の間に大きな曖昧性が存在

図 4 回帰値の事後確率分布の分散 推定結果

することが分かる.加えて、左右のコイルの輪 の中心も変動係数の値が高く、曖昧性が大きい。

3. 結論

本研究では, DNN の曖昧性を推定する手法を 用いて,電流強度の回帰における信頼度を各ボ クセル単位で評価した.その曖昧性は構造的に 分布しており,コイルの輪の中心と脳の皺と皺 の間に分布していると考察する.

利益相反の有無

なし

文 献

- [1] Barker AT, Jalinous R: Non-invasive magnetic stimulation of human motor cortex. Lancet, 1:1106–1107, 1985
- [2] Laakso, I.,
 Hirata, A: Fast
 multigrid-based computation of the induced
 electric field for transcranial magnetic
 stimulation. Physics in Medicine & Biology,
 57(23), 7753, 2012
- [3] Gal, Y., Ghahramani, Z: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In international conference on machine learning 2016, June, pp. 1050-1059
- [4] Ronneberger, O., Fischer, P., Brox, T: Unet: Convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention. Springer, Cham. pp. 234-241 2015, October

Regression of induced current intensity and estimation of its error

variance from MRI image for TMS

toyohiro MAKI^{*1}, takashi SAKAI^{*1}, Ilkka Laakso^{*2}, yoshikazu UGAWA^{*3}, takenobu MURAKAMI^{*3}, tatuya YOKOTA^{*1}, akimasa HIRATA^{*1}, hidekata HONTANI^{*1}

*1 Nagoya Institute of technology

- *2 Aalto University
- *3 Fukushima Medical University

In this TMS research, we report DNN that regress the current intensity distribution induced by a coil placed in the head with high speed and high accuracy. It is important to estimate the change that induced current distribution in the position and orientation of the coil. Therefore, methods have been developed to simulate the induced current distribution with high speed by modeling the electrical volumes at each position in the brain from the patient's head MRI image. However, in order to model the electrical property distribution, it has been a problem that this region segmentation requires several hours at present. So, we constructed a system to regress the induced current distribution in real time directly from the head MRI image and the coil position by using DNN. The training data for DNN is obtained by simulation. We use 225, 792 samples from 32 subjects. We also propose a method for self-estimating the estimation variance of the induced current distribution that is regressed by DNN.

Key words: TMS, VCM, DNN, U-Net, Bayes estimation

開腹手術映像における遮蔽物除去システムの VR 化

北坂 孝幸*1 伊藤 幹也*1 駒形 和哉*1

三澤 一成*2 森 健策*3

要旨

開腹手術は外科医が習得しなければならない手技の一つであり、これまでに開腹手術映像の知的アーカイ ブに関する研究を行ってきた.これは、手術を撮影した複数台のカメラ映像を基に術者自身の手や頭とい った遮蔽物を除去し、開腹手術のビデオ教材の質的向上を目指したものである.これまでに遮蔽物を良好 に除去し、術野を見やすくする遮蔽物除去システムを開発してきた.本稿では、本システムの VR 化によ る没入感の表現方法について基礎的な検討を行ったので報告する.

キーワード:開腹手術映像, Virtual Reality, Oculus

1. はじめに

腹部の手術は大きく分けて開腹手術と腹腔 鏡手術の二種類がある。腹腔とは臓器をお腹に 納めている袋のことである。腹腔は通常は萎ん だ状態であるが、腹腔鏡手術ではお腹に針を刺 して小さな穴を開け、ここから炭酸ガスを注入 して風船のように膨らませ、できたスペースに 穴を介して内視鏡を入れて、お腹の中を観察す る。さらに 3~4本の小さな穴を開け、これらの 穴から腹腔鏡用のハサミなど入れて手術をす る。このため切らずに手術ができる。

しかし、腹腔鏡手術で腹部に対する全ての処 置が可能ではないため若い研修医は腹腔鏡手 術に加え開腹手術も学ぶ必要がある[1]。

過去の研究では複数台のカメラを使い、死角 となる部分を別角度のカメラから補完し映像 を作成することで学習教材としての価値を向

*1 愛知工業大学情報科学部

〔〒470-0392 愛知県豊田市八草町八千草

- 1247] e-mail: kitasaka@aitech.ac.jp
- *2 愛知県がんセンター
- *3 名古屋大学情報連携統括本部

上させる研究を行ってきた。複数の角度のカメ ラ映像からマーカーの点群を検出し、ICP によ る点群位置合わせを行う。その後、TPS を用い て合成を行ったが依然として内部の映像にブ レが生じているため FFD を導入することで、合 成精度の向上を図った[2]。

本研究では、手術や術具、患者を仮想空間内 に表現し、ヘッドマウントディスプレイによる 没入感のある映像提示(VR 化)を行うことを目 的としている。

2. システムの VR 化

過去の研究でリアルタイムに遮蔽物の除去 ができるプログラムを利用して Unity 上で仮想 空間の実現を目指す。Unity で手術室を再現し たシーンを作成し、複数視点から撮影された映 像に FFD などの処理を行う。そして補完された 映像を人体モデルに投影し、ユーザーは Oculus Rift[3]を用いて観察する。

3. 仮想空間での手術室製作

本研究では、リアルタイムで TPS 処理、透過 処理などを行った開腹手術映像を VR 空間で見 るため、実際の手術室に近い仮想空間を製作す る必要がある。VR 化は Unity 上で行うため手術 室製作も Unity 上で行い(図 1)、オブジェクトの 制作と変形には Unity 内で 3DCG を作成できる ProBuilder[4]を使用する。人体モデルは人型の 3D モデルが制作できるアドオンである ManuelBastioniLAB[5]を用いて行う(図 2)。製作 した人体モデルに開腹手術映像を投影するた め、平面のオブジェクトを配置し、人体モデル の形に合わせて変形させる。

4. 点群対応付け、合成処理

複数の映像を合成するには合成する画像の 対象物を一致させる必要があるため、画像同士 の対応付けを行う。対応付けの基準はマーカー を用いて行う。その後検出された特徴点群同士 の対応付けをし、ICP アルゴリズムによる点群 の対応付け、TPS による画像変形を行う。最後 に動物体や遮蔽物の検出し別角度の画像を用 いて補完を行う[2]。

5. 実験結果と考察

Unity 上でシーンを実行し実験を行なった。 使用した Oculus Rift は Oculus 社が開発、販売 しているものでバージョンは 1.33 である。作成 したシーンを図 3 に示す。

VR 空間であらゆる方向から映像を観察する ことができ教材としての価値を向上すること ができた。しかし、平面に映像を投影している ため立体視することが難しくなってしまった。 改善点として、赤外線などのセンサーを用いて カメラからの距離の情報を入手し投影時に反 映させることでより立体視できるようになる と思われる。

図1 手術室

図2 人体モデル

図3 実験結果

6. まとめ

本研究では、研修医が学ぶ学習教材としての 価値を高めるため、開腹手術映像における遮蔽 物除去映像の仮想現実を検討した。今後の課題 として、VR 空間で映像をより立体視できるよ う新たな手法を用いる必要があることが挙げ られる。

謝辞

本研究は JSPS 科研費 26108006, 17H00867 の 助成を受けたものです.

利益相反の有無

なし

文 献

- Dr.堤治の世界 腹腔鏡下手術 腹腔鏡
 下 手 術 論 <u>http://www.dr-tsutsumi.jp/</u>endoscope/details/e_03.php
- [2] 奥田透生,佐藤隼,豊田誠仁,"FFDを 利用した開腹手術映像における遮蔽物 除去システムの高精度化"愛知工業大 学情報科学部情報科学科 2017 年度卒

業研究卒業制作要約集 pp101,102,2019

- [3] Oculus Rift https://www.oculus.com/
- [4] ProBuilder https://unity3d.com/jp/unity/features/world building/probuilder
- [5] ManuelBastioniLAB http://www.manuelbastioni.com

Virtual reality in surgical area retrieval system of Laparotomy

Takayuki KITASAKA^{*1}, Mikiya ITO^{*1}, Kazuya KOMAGATA^{*1}, Kazunari MISAWA^{*2}, Kensaku MORI^{*3}

*1 School of Information Science, Aichi Institute of Technology

*2 Aichi Cancer Center Hospital

*3 Infomation and Communications Headquaters, Nagoya University

Laparatomy is one of important surgical operations. We have developed an intelligent archive of the laparotomy videos, which enables medical students and young surgeon to study actual laparotomy operations through the video archives. We developed a surgical area retrieval system of the laparotomy to retrieve important surgical areas from obstructions by surgeon's head and hands. In this report, we describe a preliminary study of the virtual reality system of surgical area retrieval and investigate how to augment the immersion of the system.

Key words: Laparotomy video, Virtual reality, Oculus

テンプレート(全ての原稿の種類に共通) Ver. 2.1 (2019.3.28 改訂)

手術器具検出を用いた整形外科手術の工程認識における

最適な Data Augmentation の検討

西尾 祥一^{*1} Belayat Hossain^{*1} 八木 直美^{*1,*2} 新居 学^{*1}

平中 崇文*3 小橋 昌司*1

要旨

整形外科手術は腹腔鏡手術や開腹手術と比較して手術工程および使用する手術器具が多く,外科手術中に 医療器具の受け渡しを行う看護師は大きな負担を強いられている.我々は過去に人工膝関節置換術を対象 とした整形外科手術における手術室看護師を支援するためのナビゲーションシステムを提案した.この研 究では畳み込みニューラルネットワークを用いて手術画像全体に基づいた画像認識により手術工程の認識 を試みたが,実用化に必要とされる精度には及ばなかった.本研究では整形外科手術における手術工程の 認識精度の改善を実現するために,手術映像から取得したフレーム毎に物体検出(YOLO)を行い,器具の クラス情報と位置座標を検出する.スマートグラス(眼鏡型のデバイス)を用いて記録した整形外科手術映 像は手術間で照明環境や撮影角度が大きく異なっており,それらの影響を低減させるための最適なデータ の前処理法やデータ拡張法を検討した.

キーワード:深層学習,手術支援,物体認識,整形外科手術,医用画像処理

1. はじめに

整形外科手術は腹膣鏡手術や開腹手術と比較して手術工程及び使用する手術器具が多く, 外科手術中に医療器具の受け渡しを行う看護師は大きな負担を強いられている.我々は過去に器械出し看護師に対してリアルタイムで手術情報を周知させることを目的とした整形外科手術ナビゲーションシステム[1]を提案している.

*1 兵庫県立大学工学研究科電子情報工 学専攻

〔〒671-2280 姫路市書写 2167〕
e-mail: messi240exe@gmail.com
*2 姫路独協大学
*3 高槻病院

ナビゲーションシステム構築に必要な技術 として術者視点での手術映像の自動認識が挙 げられる.自動認識の方法としては畳み込みニ ューラルネットワーク(CNN)を用いた画像認識 法を提案した[2].しかし,手術の工程(手術手技) の認識精度は平均で 32.5%であり,システムの 実用化に向けては十分な認識精度を達成でき ていない.

本研究では物体検出モデル(YOLO[3])を用い た手術器具の検出を行い,器具のクラス情報と 位置座表を検出する.また,手術映像には各手 術間で照明環境が異なっていることや医師の 手が器具を認識する際のオクルージョン(障害 物)となっているといった問題が見られる.本研 究ではデータ拡張(Data Augmentation)技術を用 いることでそれらの問題に対して頑健性の高 いモデルを構築することを目的とする.

2. 提案手法

2.1 Yolov3 を用いた手術器具検出ネットワー ク

本研究では手術動画の各フレームを入力画 像として物体検出ネットワーク YOLO を用い ることにより,画像中から手術器具の領域候補 とそれに対応する手術器具の種類の推定を行 <u>э</u>.

2.2 オクルージョン及び照明環境変化に対す る頑健性獲得のためのデータ拡張手法

本研究で用いるデータ拡張手法は Zhong らが 提案する Random Erasing[4]とガンマ補正によ る画像コントラスト変化による学習データの 水増し手法を用いた.

Random Erasing は画像中の認識対象物体上の オクルージョンに対して頑健性を向上させる ために提案されたデータ拡張手法である. 早稲 田大の藤江らは脳腫瘍摘出手術の分野で手術 器具検出を用いた工程認識法や Random Erasing を用いたデータ拡張手法の提案を行っている [5].

入力画像上に存在する物体の Ground Truth(物 体領域候補)の座標を $(x_{min}, y_{min}, x_{max}, y_{max})$ とする. 消去領域は各 Ground Truth ごとに後述 するパラメータの範囲内の大きさでランダム に生成される. 元画像と消去領域生成後の画像 例を図1に示す.


```
元画像
```


消去領域生成後

図1 消去領域性生後画像の例

各 Ground Truth の面積を S とすると, 消去領 域の面積 Se はランダムに初期化される. Se/S は 最小値S₁,最大値S_bの範囲内で決定される.消 去領域のアスペクト比はr。として設定してお り, r_1 と r_2 の間で r_e はランダムに初期化され る.

ガンマ補正はガンマ値を変化させることで 画像コントラストを調整するための手法であ る. 冨樫らは極端な照明条件下で物体検出する 手法としてガンマ補正を行いながら検出を行 う手法を提案している[6]. ガンマ補正に関する 式を以下に示す. I(x,y)が入力画像の画素値, *Imax*が画素の最大値, γはガンマ値である.

$$I'(\mathbf{x},\mathbf{y}) = I_{max} \left(\frac{I(x,y)}{I_{max}}\right)^{\frac{1}{\gamma}} \qquad (1)$$

γが 1 より大きければ補正前の画像よりもコン トラストが大きくなり, γが 1 より小さければ 補正前画像よりコントラストが小さくなる.画 像に対してガンマ値を変更させたときの画像 例を図2に示す。

Random Erasing とガンマ補正によるデータ拡 張手法はモデルの学習中に動的に使用する.具 体的にはバッチサイズが N 個の学習条件下で あれば、バッチサイズは N+1 個まで増加するこ とを意味する.

3. 実験

3.1 使用データ

使用データは高槻病院で行われた全人工膝 関節置換術(TKA)及び単顆人工膝関節置換術 (UKA)の6症例のビデオで構成されている.ビ デオの撮影にはスマートグラス(InfoLinker,ウエ ストユニティス株式会社)で撮影しており,手術 には ZIMMER BIOMET 社の手術器具が使用さ れている. 使用データに含まれる手術器具は Scalpel, Electriccautery, Resection Drill, Needle Holder の合計 4 種類である. 図 3 に手術器具の 例を示す。

(c) Resection Drill(d) Needle Holder図3手術器具の画像例

また各手術器具の画像枚数を表1に示す.

表 1	各手術器旦の画像枚数	
<u>x</u> .	1 1 四 四 元 四 欧 仄 쟀	

Tool	Number of labeled images
Scalpel	264
Electrocautery	334
Resection drill	296
Needle holder	300

実験の評価方法としては LOOCV 検証を用いた. 症例 1,2,3,4,5 を学習データとしたとき,症例 6 を評価データとした.次に症例 1,2,3,4,6 を 学習データにしたとき,症例 5 を評価データと した.各症例が 1 回は評価データとして用いられるように検証するという方法で検証を行った.各症例の手術画像枚数を表 2 に示す.

表	2	各症例	の面	i俊	枚数
43	-		コマン四	1121	1 & 3 A

Case	Number of labeled images
1	156
2	94
3	144
4	114
5	353
6	333

3.2 実験条件

本実験では手術器具の検出に YOLOv3[7]を 用いる.本モデルは事前に The COCO dataset[8] で学習を行っている.事前学習後に本データセ ットで転移学習を行った.学習回数を表すエポ ックは 30 に,バッチサイズは 2 とした.最適化 には Adam を用いており,学習率を 1×10⁻⁴ と している. Random Erasing における消去領域面 積の最小値パラメータ S_l は 0.02,最大値パラメ ータ S_h は 0.1, 0.2, 0.3 の 3 条件で, $r_1 \ge r_2$ は それぞれ 1/3 と 3 に設定している. ガンマ値 γ は 0.8 から 1.2 の範囲でランダムに変化するよう に設定した.

またデータ拡張を利用せずに学習を行った 場合(without)と Random Erasing だけをデータ拡 張に利用した場合(Erasing), ガンマ補正を利用 した場合(Gamma), Random Erasing とガンマ補 正を組み合わせてデータ拡張を行った場合 (Erasing + Gamma)の4種の条件で学習を行い, 評価を行った.

3.3 実験結果·考察

本実験ではRandom Erasingおよびガンマ補正 の本データセットに対する有効性の検証を行 う.検証の方法としては画像データの正解ラベ ル(手術器具の種類)と学習させたモデルによっ て推定されたラベルを比較することで検証す る.(#of correctly recognized frames)はラベルが一 致した数,(#of all frames)は画像枚数の合計であ る.検証に用いた式を以下に示す.

$$Accuracy = \frac{\#of \ correctly \ recognized \ frames}{\#of \ all \ frames} \quad (2)$$

Normal, Erasing, Gamma, Erasing + Gamma の 各実験条件下で LOOCV 検証を行い平均化する ことで各手術器具の平均認識精度として算出 を行った. Erasing に関しては消去領域生成の最 大値パラメータ S_h を 0.1, 0.2, 0.3 の 3 条件で評 価を行った.算出された実験結果を表 3 に示す.

データ拡張手法を用いず学習したモデル (without)の平均認識精度は 43.8%であった. Random Erasing を用いて学習したモデル (Erasing)の精度は $S_h=0.1$ の場合に 49.5%と最良 の精度が得られ, withoutと比べ 5.7%向上した. ガンマ補正を用いて学習したモデル(Gamma)の 精度は 48.9%であり, without に比べ 5.1%向上 した.

Erasing + Gamma の実験に関しては消去領域 生成の最大値パラメータS_h=0.1 に設定して評価

	Conditions					
Tool	without	Erasing (S _h =0.1)	Erasing (S _h =0.2)	Erasing (S _h =0.3)	Gamma	Erasing + Gamma
Scalpel	55.7	62.2	58.8	62.5	67.5	58.4
Electrocautery	36.8	35.5	29.5	37.1	37.7	36.6
Resection drill	59.6	66.8	59.9	61.2	62.0	57.7
Needle holder	22.8	33.3	28.3	28.1	28.5	29.2
Average	43.8	49.5	44.1	47.2	48.9	45.5

表3 各実験条件下における評価結果

(1) Scalpel

(4) Needle Holder

図4 テスト画像の検出成功例

を行った.実験より平均認識精度は45.5%であ り, without に比べ 1.7%向上した. Erasing と Gamma を組み合わせてデータ拡張を行ったに も関わらず、それぞれ独立してデータ拡張を行 った場合と比較しても精度の向上が低かった. 原因としては学習エポック(学習回数)が最適で ないといった問題が考えられる.全ての実験条 件でエポックを 30 として行ったが, エポック を 30 から増加して実験を行った場合に各実験 条件下で異なった結果が得られることが予想 される.

4. まとめ

本研究は整形外科手術の一種である人工膝 関節置換術の手術映像を対象とした物体検出 ネットワーク YOLO を用いた手術器具検出に おいて,オクルージョン,照明環境変化に頑健 なモデルの構築による認識精度向上を目指し た. Random Erasing, ガンマの補正を用いたデ

ータ拡張により学習データの増加を行った.実 験結果はデータ拡張を用いずに学習を行った モデルの平均認識精度が 43.8%, Random Erasing を用いて学習を行ったモデルの精度は49.5%, ガンマ補正によるデータ拡張を用いたモデル の精度は 48.9% であった. Random Erasing およ びガンマ補正の適用により平均認識精度の向 上が見られたため、本データセットに対しては 有効なデータ拡張手法であることが証明され た.

今後の課題としては各データ拡張手法の最 適なパラメータを実験的に算出するのではな く,使用データの情報に基づいて自動的に算出 することが必要である. 自動での算出が可能に なれば物体検出ネットワークの学習において より効果的なデータ拡張手法として活用でき ると考えられる.

謝辞

本研究は JSPS 科研費 18F18377 の助成を受け たものです.

利益相反の有無

なし

文 献

- S. Nishio, M. Hossain, B. Hossain et al.
 "Real-Time Orthopedic Surgery Procedure Recognition Method with Video Images from Smart Glasses Using Convolutional Neural Network," presented at the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2018.
- [2] S. Nishio, B. Hossain, M. Nii et al. "Workflow Recognition from knee Surgical Videos: Role of Deep Neural Networks," presented at the 2018 International Society of Affective Science and Engineering (ISASE), 2019.
- [3] S. D. Joseph Redmon, Ross Girshick, Ali Farhadi, "You only look once: Unified, realtime object detection," in *IEEE conference* on computer vision and pattern recognition, 2016, pp. 779-788.
- [4] Z. Zhong, L. Zheng, G. Kang et al. "Random Erasing Data Augmentation." arXiv preprint arXiv:1708.04896, 2017.
- [5] 藤江宏紀,平田啓樹,堀込貴央 et al."手術具の検出および追跡による脳腫瘍摘出手術の工程認識法における Data
 Augmentation のパラメータ値の検討" 信学技報, IEICE Technical Report MI 2018-105, pp185-189.
- [6] 冨樫由美子,大町真一郎,阿曽弘具, "ガンマ変換を用いた照明変動に頑健な 物体検出,"信学論(D), Vol.J91-D, No.8, pp.2188-2191, Aug. 2008.
- [7] A. F. J Redmon, "Yolov3: An incremental improvement," *arXiv:1804.02767*, 2018.
- [8] M. M. T.-Y. Lin, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick, "Microsoft COCO: Common objects in ' context," in ECCV, 2014.

Investigation of Optimal Data Augmentation for Recognizing Surgical

Workflow using Surgical Tools Detection in Orthopaedic Surgery

Shoichi Nishio^{*1}, Belayat Hossain^{*1}, Naomi Yagi^{*1,*2}, Nii Manabu^{*1} Takafumi Hiranaka^{*13}, Syoji Kobashi^{*1}

*1 University of Hyogo

*2 Himeji Dokkyo University

*3 Takatsuki General Hospital

The orthopedic surgery involves more surgical procedures and surgical instruments than abdominal and vaginal surgery, and nurses who deliver medical instruments during surgery are under heavy burden.

Our previous study proposed a navigation system to support operating room nurses in orthopedic surgery for total knee arthroplasty. In this research, we attempted to recognize the surgical process by image recognition based on the whole surgical image using a convolutional neural network, but it did not reach the accuracy required for practical use. In this research, in order to improve the recognition accuracy of the surgical process in orthopedic surgery, object detection (YOLO) is performed for each frame acquired from the surgical image, and class information and position coordinates of the instrument are detected. Orthopedic surgery images recorded using smart glasses (eyeglass-type devices) have greatly different illumination environments and shooting angles between operations, and optimal data pre-processing methods and data expansion to reduce their effects Consider the law.

Key words: Deep Learning, Assisting Surgery, Object Recognition, Orthopaedic Surgery, Medical Imaging

敵対的生成ネットワークによる

MRI 脳画像の頭蓋骨除去

藤山 眞梧*1 茶山 祐亮*1 彌冨 仁*1 大石 健一*2

要旨

神経障害の診断のために MRI によるニューロイメージングが日々行われている. MRI 画像を用いた脳の研 究において,自動診断支援や類似症例検索実現のためには,MRI 画像から頭蓋骨,皮膚,脂肪,眼球のよ うな非脳組織を取り除く skull-stripping (SS) と呼ばれる処理が必要不可欠である.しかし既存の SS 手法は 処理時間,除去精度において問題が存在する.本研究は高速かつ正確な SS を実現する adversarial generative skull-stripping (AGSS)法を提案する. AGSS 法は、ディープラーニング分野において近年多くの成果を挙げ ている generative adversarial networks を応用し,限られた数の脳抽出データの学習を元に、優れた SS 画像 を短時間で生成する.既存で最も優れている SS 手法の1 つである MRICloud による SS 結果を正解データ とした 398 例の評価実験において AGSS 法は F1-score=97.28%を達成する一方,実行時間は症例あたり約 3 秒であり従来手法の 1/400 程度を実現した.

キーワード: skull-stripping, MRI, generative adversarial networks

1. はじめに

神経学的疾病は一般的な障害の一つであり、 神経障害の診断およびのために、臨床のほか、 様々なニューロイメージングが行われている. 特に magnetic resonance imaging (MRI) は放射 線被爆なしに脳の解剖学的な構造や病理を撮 影可能なため、診断や診断支援等を目的とし た研究のために広く活用されている.

MRI 画像を用いた研究においては,撮影された MRI 画像から頭蓋骨,皮膚,脂肪,眼球のような非脳組織を取り除き,脳領域を抽出する頭蓋骨除去 (skull-stripping:SS)と呼ばれる処理が必要不可欠である.SS はその処理精度によって後に続く様々な分析に直接影響を及ぼす可能性があるため,正確かつ高速な SS が求められている.しかし,3次元画像である MRI 画像において人手による脳領域の抽

*1 法政大学大学院理工学研究科

〔〒184-8584 小金井市梶野町 3-7-2〕 e-mail:

{shingo.fujiyama.5a@stu ,yusuke.chayama.2t@stu, iyatomi@}hosei.ac.jp

*2 Department of Radiology

Johns Hopkins University School of Medicine

出は非常にコストがかかるため, MRICloud[1], FreeSurfer [2]などの自動 SS 手法が提案され てきたが,処理時間が長く,除去精度が不十 分である場合が多い.

一方,深層学習技術を医療分野に適用する 試みが近年活発に行われている. 特に convolutional neural networks (CNN) よる診断 支援や, CNN をベースとした U-Net [3]や SegNet [4]は腫瘍や臓器, 脳等に対するセグメ ンテーションで高い精度を実現している.し かし、これらの手法には大量のデータが必要 であり、3次元画像である MRI 画像に対して 人間の手によりアノテーションをつける作業 は非常にコストがかかり困難である.近年, 敵対的生成ネットワーク (generative adversarial networks : GANs) [5]による画像の 生成を行う研究が活発に行われている.本研 究では GANs 手法を応用した adversarial generative skull-stripping (AGSS)法を提案する. AGSS 法は脳 MRI 画像から脳領域のみを描画 する generator(G)と, 生成された画像が本物の 脳画像か,Gにより生成された偽の脳画像か を判定する discriminator(D) が敵対的に学習す ることで、高速かつ正確な SS 画像を生

図 1 AGSS の概要図

成する. AGSS 法は,3 次元 MRI 画像を2次 元スライスの連続として扱い統合することで, 極めて少ない学習画像のみから極めて信頼性 の高い3次元脳構造を生成することができる.

2. 手法

2.1. データセット

本研究では学習用データセットとして, 公開されている3次元脳MRIデータセットで ある ADNI2 の 398 症例使用した.学習用デー タとして358 症例,検証用データとして残り の40 症例を使用した. ADNI2 には頭蓋骨を 除去し脳領域を抽出した教師データが存在し ないため,現時点でSS において最も精度が 高い手法の1つであるMRICloud による処理 結果を教師テータ (Ground Truth, GT) とした. また,前処理としてゼロパディングを行い入 力 画 像 と 教 師 画 像 の 画 像 サ イ ズ を 256×256 にする処理を施した.

2.2. Adversarial generative skull-stripping (AGSS)

本研究で提案する AGSS は近年,深層学習 分野において成果を上げている研究である GANs の一種である pix2pix [6]の技術を応用 し,撮影された MRI 画像から SS を行い,脳 領域画像を生成するものである.

3 次元の MRI 画像を直接生成することは, 計算コストの課題の他,パラメータ数および 利用できる症例数の観点から過学習に陥る可 能性が高いため, AGSS では 3 次元画像から 2 次元画像のスライスを抽出し,連続する 2 次元画像として処理を行う.これにより計算 コストが大幅に減少するだけでなく,スライ ス画像毎に位置や角度変化などのデータオー グメンテーション(拡張)も導入することが 可能となり,学習画像を大幅に増加させるこ とができる.具体的には,各症例を 3 方向 (Coronal, Sagittal, Transverse plane), 256 スラ イス/症例,位置・角度に対するオーグメンテ ーションを18×21=378通り導入することに より1症例あたり約 300,000 枚を学習画像と した.

AGSS の学習時の概要を図1に示す. G は 入力された MRI 画像から脳領域を抽出した 画像を生成する生成器 (generator). D は入力 された SS が行われた画像が G によって生 成された画像であるか,教師データの画像で あるかを識別する識別機 (discriminator)であ る. このとき,G は D を騙すことができる 画像を生成できるように学習を進め,D はよ り正確に生成された画像であるか教師データ の画像であるかを識別できるように学習を進 める. これにより学習した G は学習した D を騙せるほど正確な SS を行い,脳領域のみ を抽出した画像を生成できるようになる.

AGSSによるSS画像生成はCoronal, Sagittal, Transverse plane の3方向それぞれを入力とす ることにより,1症例ごとに3つのSS画像を 生成することができる.それぞれの方向にお いて端のスライスにおいては精度低下が起こ る場合がある.そのため,これを軽減するた めに3方向によって生成されたSS画像を回 転により位置合わせし,平均処理を行う.

3. 実験

本研究では、図 2 に示す U-Net ベースの Generator を用い,撮影された MRI 画像から SS を行い,脳領域を抽出した画像を生成する. Discriminator には、 カーネルサイズ 4×4, ストライド 2 の畳み込み層と batch normalization, Leaky ReLU による処理を5回 繰り返す CNN を用い、生成器によって生成

図 2 U-Net ベースの Generator

された画像であるか GT 画像であるかの判別 を行う.

以上の生成器と識別器を用いた AGSS の学 習を行い,検証用データにより評価を行った. 評価指標には, IOU, precision, recall, F1-score を用いた.

検証用データに対する各評価値の平均値を 表1に示す.また、3方向のそれぞれの入力 によって AGSS が生成した SS 画像の結果例 を図3に示す.生成結果例をみるとGT 画像 と同等な SS 画像を生成できていることがわ かる、また、それぞれの評価指標値を見ても 高い精度で抽出できていることがわかる.

AGSS が SS 画像を生成するのにかかる時間は 1 症例当たり約 3 秒程度(Core i7-6850K@3.80GHz, RAM: 64GB, NVIDIA GTX 1080 Ti)であり,既存の SS 手法である FreeSurfer と比較すると約 1/400 程度で SS を 行うことが可能である.

表1 AGSS の脳領域生成結果

	IOU [%]	recall [%]	precision [%]	F1 [%]
Transverse	94.17	98.68	95.37	96.99
Sagittal	94.08	98.70	95.27	96.95
Coronal	94.32	98.57	95.64	97.08
Ensemble	94.70	99.0 2	95.60	97.28

3. まとめ

GANs を応用した SS 手法である AGSS を提 案し,GT 画像の作成に使用した MRICloud による SS 画像と同等な脳領域画像を約 1/400 の程度の実行速度で生成を可能とした.

利益相反の有無

なし

図 3AGSS による脳領域生成結果

文 献

- [1] X. Tang, K. Oishi, A. V. Faria, et al: "Bayesian parameter estimation and segmentation in the multi-atlas random orbit model," PloS one, vol. 8, no. 6, p. e65591, 2013.
- [2] B. Fischl, "Freesurfer," Neuroimage, vol.62, no. 2, pp. 774–781, 2012.
- [3] O. Ronneberger, P. Fischer, T. Brox," U-net: Convolutional networks for biomedical image segmentation.",In MICCAI, pages 234–241. Springer, 2015. 2, 3
- [4] V. Badrinarayanan, A. Kendall, R. Cipolla, "Segnet: A deep convolutional encoder-decoder architecture for image

segmentation," IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

- [5] I. Goodfellow, J. Pouget-Abadie, M. Mirza,, et al, "Generative adversarial nets," in Advances in neural information processing systems, 2014, pp. 2672–2680.
- [6] P. Isola, J.-Y. Zhu, T. Zhou, et al , "Image-to-image translation with conditional adversarial networks," in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

Skull-stripping for MRI Images

using generative adversarial networks

Shingo FUJIYAMA*1, Yusuke CHAYAMA*1, Hitoshi IYATOMI*1, Kenichi OISHI*2

*1 HOSEI University

*2 Johns Hopkins University, School of Medicine.

Extracting the brain region from a MRI is known as skull-stripping (SS), removing skull and eyeball, other non-brain tissue. It is an essential preprocessing for many neuroimaging tasks and several automatic SS methods have been proposed. However, processing time and improvement for accuracy are known issues. In this paper, we propose adversarial generative skull-stripping (AGSS) method to solve these problems. The heart of AGSS is composed of generative adversarial networks (GANs) and it generates excellent skull-stripped MRI results very fast with a limited number of training images. In our experiments, we used a total of 398 cases from the ADNI2 dataset and their SS results by MRICloud, which is one of the best existing SS methods, as the gold standard. As a result, our AGSS achieved 97.28% in F1-score and approximately 3 second for processing time per a case, which is almost 1/400 of conventional methods.

Key words: skull-stripping, MRI, generative adversarial networks

著者紹介

藤山 眞梧 (ふじやま しんご)
 2019 年 法政大学理工学部応用情報工学科
 卒業
 2019 年 同大学大学院 理工学研究科応用
 情報工学専攻 修士課程

第富仁(いやとみ ひとし)
 1998慶大・理工・電気卒、2000年同大大
 学院・理工研・電気修士課程,2004年同博士
 課程修了、2000-2004日本ヒューレット・パッカード(株).
 現在,法政大・理工・教授、博士(工学)、
 博士(医学).機械学習および、それらを元にした画像解析,言語処理,セキュリティなどの研究に従事.
深層学習を用いた腹腔鏡手術動画像の

出血領域自動セグメンテーション

山本 翔太*1 小田 紘久*1 林 雄一郎*1 北坂 孝幸*2

小田 昌宏*1 伊藤 雅昭*3 竹下 修由*3 森 健策*1,4,5

要旨

本稿では、腹腔鏡手術動画像に対して、深層学習を用い出血領域のセグメンテーションを自動的に行う手 法について検討する.出血領域のセグメンテーション結果は、内視鏡手術の安全性を高める研究において 利用価値が高い.しかし、手術映像中における出血領域を手動でセグメンテーションするのは困難である ため、効率的にセグメンテーションを行う手法が求められている.本研究では、深層学習を用いた出血領 域の自動セグメンテーションを行う.出血領域を詳細にセグメンテーションするため、出血領域を含む局 所領域を切り出したデータで学習した U-net (局所 U-net) と、画像全体で学習した U-net (広域 U-net) を用意し、広域 U-net の抽出結果に局所 U-net の抽出結果を統合することでセグメンテーション結果を得 る.実験により、2 段階の抽出を行うことで 76.3%の F 値を示した.

キーワード:深層学習,内視鏡手術動画,セグメンテーション,U-net,出血領域

1. はじめに

現在,日本内視鏡外科学会の技術認定評価 項目では,評価対象として出血に関する項目 が設定されている.しかし,その評価は手術 経験に基づく評価であり,定量的評価を行う のは現状困難である.それに伴い,次世代へ の技術の継承作業に客観性が乏しいという問 題がある.そのため,内視鏡手術動画を計算 機的に解析し,出血領域を解明することは, 手術手技の定量化に大きな貢献となりうる.

*1 名古屋大学大学院情報学研究科
〔〒464-8601 名古屋市千種区不老町 IB
電子情報館南棟4階466号室〕
e-mail: syama@mori.m.is.nagoya-u.ac.jp
*2 愛知工業大学情報科学部
*3 国立がん研究センター東病院

*4 名古屋大学情報基盤センター

*5 国立情報学研究所医療ビッグデータ研究センター

また,解析結果を基にした新たな治療支援技術の開発への応用も期待される.

本研究では,腹腔鏡手術動画像中に出現す る出血領域の自動抽出を行うことを目的とす る.

2. 出血領域自動抽出手法

本手法では、医用画像処理に広く用いられて いる U-net[1]を用い、腹腔鏡手術動画像中の任 意のフレーム画像から、大まかな抽出を行う広 域 U-net と詳細な抽出を行う局所 U-net による 2 段階の出血領域抽出を行う. 広域 U-net の抽 出結果に、局所 U-net の抽出結果を統合するこ とで自動抽出結果を得られる(図 1).

学習処理では、出血が出現する手術動画中の 一部のフレーム画像と、それに対応する出血領 域のラベル画像を用いる. 広域 U-net の学習で は、画像全体を 256 pixel×256 pixel へ縮小させ た画像を学習用画像として用いる. これには画 像中に出現する出血領域の大まかな位置を特 定する目的がある. また、局所 U-net の学習で は、出血領域周辺の切り出し画像を学習用画像 として用いる.これには,出血領域の詳細な抽 出を行う目的がある.

推定処理では、初めに対象画像から広域U-net を用いて大まかな出血領域の抽出を行う.次に、 抽出結果の出血領域が中心となるように対象 画像から出血周辺画像を切り出し、その切り出 し画像を局所 U-net に入力し詳細な抽出を行う. 局所 U-net の抽出結果を、広域 U-net から得ら れた結果に OR 演算により統合することで対象 フレーム画像の出血領域自動抽出結果を得る.

3. 実験と結果

実験では、広域 U-net, 局所 U-net, 広域 U-net と局所 U-net の 2 段階抽出の抽出精度の比較実 験を行った. ただし,局所 U-net に関しては, 対象画像を 256 pixel×256 pixel で分割した画像 を入力とし,出力された分割画像を再構築する ことで抽出した.13 症例分の腹腔鏡手術動画か ら出血領域を手動でラベル付けしたフレーム 画像 900 枚で学習し,129 枚で推定を行った. 各手法による出血領域自動抽出結果は図 2 の通 りとなった.また,それぞれの再現率,適合率, F 値を表 1 に示す.

4. 考察

2 段階抽出手法の再現率が比較手法の中で最 大の値を示した.局所 U-net で出血領域周辺の みを抽出することで,微小な出血領域も詳細に 抽出されたからだと考えられる.F値に関して も2段階抽出手法が最大の値を示したが,適合 率に関しては広域 U-net が最大の値を示した. これは,2段階抽出手法における広域 U-net の 誤抽出に関しても局所 U-net で抽出することに より,誤抽出領域が増加したからだと考えられ る.2段階での抽出結果の統合法を再検討する 必要がある.

5. むすび

本稿では,深層学習を用いた腹腔鏡手術動画 像からの出血領域自動抽出手法についての検 討を行い,その有効性を確認した.今後は精度 の向上を図るとともに,自動抽出結果に基づく 手術手技定量化手法も検討し,治療支援技術へ の応用を目指す.

謝辞

本研究の一部は JSPS 科研費 17H00867, 17K20099,26108006,26560255, 二国間交流事業, 堀科学芸術振興財団, AMED の課題番号 18he1802002,18lk1010028,19lk1010036h0001の 支援を受けた.

利益相反の有無なし

文 献

[1] Roth HR, Oda H, Zhou X, et al.: An application of cascaded 3D fully convolutional networks for medical image segmentation. CMIG, 66: 90-99, 2018

表1 出血領域の自動抽出精度

	適合率	再現率	F 値
局所 U-net	39.2%	80.7%	46.9%
広域 U-net	77.8%	60.7%	65.2%
2段階抽出	73.9%	85.5%	76.3%

図1 出血領域の自動抽出手法.2 段階の 抽出結果を統合することで対象フレーム 画像から自動抽出結果を得る.

(c) 広域 U-net の抽出結果 (d) 提案手法の抽出結果
 図2 各手法の自動抽出結果と対象フレーム画像の重畳表示(図中青色).

Automated Segmentation of Bleeding Area from

Laparoscopic Surgical Movie Using Deep Learning

Shota YAMAMOTO^{*1}, Hirohisa ODA^{*1}, Yuichiro HAYASHI^{*1}, Takayuki KITASAKA^{*2}, Masahiro ODA^{*1}, Masaaki ITO^{*3}, Nobuyoshi TAKESHITA^{*3}, and Kensaku MORI^{*1,4,5}

- *1 Graduate School of Informatics, Nagoya University
- *2 Faculty of Information Science, Aichi Institute of Technology
- *3 National Cancer Center Hospital East
- *4 Information Technology Center, Nagoya University
- *5 Research Center for Medical Big Data,

National Institute of Informatics

We discuss a method for automated segmentation of bleeding area using deep learning from laparoscopic surgical movie in this paper. Segmentation results of bleeding area are valuable for research to enhance the safety of endoscopic surgery. However, since manual segmentation of bleeding area from surgical movies is difficult, an automated bleeding area segmentation method is required. We used a global U-net to identify rough locations from the whole frame image. Then, we apply a local U-net to segment bleeding area in detail from local images clipped based on the global segmentation results. Segmentation results are obtained by integrating the segmentation result of the local U-net into the segmentation result of the global U-net. We compared automatic bleeding region segmentation accuracy by using local U-net, global U-net, and both of them in the experiments. We obtained 76.3% F-measure when we used both of local and global U-nets.

Key words: Deep learning, Laparoscopic Surgical Movie, Segmentation, U-net, Bleeding Area

血管仮想操作のための脳血管描画方法の検討

田中 康太*1 篠原 寿広*1 中迫 昇*1

要旨

現代の日本人の主な死因の1つに脳血管疾患がある. 脳血管構造は複雑であるため3次元で可視化する際 に死角ができ,手前の血管に隠れる血管は観察しにくい. そこで,著者らは,脳血管をより直感的に観察 することを目的に,注目する血管を隠す血管を仮想的に操作し,注目する血管を観察可能にする血管仮想 操作を提案している.本稿では,血管仮想操作を実現するための脳血管描画方法を提案する. はじめに CTA (Computed Tomography Angiography) 画像から抽出した脳血管をサーフェイスレンダリング法で描画する. 次に,注目血管を隠す血管に対し,同じ CTA 画像から推定した血管の心線データを用いて,チューブ状の 簡易血管描画に切り替えて,心線データを操作することで,血管の仮想操作を実現する. 実際の CTA 画像 から抽出した脳血管および推定した血管の心線データを用いて実験を行い,本描画手法の有効性の一端を 確認した.

キーワード:血管仮想操作,血管描画,脳血管疾患,診断支援

1. はじめに

現代の日本人の主な死因の1つに脳血管疾 患がある[1]. 脳血管疾患とは、脳動脈の異常 が原因でおこる疾患の総称であり, 脳卒中や くも膜下出血などが挙げられる. 脳血管疾患 の死亡率は減少傾向にあるものの依然として 高く、死亡に至らなくても、手足の麻痺や言 語障害, 意識障害, 運動障害などの後遺症が 残ることが多いため、早期の発見が必要であ る.現在,医療技術,画像処理技術の発展に より CT (Computed Tomography) や MRI (Magnetic Resonance Imaging) を用いて3次元 的に体内の医療用画像を得ることができるよ うになったため、病変部の早期発見が可能に なった.しかし、病変部の特定は医師達の手 作業によって行われており、大きな負担がか かる.また,脳血管の構造は複雑であるため, 3 次元で可視化する際に, 死角ができてしま い,手前の血管に隠れる血管は観察しにくい.

〔〒649-6493 和歌山県紀の川市西三谷 930〕 e-mail: 1933730015t@waka.kindai.ac.jp そこで著者らは,脳血管をより直感的に観 察できるようにすることを目的に,脳血管を 3次元的に描画し,注目する血管を隠す血管 を仮想的に操作し,注目する血管を観察でき るようにする血管仮想操作を提案している. 本稿では,血管仮想操作を実現するための脳 血管描画方法を提案する.

2. 血管仮想操作のための血管描画方法

本研究では,操作する血管は注目血管を隠 す血管であり,すでに観察済みであると想定 しているため,実際の血管の振る舞いや形状 を忠実に再現する必要はない.血管を操作す る際,DICOM (Digital Imaging and COmmunication in Medicine)画像におけるボ リュームデータを直接処理することは難しい ため、3次元モデル相関法[2]を用いて CTA (CT Angiography)画像から血管の中心位置情 報(X,Y,Z座標),半径情報およびX,Y, Zの各方向ベクトルを抽出した心線データを 用いる.心線データは予め血管の名称に基づ き,別々に管理されており,編集が容易で, さまざまな血管の振る舞いを実現することが

^{*1} 近畿大学大学院生物理工学研究科

できる(ただし,血管の振る舞いは今後検討 を行う).また,操作する血管は心線データの 位置情報および半径情報を用いてチューブ状 の簡易表現に切り替える.心線データを用い た血管の描画方法を以下に述べる.

まず、心線データを用いて抽出した血管デ ータ[3]を図1のように描画する.ここで,同 図の緑色の血管の裏に病変部が隠れており, 緑色の血管を操作するものとする.次に、ポ インティングデバイスにより、操作したい緑 色の血管上をクリックし,心線データの位置 情報および半径情報を基に当たり判定を行う. クリックした位置が血管に当たっていれば. 図2のように心線データに基づいてチューブ 状の簡易表現された血管を描画する. さらに 操作前の血管のボリュームデータを透明化す ることで操作された血管をボリュームデータ 表現からチューブ状の簡易表現へ切り替えを 行う. このとき、ボリュームデータの各ボク セルはユークリッド距離の最も短い心線デー タと対応付けられているため, 心線データに 基づき各血管を透明化することができる.図 3 のように、チューブ状に簡易表現された血 管を操作することにより隠されていた病変部 を観察できるようになる.

図1 血管データによる描画

図2 チューブ状の簡易表現による血管描画

図3 チューブ状簡易血管の操作

3. 実験

3.1 実験概要

提案する血管仮想操作のための血管描画方 法の有効性を確認するため、実際の CTA 画像 を用いて実験を行った.元の血管の描画には VTK (Visualization Toolkit) [4]を用いて、サー フェイスレンダリングによるマーチングキュ ーブ法[5]で描画した.実験に用いた CT 画像 の撮影条件を以下の表 1 に示す.

表1CT 画像の撮影条件

使用する画像枚数	430 枚
画像の解像度	0.35mm/pixel
断面画像の間隔	0.3mm
スライス厚	0.625mm

3.2 実験結果

心線データを用いて抽出した脳血管を図 4 に示す.椎骨動脈に対して,血管操作を行う. 椎骨動脈をクリックすることで血管のボリュ ームデータによるサーフェイスレンダリング 法からチューブ状の簡易表現に切り替えた様 子を図5に示す.分かりやすさのために,心 線データの半径情報に基づきチューブ状の簡 易表現の血管に色付けを行っている.また, その後,血管を平行移動させた様子を図6に 示す.

図4 サーフェイスレンダリング法による描画

図5 描画切り替え後の画像

図6血管操作後の画像

リアルタイムに血管の描画の切り替えを行い,注目する血管を隠す血管を仮想的に操作し,注目する血管を観察できることが本実験 により確認できた.

4. まとめ

血管仮想操作のための血管描画方法の提案 を行った.実際の脳血管画像および心線デー タを用いて実験を行い,リアルタイムに血管 の描画の切り替え,血管操作が可能であるこ とを確認した.今後は直感的に血管を操作す るための血管の振る舞いの検討を行うととも に,実際の臨床現場で使用し,血管仮想操作 の有効性の確認を行う予定である.

利益相反の有無

なし

文 献

- [1] 人口動態統計-厚生労働省 (URL:http://www.mhlw.go.jp/english/da tabase/db-hw/dl/81-1a2en.pdf)
- [2] 篠原寿広,岡田康希,中迫昇:血管位 置および径推定のための血管追跡に おける球面を用いた血管分岐検出の 検討.第34回日本医用画像工学会大 会予稿集,OP6-2,2015
- [3] 宮内亮太郎,篠原寿広,中山雅人他:
 血管位置と径情報および輝度分布を
 利用したベイズ定理に基づく頭部
 CTA 画像からの脳血管の抽出.第
 31 回日本医用画像工学会大会予稿
 集, OP1-2, 2012
- [4] VTK -The Visualization Toolkit (URL:http://vtk.org)
- [5] ビジュアル情報処理編集委員会:ビジ ュアル情報処理.CG-ARTS 協会,2017, pp69-70

Drawing cerebral blood vessel for vascular virtual handling Kota TANAKA^{*1}, Toshihiro SHINOHARA^{*1}, Noboru NAKASAKO^{*1}

*1 Graduate school of Biology-Oriented Science and Technology, Kindai University

When the cerebrovasculature is visualized in three dimensions blind spots occur, since cerebrovasculature is complicated and the blood vessels in the front hide the ones in the back. These blind spots make it hard to observe cerebrovasulature. In order to solve this problem, we proposed a blood vessel virtual handling system that enables us to virtually handle blood vessels to eliminate the blind spots and allows us to observe blood vessels of interest intuitively. In this paper, a blood vessel drawing method for this blood vessel virtual handling is proposed. First, the brain blood vessels extracted from the CTA (Computed Tomography Angiography) image are drawn by the surface rendering method. Then, drawing of the blood vessel that hides the blood vessel of interest is switched to a tube-like simple drawing by using the center line data of the blood vessel. The virtual handling of blood vessels is realized by manipulating this center line data. The feasibility of this proposed drawing method of blood vessels was confirmed by using center line data of cerebral blood vessels estimated and blood vessels extracted from an actual CTA image.

Key words: Blood vessel virtual handling, Blood vessel drawing, Cerebrovascular diseases, Diagnosis support

転移学習を用いた腹部 thick-slice CT 像における

多臓器領域の自動抽出の初期検討

申 忱^{*1} Holger R. Roth^{*1} 林 雄一郎^{*1} 小田 昌宏^{*1}

小田 紘久*1 三澤 一成*2 森 健策*1,3,4

要旨

本稿では、転移学習を用いた腹部 thick-slice CT 像における多臓器領域の自動抽出に関して検討する. 臓器 領域の自動抽出は医用画像処理において重要な役割を果たしている.近年、スライス厚が 0.5mm 程度の thin-slice CT 像を用いた臓器領域の自動抽出が多く行われているが、スライス厚が 5mm 程度の thick-slice CT 像も医療現場において多く利用されている.そのため、スライス厚が厚い CT 像においても臓器領域の 自動抽出ができれば有用である.しかし、CT 像の体軸方向の間隔が異なるため、従来の 3 次元 fully convolutional networks を用いた thick-slice CT 像における臓器領域の自動抽出手法をそのまま適用すること は困難である.本研究では、thin-slice CT 像の学習済みモデルを用いて転移学習を行うことにより、thickslice CT 像における腹部多臓器の自動抽出を行う.実験では、転移学習により thick-slice CT 像からの腹部 多臓器の自動抽出精度が 4%向上したことを確認した.

キーワード:多臓器抽出,深層学習,転移学習,thick-slick CT

1. はじめに

腹部 3 次元 CT 像における多臓器領域の自動 抽出の研究は、コンピュータ支援診断(CAD) やコンピュータ支援外科(CAS)システムの開 発に有用である.深層学習の発展に伴い、畳み 込みニューラルネットワークを用いた医用画 像処理の研究が盛んに行われてきた.その中で、 Fully convolutional networks (FCNs) [1] は臓器抽 出の手法としてよく使われている.これまでの 臓器領域抽出の研究では、スライス厚が 0.5mm 程度の thin-slice CT 像を対象としたものが多い

*1 名古屋大学大学院情報学研究科

〔〒464-8601 名古屋市千種区不老町〕

e-mail: cshen@mori.m.is.nagoya-u.ac.jp

- *2 愛知県がんセンター
- *3 名古屋大学情報基盤センター

*4 国立情報研究所医療ビッグデータ研究センター

[2]. 医療現場においては、スライス厚が 5mm 程度の thick-slice CT 像も多く使われているた め、thick-slice CT 像からも臓器領域を自動抽出 することができれば有用である.しかし、thickslice CT 像は体軸方向の解像度が低いため、従 来の thin-slice CT 像で学習した 3D FCNs 手法を 用いて end-to-end で多臓器領域を自動抽出する ことは困難である.そこで、本稿は thin-slice CT 像の学習済みモデルを転移学習することによ り、thick-slice CT 像における多臓器領域の自動 抽出を行ったので報告する.

2. 手法

本手法の流れを図1に示す.本手法で使用した FCN の構造は,文献[2]に示される 3D U-Net [3] と同一である.従来手法では,スライ ス厚が0.5mm 程度の腹部 thin-slice CT 像を用い て,多臓器の自動抽出を行ったが,本手法では, スライス厚が5mmの thick-slice CT 像を対象と する.

図1 学習の流れ. FCN の構造は従来手法[2]と同一である.

まず,従来手法と同様に Thin-slice CT 像で学 習して得られたモデルを学習済みモデル1とす る.そして,学習済みモデル1と thick-slice CT 像を用いて同一の FCN 構造に基づいて転移学 習を行い,学習済みモデル2を得る.テストデ ータを用いて,学習済みモデル2において臓器 領域を推定する.

3. 実験と結果

実験では、門脈相の造影腹部 thick-slice CT 像 415 症例を使用した.評価のため、全症例をラ ンダムに学習データ380症例とテストデータ35 症例に分割した.抽出対象の7つの臓器(動脈、 門脈、肝臓、脾臓、胃、胆嚢、膵臓)および背 景の8クラスの正解領域を作成した.本研究で 使用する thick-slice CT 像は、従来の thin-slice CT 像から線形補間を使用し、体軸方向の解像 度を 5mm に変換することで作られた.FCN の 入力画像と出力画像のサイズは 64×64×32 ボ クセルで、ミニバッチサイズは3とした. Adam により最適化し、学習回数は60,000 イテレーシ ョンとした. 転移学習で使用する学習済みモデ ル1は、文献[2]の手法で、55,000 イテレーショ ン学習したモデルを使用した.文献[2]の手法を thick-slice CT 像のみで学習したモデル(転移学 習なし)と thin-slice CT 像で学習したモデルを thick-slice CT 像を用いて転移学習したモデル

(転移学習あり)による腹部多臓器領域の自動 抽出結果例を図2に示す.また,転移学習あり モデルと転移学習なしモデルによる多臓器領 域の自動抽出精度を Dice coefficient score によ り評価した結果を表1に示す.

4. 考察

本実験では、thick-slice CT 像のみで学習した モデルと thin-slice CT 像で学習したモデルを thin-slice CT 像を用いて転移学習したモデルを 比較した.表1から、転移学習なしモデルと転 移学習ありモデルの平均 Dice 係数は 80.5%と 84.5%であった.転移学習を行うことにより、胃 以外の領域において大幅の精度向上が見られ た.特に、胆嚢領域において、16.4%の精度向上 が見られる.転移学習は、thick-slice CT 像から の臓器領域抽出において有用であると考えら れる.しかし、抽出結果では誤検出が増加した ため、胃の抽出精度が 10%ほど減少した.これ に関しては、さらなる実験を踏まえた検討が必 要となる.

5. まとめ

本稿では、腹部 thick-slice CT 像から多臓器領 域を自動抽出する手法を提案した. thin-slice CT 像での学習済みのモデルを thick-slice CT 像に 用いて転移学習し、thick-slice CT 像のみで学習 した結果と比較した.実験の結果、転移学習に より、平均の抽出精度が 4%向上したことを確 認した.

今後の課題としては、学習データ数が転移学 習で臓器抽出を行う際に与える影響や非造影 thick-slice CT 像における多臓器領域の自動抽出 の検討などが考えられる.さらに、学習で用い る FCN 構造を改良することで、より高精度の臓 器抽出を目標とする.

謝辞

日頃から熱心に御討論頂く森研究室の諸氏に 感謝する.本研究の一部は,AMED 臨床研究等 ICT 基盤構築・人工知能実装研究事業 19lk1010036h0001,堀科学芸術振興財団,文部 科学省・JSPS 科研費 26108006,17H00867, 17K20099 ならびに日本学術振興会二国間交流 事業によった.

利益相反の有無

なし.

文 献

- [1] Long J,Shelhamer E, Darrell T:Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 3431–3440, 2015
- Shen C, Roth H, Oda H, et al.: Evaluation of 3D fully convolutional networks for multi-class organ segmentation in contrastenhanced CT. International Journal of Computer Assisted Radiology and Surgery 2018 vol.13, Issue 1 Supplement: 21-22, 2018
- [3] Özgün Ç, Abdulkadir A, Lienkamp S, et al.:
 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation.
 MICCAI 2016 Part II: 424–432, 2016.

(a) 転移学習なし (b) 転移学習あり 図2 それぞれの手法による抽出結果の 3D レンダ リング.

表1 従来手法と提案手法の抽出結果の Dice 係数. 各臓器においての最大値を太字にて示す.

Dice	転移学習なし	転移学習あり
動脈	81.3%	84.6%
門脈	78.0%	82.8%
肝臓	92.2%	96.6%
脾臓	87.6%	92.5%
胃	91.2%	80.9%
胆囊	57.4%	73.8%
膵臓	75.7%	80.4%
平均	80.5%	84.5%

Study on Multi-class Organ Segmentation

from Abdomen Thick-slice CT Volumes using Transfer Learning

Chen SHEN^{*1}, Holger R. ROTH^{*1}, Yuichiro HAYASHI^{*1}, Masahiro ODA^{*1}, Hirohisa ODA^{*1}, Kazunari MISAWA^{*2}, Kensaku MORI^{*1,3,4}

- *1 Graduate School of Informatics, Nagoya University
- *2 Aichi Cancer Center Hospital
- *3 Information Technology Center, Nagoya University

*4 Research Center for Medical Bigdata, National Institute of Informatics

In this paper, we study on the influence of transfer learning in automated multi-class organ segmentation using abdominal thick-slice CT volumes. Automated organ segmentation plays a critical role in medical image processing. Despite thick-slice CT volumes with the thickness of 5 mm are used widely in clinical field, many researches have been done using thin-slice CT volumes with the thickness of 0.5 mm recently. Therefore, organ segmentation method for thick-slice CT volume is also necessary. However, direct application of 3D FCN trained by the thin-slice CT volume to thick-slice CT volume cause sever deteriorate in segmentation accuracy. Because the reconstruction pitch of the body axis is different. In this work, we apply transfer learning to a model which is trained using thin-slice CT volumes. In our experiment, the segmentation accuracy of thick-slice CT was improved 4% by when we used the transfer learning method.

Key words: Multi-class organ segmentation, Deep learning, Transfer learning, Thick-slice CT volumes

歯科的個人識別のための Relation Networks for Object **Detection** を用いた歯科用 Cone-beam CT における歯牙の検出

周 沓名 将太*1 村松 千左子*2 林 達郎*3 向栄*2

航*4 淑子*5 武史*2 有地 原 西山

勝又 明敏*4 有地 榮一郎*5 藤田 広志*2

要旨

地震や津波などの大災害時には、多数の身元不明の遺体が生じる. その身元確認のために歯科情報が用い られることがあり、歯科的個人識別と呼ぶ、歯科的個人識別にはデンタルチャートという用紙に遺体のロ 腔内の所見を記録する必要があるが、一般の歯科医師も記録に協力する際、遺体を対象とした記録の経験 に乏しいことから記録ミスや精神的負担が危惧される. そのため X 線写真から自動的にデンタルチャート の作成に必要な情報を取得する手法の開発が望まれている.本研究では、歯科用 Cone-beam CT を対象と し、情報の取得の前段階として画像上の歯牙領域を検出する.検出ネットワークとしてオブジェクト同士 の関係性を学習できるとされる Relation Networks for Object Detection を使用する. 提案手法を 10 症例 20 上 下顎に適用したところ,平均検出率は 97.6%,誤検出数は 0.8(個/顎)であった.検出に成功した歯 牙に関して、歯種の分類成功率は95.5%であり、良好な結果が得られた.

キーワード: 歯科 CT 画像, 深層学習, 歯科的個人識別

1. はじめに

地震や津波などの大災害時において遺体の 身元確認作業に歯科情報が用いられることが

*1 岐阜大学大学院自然科学技術研究科 知能理工学専攻知能情報学領域

〔〒501-1194 岐阜県岐阜市柳戸 1-1〕

e-mail: kutsuna@fjt.info.gifu-u.ac.jp

*2 岐阜大学工学部電気電子情報工学科 情報コース

*3 メディア株式会社

*4 朝日大学歯学部口腔病態医療学講座 歯科放射線学分野

*5 愛知学院大学歯学部歯科放射線学講 座

あり、これを歯科的個人識別と呼ぶ. 歯科情 報は指掌紋や DNA 型の情報に比べ,生前試料 の入手が容易であるという点や、遺体の損傷 に強い点で優位性があり, 東日本大震災でも 高い有効性を示した.

歯科的個人識別には口腔内の所見を記録す る必要があり,災害時には一般の歯科医師も その記録を行う.しかし、一般の歯科医師は 遺体を対象とした記録の経験に乏しく、精神 的負担が危惧されている[1]. また, 所見デー タの照合に際しシステマティックな生前デー タの記録も必要となる.そのため、生前及び 死後に撮影された歯科用 X 線写真から自動的 に口腔内の所見を取得する方法の開発が望ま れている.

従来研究[2]において,深層学習用いて歯種 の分類を行っており,高い精度が得られた. 本研究では,従来研究が歯牙の検出と分類を2 ステップで行うのに対し,Relation Networks for Object Detection [3] を用い1ステップで歯 科用 Cone-beam CT(図 1)上の歯牙の検出方法を 提案し,その精度を評価した.

図1 歯科用 Cone-beam CT

2. 方法

2.1 試料画像

検出ネットワークへの入力画像は体軸断面 のスライス画像をリサイズしたものを使用す る.検出対象となる歯牙は中切歯~第3大臼歯 の8種類となっている.

2.2 深層学習による歯牙の検出

本研究では検出ネットワークとして Relation Networks for Object Detection を利用する. この ネットワークは物体間の関連性を学習できる よう構築されており,歯牙の並びや位置関係が 歯種の分類において重要な要素となることか ら本研究に有効であると考えられる.

Relation Networks for Object Detection では物 体候補領域を Region Proposal Network [4] から 得た後に, relation module という新たに提案さ れた関連性を学習する構造を利用し物体の分 類と Box 回帰を行う.

2.3 検出結果の統合

同一症例の複数スライスで同位置にBoxが検 出されていれば、そのBoxは歯牙を正確に検出 している可能性が高い.そこで、検出結果の統 合を行う.各スライスにおける検出Box同士の 一致率が0.7以上のBox群を同一の歯牙を検出 しているとみなす.Box群の座標の平均値を最 終的なBox座標の値とする.この時、同一の歯 牙を検出しているとされるBox群のうち群内の Box数が3以下の群は偽陽性と判断する.

3. 結果

テスト症例には 10 症例を用いた.1 症例あた り 40 枚前後のスライス画像における検出結果 を上下顎それぞれで統合し,20 の画像に対して 検出精度を評価した.平均検出率は 97.6%,誤 検出数は 0.8(個/枚)であった.検出に成功した歯 牙に関して,歯種の分類成功率は 95.5%であり, 良好な結果が得られた.

結果例を図2に示す.図2は成功例であるが, 失敗例の典型として,誤分類となった歯牙から 順に隣り合う歯牙が誤分類となるケースがみ られ,物体間の関連を学習した弊害であると考 えられる.

図2 結果画像例 図中の1~7は中切歯~第2大臼歯に対応

4. まとめ

本研究では、物体間の関連を学習するネット ワークを用いた歯牙の検出手法を提案した.9 割を超える精度を示し、本研究における提案手 法は歯科的個人識別のシステム化に貢献でき る可能性を示唆した.

謝辞

本研究を行うにあたり,有益なご助言を頂い た原・周研究室の皆様,朝日大学,愛知学院大 学の皆様,メディア株式会社の皆様に感謝の意 を表します.本研究の一部は,科学研究費新学 術領域研究(課題番号 26108005)及び文部科学省 科学研究費補助金(基盤 C 19K10347)によって行 われました.

利益相反の有無

なし

文 献

- [1] 鈴木敏彦:歯科情報に基づく大規模災
 害時の個人識別.日補綴会誌 7:129-134, 2015
- [2] Miki Y, Muramatsu C, Hayashi T, et al.: Classification of teeth in cone-beam CT using deep convolutional neural network. Computers in Biology and Medicine 80: 24-29, 2017
- Han H, Jiayuan G, Zheng Z, Jifeng D, et al.: Relation Networks for Object Detection. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 3588-3597
- [4] Shaoqing R, Kaiming H, Ross G, at el.: Faster R-CNN: Towards real-time object detection with region proposal networks. NIPS, 2015

Tooth detection for dental identification with

Relation Networks for Object Detection on dental Cone-beam CT

Shota KUTSUNA^{*1}, Chisako MURAMATSU^{*2}, Tatsuro HAYASHI^{*3}, Xiangrong ZHOU^{*2}, Wataru NISHIYAMA^{*3}, Yoshiko ARIJI^{*5}, Takeshi HARA^{*2}, Akitoshi KATSUMATA^{*4}, Eichiro ARIJI^{*5}, Hiroshi FUJITA^{*2}

*1 Graduate School of Natural Science and Technology, Gifu University

*2 Department of Electrical, Electronic and Computer Engineering, Information Course, Gifu University

*3 Media Co., Ltd

*4 Department of Oral Radiology, Asahi University School of Dentistry

*5 Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry

A large number of unidentified corpses are found in a disaster such as earthquakes and tsunami. Dental information is sometimes used for identification of corpses and is called dental identification. There are risks of mental burden and mistakes due to inexperience when general dentists cooperate in recording dental chart which is a record of oral findings. Therefore, development of a method that automatically acquires information necessary for filing dental charts from dental radiographs is expected. In this study, we aim to detect teeth on dental cone-beam CT as a preliminary step of acquiring information using the Relation Networks for Object Detection, which takes into account the order of the dentition. The proposed method was applied to 10 test cases with upper and lower jaws. The average detection rate was 97.6% with 0.8 false positives per jaw. For those correctly detected teeth, the classification accuracy of tooth types was 95.5%. The result indicates the potential usefulness of the proposed method.

Key words: Dental CT, Deep learning, Dental identification

OP4-17

時間 - 周波数解析と CNN を用いた

呼吸音の自動分類

南 弘毅*1 陸 慧敏*1 金 亨燮*1

平野 靖*2 間普 真吾*2 木戸 尚治*3

要旨

呼吸器疾患の診断方法としては、聴診器を用いた呼吸音の聴診が長年用いられてきた. これは簡便で安全 な診断方法である一方,聴診音の診断には定量的な評価基準がないため、医師の診断支援を行うシステム の開発が必要である. そこで本論文では、畳み込みニューラルネットワーク(CNN: Convolutional Neural Network)を用いた呼吸音の自動分類手法の提案を行う. 主な手法の流れとしては、呼吸音データに対して 短時間フーリエ変換と連続ウェーブレット変換を適用し、スペクトログラム画像およびスカログラム画像 を生成する. その後、生成した画像を用いて CNN による正常呼吸音、連続性ラ音、断続性ラ音の識別を行 う. 提案手法を呼吸音データ 22 症例に適用した結果、分類性能としてAccuracy = 79.44[%], AUC = 0.942 を得た.

キーワード:呼吸音,コンピュータ支援診断,短時間フーリエ変換,連続ウェーブレット変換,深層学習

1. 序論

呼吸器疾患とは、呼吸器に起こる疾患の総称 である.世界中で何億人もの人々が呼吸器疾患 で苦しんでおり、毎年400万人以上の人々が死 亡しているといわれている^[1].また、世界保健 機関(WHO:World Health Organization)の調査に よると,2016年における全世界での死因上位10

e-mail: Minami.koki689@mail.kyutech.jp

*3 大阪大学

位のうち4つを呼吸器疾患が占めており(3位: 慢性閉塞性肺疾患(COPD:Chronic Obstructive Pulmonary Disease),4位:下気道感染症,6位: 気管,気管支,肺腫瘍,10位:結核),重大な疾 患であると考えられる^[2].

呼吸器疾患の診断方法として,聴診器を用い た呼吸音の聴診がある.聴診は簡便で安全な診 断手法として広く用いられてきた.一方,聴診 音の診断には定量的な評価基準がなく,医師の 主観的判断によって診断が下される.そのため, 経験を十分に積んだ医師でなければ異常音を 聞き分けることが難しく,医師の技量によって 診断結果が左右されるといった問題がある^[3]. そこで,医療データをディジタル化し,コンピ ュータによる定量化および解析を行い,出力結 果を「第二の意見」として提示するコンピュー タ支援診断(CAD:Computer Aided Diagnosis)シス テムのような,定量的かつ信頼性の高いシステ ムが必要であると考えられる^[4].

^{*1} 九州工業大学

^{〔〒804-8550} 福岡県北九州市戸畑区仙 水町 1-1〕

^{*2} 山口大学

^{〔〒755-8611} 山口県宇部市常盤台 2-16-1〕

^{〔〒565-0871} 大阪府吹田市山田丘 2-2〕

ところで近年,人工知能の分野において深層 学習が注目を集めている.その中でも畳み込み ニューラルネットワーク(CNN:Convolutional Neural Network)が画像認識分野において最重要 技術として位置づけられるようになった. 医用 画像処理分野においてもその重要性は増すー 方である.呼吸音分類に関連した研究例として は,記録された心音データの正常・異常の分類 を CNN によって行う手法が提案されているが 改善すべき課題も多く残されている^[5].

そこで本論文では、呼吸音データの一次元信 号から二次元画像への変換を行い、呼吸音の特 徴を示す画像を CNN に入力することにより、 呼吸音の分類を行うための CAD システムの開 発を試みる.

2. 手法

入力した呼吸音データを二次元画像に変換 し, CNN の学習および識別に変換した画像を用 いることにより,呼吸音の分類を行う.以下に 詳細を示す.

(1) 音声信号の前処理

入力した呼吸音データはデータごとに音量 の大きさが異なるため、音量の違いによる影響 を低減するために音量の正規化を行う.また、 100~2000[Hz]の帯域通過フィルタを原呼吸音デ ータに適用し、聴診に重要な周波数帯域以外の 信号の除去を行う^[6].

(2) 信号変換

前処理を行った呼吸音データに対し,信号変 換を行う.本論文では短時間フーリエ変換を用 い,スペクトログラムと呼ばれる画像に変換す る方法および連続ウェーブレット変換を用い たスカログラムと呼ばれる画像に変換する方 法を使用する.各手法について以下に詳細を示 す.

(A) 短時間フーリエ変換^[7-9]

短時間フーリエ変換の定義について説明していく.まず,有限な時間長Lを有する窓関数と

呼ばれる信号を用意する. 窓関数を式(1)に示す.

$$\omega(t) = \begin{cases} 1, \ \left(-\frac{L}{2} \le t \le \frac{L}{2}\right) \\ 0, \ (otherwise) \end{cases}$$
(1)

窓関数は,解析対象の信号を切り出す役目をもっている.本論文で用いる窓関数はハミング窓(Hamming Window)である.ハミング窓を式(2)に示す.

$$\omega(t) = 0.54 - 0.46 \cos\left(\frac{2\pi t}{L}\right) \tag{2}$$

窓関数を時間軸上移動させながら信号*f*(*t*)との積をとり、切り出した有限長信号を式(3)に示す.

$$\omega(t-\tau)f(t) \tag{3}$$

ここでτは時間位置(窓関数の位置)である.こ うして窓関数で切り出された有限長信号に対 してフーリエ変換を適用することにより,短時 間フーリエ変換が定義される.短時間フーリエ 変換を式(4)に示す.

$$F_{\omega}(\omega,\tau) = \int_{-\infty}^{+\infty} \omega(t-\tau) f(t) e^{-j\omega t} dt \qquad (4)$$

また,短時間フーリエ変換によるパワースペクトルを式(5)に表す.

$$|F_{\omega}(\omega,\tau)|^{2} = \left|\int_{-\infty}^{+\infty} \omega(t-\tau)f(t)e^{-j\omega t}dt\right|^{2}$$
(5)

パワースペクトルを2次元平面(τ-ω平面:時間-周波数平面)上に3次元的に表現すると, 時間に応じてパワースペクトルがどのように 変化するかを視覚的にとらえることができる. このような図をスペクトログラムと呼ぶ.

本論文では、時間長Lを 40[ms]、時間位置τを 20[ms]ずつずらしながら短時間フーリエ変換を 行い、スペクトログラムの生成を行った.生成 した画像の例を図1に示す.

(B) 連続ウェーブレット変換^[7,10,11]

連続ウェーブレット変換は、ウェーブレット 関数 $\psi(t)$ から生成される信号と、対象とする信 号f(t)との内積で定義されている.連続ウェー ブレット変換を式(6)に示す.

$$W_{\psi}(a,b) = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{+\infty} f(t)\psi\left(\frac{t-b}{a}\right) dt \qquad (6)$$

ここでaは時間軸のスケール比率, bは時間軸状

の推移(移動)を表している.また,本論文で はウェーブレット関数ψ(t)にガボール(モルレ ー)ウェーブレットを用いる.ガボールウェー ブレットを式(7)に示す.

$$\psi(t) = \frac{1}{2\sqrt{\pi}\sigma} e^{-\frac{t^2}{\sigma^2}} e^{-it} \tag{7}$$

式(6)の2乗関数

$$\left|W_{\psi}(a,b)\right|^{2} = \left|\frac{1}{\sqrt{|a|}}\int_{-\infty}^{+\infty}f(t)\psi\left(\frac{t-b}{a}\right)dt\right|^{2}$$
(8)

は時間-スケール平面上のある点での成分の エネルギー分布を表す.このエネルギー分布を スカログラムと呼ぶ.生成した画像の例を図 2 に示す.

(3) 画像枚数の拡張

作成した画像は、スペクトログラム、スカロ グラムともにフレーム長 5[s]、フレームシフト 長 1[s]として画像を切り取り、CNN への入力画 像とした.フレーム長を 5[s]に設定した理由と しては、安静時の健康な成人の平均的な呼吸数 が毎分 12~20 回であることから^[12]、呼気およ び吸気の特徴をとらえた画像を入力とするた めである.

(4) CNN による分類

本論文では大規模なイメージデータセット である ImageNet を用いて学習した VGG-16^[13] ネットワーク構造をベースに転移学習を行っ た.本論文で用いるネットワーク構造を表1に 示す.なお,畳み込み層10層までの重みを凍結 し,それ以降の層を生成した画像で再学習を行った.

3. 実験と結果

(1) 呼吸音データの詳細

実験に用いる症例は書籍の付録 CD^[14]に収録 されているデータを用いた.分類は三上らが報 告した呼吸音分類の原案^[15]に基づいている.症 例数は正常呼吸音(normal)6 症例,連続性ラ音 (continuous sound)6 症例,断続性ラ音(crackle)10 症例の計 22 症例である.また音声データの長 さは 17~47 秒である.

図1 スペクトログラムの例

図2 スカログラムの例

(2) 評価方法

本論文では3分割交差検証法により,各テス トデータに対する全体正解率(accuracy)[%]お よび ROC(Receiver Operating Characteristic)曲 線に基づくAUC(Area Under the Curve)を求め, その平均を算出することにより,分類器の性能 評価を行う.なお,ROC算出時の分類結果につ いては連続性ラ音および断続性ラ音を異常,正 常呼吸音を正常として評価を行う.各データセ ットのデータ数を表2に示す.

(3) 実験結果

表3に3分割交差検証法による分類器の性能 評価の結果を示す. ランダムに構成したデータ セットに対し, 平均 Accuracy: 79.44, 平均 AUC: 0.942 を得た.

4. 考察

呼吸音データセットに対し画像変換を行い, CNNによる正常・異常音の自動分類を行った結 果,良好な結果を得たが,一部のデータにおい ては正しく分類できない例もあった.

誤分類が起きた原因としては、CNN の学習段 階で呼吸音の特徴を十分に捉えることができ なかったためであると考えられる.同じ分類を 示す呼吸音でも、疾患の違いや症状の進行度に よってスペクトログラムおよびスカログラム の示す特徴が異なるためである.本論文では学

Layer	Filter size	Stride	Output size	Remarks
Input	-	-	192×192×3	-
Conv.1	3×3	1×1	192×192×64	ReLU
Conv.2	3×3	1×1	192×192×64	ReLU
Pool.1	2×2	2×2	96×96×64	-
Conv.3	3×3	1×1	96×96×128	ReLU
Conv.4	3×3	1×1	96×96×128	ReLU
Pool.2	2×2	2×2	$48 \times 48 \times 128$	-
Conv.5	3×3	1×1	$48 \times 48 \times 256$	ReLU
Conv.6	3×3	1×1	$48 \times 48 \times 256$	ReLU
Conv.7	3×3	1×1	$48 \times 48 \times 256$	ReLU
Conv.8	3×3	1×1	$48 \times 48 \times 256$	ReLU
Pool.3	2×2	2×2	$24 \times 24 \times 256$	-
Conv.9	3×3	1×1	24×24×512	ReLU
Conv.10	3×3	1×1	24×24×512	ReLU
Conv.11	3×3	1×1	24×24×512	ReLU
Conv.12	3×3	1×1	24×24×512	ReLU
Pool.4	2×2	2×2	$12 \times 12 \times 512$	-
Conv.13	3×3	1×1	$12 \times 12 \times 512$	ReLU
Conv.14	3×3	1×1	$12 \times 12 \times 512$	ReLU
Conv.15	3×3	1×1	$12 \times 12 \times 512$	ReLU
Conv.16	3×3	1×1	12×12×512	ReLU
Pool.5	2×2	2×2	6×6×512	-
FC1	-	-	$1 \times 1 \times 4096$	ReLU, Dropout
FC2	-	-	1×1×4096	ReLU, Dropout
FC3	-	-	1×1×3	Softmax

表1 ネットワーク構造

表2 各データセット数

	Dataset1	Dataset2	Dataset3
Continuous	90	90	90
Crackle	172	172	172
Normal	72	72	72
Total	334	334	334

表3 CNN の精度評価

Dataset	Accuracy[%]	AUC
1	78.14	0.913
2	85.03	0.979
3	75.15	0.934
Average	79.44	0.942

習データが少数でありかつ学習データ数が症 例ごとに偏っていたため、データ数を増やし、 偏りを改善することにより性能を向上させる ことができると考えられる.また、短時間フー リエ変換と連続ウェーブレット変換以外の音 声信号から画像信号への変換手法の適用、およ

びCNNの構造の改良を行うことを検討したい.

最後に、本論文では書籍の付録 CD に収録さ れている呼吸音データで実験を行った.そのた め、呼吸音データを録音条件が統一されていな い.本論文の有効性をより示すためには、録音 条件が統一されたデータで実験を行うことが 必要であり、これらも今後の課題である.

5. 結論

本論文では、呼吸音データの一次元信号から 二次元画像への変換を行い、呼吸音の特徴を示 す画像を CNN に入力することにより、呼吸音 の分類を行うための CAD システムの開発を行 った.提案手法を呼吸音 22 症例に適用した結 果,分類器の性能としてaccuracy = 79.44[%], AUC = 0.942を得ることができた.

今後は、さらなる分類精度の向上のため、デ ータ数の増加、新たに音声信号から画像信号へ の変換手法の考案や、CNNの構造の改良と、録 音条件が統一された新たなデータで実験を行 い、本論文の有効性を示す予定である.

謝辞

本研究を進めるにあたり,貴重なご助言を賜 った東京慈恵会医科大学付属病院の橋本典生 先生に深く感謝いたします.

利益相反の有無

なし

文 献

- [1] Ferkol T, Schraufnagel D: The global burden of respiratory disease. Annuals of the American Thoracic Society 11(3): 404-406, 2014
- [2] https://www.who.int/en/newsroom/factsheets/detail/the-top-10-causes-of-death
- [3] Kandaswamy A, Kumar CS, Ramanathan RP, et al.: Neural classification of lung sounds using wavelet coefficients. Computers in Biology and Medicine 34(6): 523-537, 2004
- [4] Doi K: Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Computerized Medical Imaging and Graphics 31(4, 5):

198-211, 2007

- [5] Rubin J, Abreu R, Ganguli A, et al.: Classifying heart sound recordings using deep convolutional neural networks and mel-frequency cepstral coefficients. 2016 Computing in Cardiology Conference: 813-816, 2016
- [6] Göğüş FZ, Karlik B, Harman G: Classification of asthmatic breath sounds by using wavelet transforms and neural networks. International Journal of Signal Processing Systems 3(2): 106-111, 2015
- [7] 和田:よくわかる信号処理-フーリエ 変換からウェーブレット変換まで.森 北出版, pp.14-84, 2009
- [8] 谷萩:ディジタル信号処理の理論 1 基礎・システム・制御. コロナ社, pp73-80, 1985
- [9] 小野:短時間フーリエ変換の基礎と応用.日本音響学会誌 72(12):764-769,2016
- [10] 新井:ウェーブレット解析の基礎理論. 森北出版, pp.20-29, 2000
- [11] Rioul O, Vetterli M: Wavelets and signal processing. IEEE Signal Processing Magazine 8(4): 14-38, 1991
- Barrett KE, Barman SM, Boitano S, et al.: Ganong's Review of Medical Physiology, Twenty-Four Edition. McGraw-Hill Education, New York, 2012, p.619
- [13] Simonyan K: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556: 2014
- [14] 川城,阿部,菊池 他:CDによる聴診
 トレーニング 呼吸音編 改訂第2版.
 南江堂, pp.25-64, 2011
- [15] Mikami R, Murao M, Cugell DW, et al.: International Symposium on Lung Sounds. Synopsis of proceedings. Chest 92(2): 342-345, 1987

Automatic Classification of Respiratory Sounds Based on Time-

Frequency Analysis and Convolutional Neural Network

Koki MINAMI*1, Huimin LU*1, Hyoungseop KIM*1, Yasushi HIRANO*2, Shingo MABU*2, Shoji KIDO*3,

*1 Kyushu Institute of Technology*2 Yamaguchi University*3 Osaka University

Auscultation of respiratory sounds is very important for discovery of respiratory disease. However, there is no quantitative evaluation method for the diagnosis of respiratory sounds. It is necessary to develop a system to support the diagnosis of respiratory sounds. We describe the development of an algorithm for the automatic classification of respiratory sounds as normal, continuous sound or crackle. Our approach consists of two major components. Firstly, transformation of one-dimensional signals into two dimensional time-frequency representation images using short-time fourier transform and continuous wavelet transform. Secondly, classification of images using convolutional neural networks. In this paper, we apply our proposal method to 22 respiratory sound data, and achieved accuracy of 79.44[%] and AUC based on ROC curve of 0.942.

Key words: Respiratory Sounds Classification, Computer Aided Diagnosis, Short-Term Fourier Transform, Continuous Wavelet Transform, Convolutional Neural Network

HE 染色標本画像と診断テキストデータを併用する

免疫染色パターン推定

橋本 典明*1 横田 達也*1 中黒 匡人*2 高野 桂*2

中村 栄男*2 竹内 一郎*1,3,4 本谷 秀堅*1

要旨

悪性リンパ腫は血液細胞に由来するがんで、白血球の1種であるリンパ球ががん化した病気である. これ らの病気は多くのサブタイプに細分され、病理診断ではヘマトキシリン・エオジン(HE)染色標本を観察し たのち複数の免疫染色標本を観察することで最終的な病名の決定が行われる. 病理画像解析技術を用いた 悪性リンパ腫の診断支援応用として HE 染色標本画像からのサブタイプ分類などが考えられるが、実際の 診断においてもサブタイプ分類には複数の免疫染色の施行が必要であることから、HE 染色標本画像からの 病名の同定は困難であることが予想される. 本研究では、病理診断テキストデータが持つ免疫染色情報を 解析し、HE 染色画像と組合わせることにより、各症例の HE 染色標本画像に対するサブタイプの候補群を 推定し、サブタイプを一意に決定するための免疫染色の組み合わせを求める手法を提案する.

キーワード:悪性リンパ腫,病理画像,免疫組織化学染色,バーチャルスライド

1. はじめに

悪性リンパ腫は血液細胞に由来するがんで, 白血球の一種であるリンパ球ががん化した病 気である.これらの病気は多くのサブタイプに 細分され,病理診断ではヘマトキシリン・エオ ジン(HE)染色標本を観察したのち複数の免疫 染色標本を観察することで最終的な病名の決 定が行われる.病理画像解析技術を用いた悪性 リンパ腫の診断支援応用として HE 染色標本画 像からのサブタイプ分類などが考えられるが, 同じサブタイプに対しても異なる免疫染色が

*1 名古屋工業大学大学院工学研究科

〔〒466-8555 名古屋市昭和区御器所町〕

- e-mail: hashimoto.noriaki@nitech.ac.jp
- *2 名古屋大学医学部附属病院
- *3 理化学研究所
- *4 物質・材料研究機構

行われることから,HE 染色画像から得られる 情報は症例ごとにばらつきがあり解析が困難 な症例も存在することが予想される.

本稿では、病理診断テキストデータが持つ免 疫染色情報を解析し HE 染色画像と組み合わせ ることにより、HE 染色標本画像からサブタイ プを一意に決定するための免疫染色パターン を予測する手法の提案を目的とし、各症例間に おける免疫染色データの解析を行う.

2. 手法

本研究で用いる悪性リンパ腫組織病理標本 は、2003-2018年に診断コンサルテーションの ため名古屋大学医学部附属病院宛てに送られ たものであり、5539症例について診断名、施行 免疫染色、部位などからなるテキスト情報が与 えられている.診断病名から得られる総サブタ イプは修飾語が異なるものを含め約2700種類、 また使用された免疫染色は110種類である.図 1 に悪性リンパ腫標本画像の例を示す. 各症例に対するテキストデータには施行し た免疫染色の組み合わせおよびその反応が含 まれており、実際には同じサブタイプの症例に おいても施行されている免疫染色の組み合わ せにばらつきがあることから、HE 染色標本の 観察で得られる情報にも違いがあることが推 察される.免疫染色パターンと HE 染色標本画 像の有する特徴の関係性を示すことにより、HE 染色標本画像から適切な免疫染色の組み合わ せを予測する問題などへの応用も考えられる.

本研究では数量化 III 類[1]を用いて免疫染色 および症例の関係性を数量化する.数量化 III 類 は各サンプルが変数に反応したか否かといっ た質的データに基づき数量化を行う手法であ り、ここでは各症例が免疫染色 110 種類に対し て各染色を施行したか否かを二値で表したデ ータを用いて手法を適用する.

(a) 混合細胞型 (b) 結節硬化型 図1 悪性リンパ腫の例 (ホジキンリンパ腫).

3. 実験

5539 症例の免疫染色情報に対して数量化 III 類を適用した.対象の症例に関して,第1,第2 数量を x 軸, y 軸としてプロットしたものを図 2 に示す.今回対象としたサブタイプは混合細 胞型ホジキンリンパ腫(HLMC),結節硬化型ホ ジキンリンパ腫(HLNS),びまん性大細胞型 B 細 胞リンパ腫(DLBCL),血管免疫芽球性 T 細胞リ ンパ腫(AITL)であり,DLBCL については胚中心 B 細胞型(GCB)と非胚中心 B 細胞型(nGCB)に細 分され,計5種類のサブタイプの症例を示して いる.図中の各点は互いに近ければ近いほど施 行された免疫染色の組み合わせが類似してい ることを示しており,ホジキンリンパ腫,B細 胞由来リンパ腫,T細胞由来リンパ腫の3種類 の疾患群のプロットが大別できる分布が確認 された. 独立かつ密集した症例はそのサブタイ プの特徴をよりよく表す典型的な症例である ことが予想され,一方で異なるサブタイプ間で 分布が重なっている症例においては他のサブ タイプと判断に迷うような非典型的な症例で あることが考えられる. このような数量に対し, 第3数量までを使用した3次元空間内でカーネ ル密度推定を適用し,各症例に対するサブタイ プらしさを典型度として定量化した.

図 2 数量化 III 類により算出された,免疫染色の組 み合わせ間の相関に基づく症例の分布.サブタ イプごとにまとまった分布が観察される.

4. まとめ

悪性リンパ腫の診断テキストデータ中の免 疫染色情報を解析することで、各症例のもつサ ブタイプの典型度の算出を行った.撮影された HE 染色画像を組み合わせた解析を行うことで、 提案した典型度の妥当性を検証していく.

謝辞

本研究は堀科学芸術振興財団の助成を受け て行われた.

利益相反の有無

なし

文 献

 Hayashi C: On the prediction of phenomena from qualitative data and the quantification of qualitative data from the mathematicostatistical point of view. Annals of the Institute of Statistical mathematics, 3: 69-98, 1951

Prediction of Immunostaining Patterns by Combining H&E Stained

Pathological Images and Diagnostic Text Data

Noriaki HASHIMOTO^{*1}, Tatsuya YOKOTA^{*1}, Masato NAKAGURO^{*2}, Kei KOHNO^{*2}, Shigeo NAKAMURA^{*2}, Ichiro TAKEUCHI^{*1,3,4}, Hidekata HONTANI^{*1}

*1 Nagoya Institute of Technology
*2 Nagoya University Hospital
*3 RIKEN
*4 National Institute for Materials Science

Malignant lymphoma is a group of blood cancers that develop from lymphocytes, a kind of white blood cell. As these diseases are classified into more than 70 subtypes, pathological diagnosis is performed by observing hematoxylin and eosin (H&E) stained tissues and several immunohistochemically stained tissues. For computer aided diagnosis, subtype classification of malignant lymphoma from digital HE stained tissue images is considered, but it is quite challenging because of varieties of malignant lymphoma tissue specimens and difficulties of diagnosis even by expert pathologists. In this study, by analyzing immuno staining information included in diagnostic text data and combining with H&E stained tissue images, we develop a method to predict immuno staining patterns required to determine diseases.

Key words: Malignant lymphoma, Pathological image, Immunohistochemical staining, Whole slide image

舌の表面特徴に基づく機械学習を用いた

舌苔分布推定手法の検討

吉村裕一郎*1,太田雄大*2, Vladmir Bochko*3, Pauli Falt*4,

Markku Hauta-Kasari^{*3}, 並木隆雄^{*5}, 中口俊哉^{*1}

要旨

近年コンピュータ支援による定量的な舌診断に関する研究が進められている. 舌診は漢方の診断法の一 種であり,舌の色彩,形状,湿潤,舌苔の状態等から患者の体調を診断するが,計測の難しさから舌苔を解 析する研究は少ない. そこで,本研究では RGB 画像からの機械学習を用いて舌苔の推定を試みた. 具体的 には,舌苔に関する指標である舌苔の物理量と被覆領域を推定した. 教師データとしては,先行研究で舌 苔計測における有効性が示された,蛍光撮影画像を用いる. 回帰型学習器を用いて蛍光量を推定し,蛍光 量と物理量との関係式から物理量を推定した. また被覆領域推定においては,分類型学習器を用いて蛍光 撮影画像から小領域単位で被覆有無のラベルを作成し,舌苔被覆の有無を判別した.実験では学習器とし て Random Forest を用いて性能を評価した. 13 名の舌画像から 3231 サンプルを抽出し交差検証を行った結 果,通常撮影された RGB 画像からの舌苔被覆領域推定手法の有効性が示唆された.

キーワード: 舌画像解析, 漢方医学, 舌苔, 機械学習, テクスチャ解析

1. 研究目的

漢方医学の診断法の一つである舌診は,舌の 色彩,形状,湿潤,舌苔の状態等の舌所見から, 患者の体調や血流の状態,病気の進行度合いを 診断する.漢方医学の分野に於いて古くから舌 診は重視されているが,その理論は医師の主観 に深く依存しており,客観性,系統性が欠けて いる.そこで近年では,コンピュータ支援によ

*1 千葉大学フロンティア医工学センター 〔〒263-8522 千葉市稲毛区弥生町 1-33〕e-mail: yysmr@chiba-u.jp
*2 千葉大学大学院融合理工学府
*3 Electrical Engineering and Energy Technology, University of Vaasa
*4 University of Eastern Finland
*4 千葉大学医学部和漢診療科 投稿受付: 2018 年 5 月 15 日 る定量的な舌診断に関する研究が進められて いる[1]-[8].一方で対象は舌本来の(舌苔が無い 舌質)領域の色彩や形状,湿潤等に着目してお り,舌苔を計測,解析する研究は少ない.

舌苔とは舌表面に付着している苔状の物質 である.主として糸状乳頭に由来する剥離上皮, 食物残渣,唾液,微生物,白血球などの堆積に よって形成されたものとされる.医師が舌苔を 診る際には色や量,被覆状態,湿潤状態につい て観察する.過剰な舌苔は,消化器疾患や糖尿 病と関連付けられる[9]ことが知られており,健 康状態と生活習慣の悪化を,舌苔量より推測す ることができることから,舌診において重要な 指標の一つとされる.

舌苔計測の先行研究として,波長 405nm にピ ークを持つ光源により舌苔中の細菌が励起し て蛍光を発することを用いた蛍光撮影がある [10].舌苔の量に応じて蛍光が強くなることが 確認されており, 蛍光撮影の舌苔計測における 有効性が示されている.しかし, 蛍光撮影は紫 外光に近い光源を用いており, 専用の蛍光撮影 装置が必要であるため, 汎用性や安全性に課題 が残る.そこで本研究では, 通常撮影された舌 の RGB 画像から機械学習を用いて舌苔量に関 連する指標である蛍光を推定することで, 舌苔 量を推定する事を試みた.

2. 撮影環境

1) 舌撮影装置

本研究では舌の RGB 画像と蛍光撮影により 取得される蛍光画像を使用する.各画像の撮影 には、図1に示す積分球を使用した舌撮影装置 (TIAS: Tongue Image Analyzing System, タカノ 株式会社)[2]を用いた. 図1はそれぞれ TIAS の 外観を示しており、図1(b)に確認できる穴正面 に顔を置き、舌画像を撮影する. TIAS では、積 分球内で照明を使用することにより内部で拡 散反射が生じ, 舌全体に対して光が均一に照射 される.これにより、舌粘膜や唾液による光沢 が発生しない画像が取得でき、外部の環境に依 存しない撮影が可能となる.また被験者の顎を 顎台に固定することにより, 被験者が安定した 姿勢で舌を出すことが可能となるよう工夫を 施している.よって撮影装置に対する舌の角度 と距離を一定に保った上,同一の環境での舌の 撮影が可能となる. 撮影には Canon 製の EOS Kiss X7(画像サイズ: 5184 画素×3456 画素, 階 調:RGB8 ビット)を使用した.

2) 蛍光撮影

文献 11,12 より,歯垢に含まれる口腔内細菌 が 405nmの波長光に励起され,605nmの波長の 蛍光を発することが報告されている.また歯垢 と舌苔に含まれている細菌には関連があり,舌 苔も同様に 405nmの波長光に励起され,蛍光が 発生することが,舌苔の採取前後の蛍光画像と 舌苔の乾燥質量を使用した実験によって確認 されている[10].本研究における蛍光撮影は,こ れらの先行研究において開発された撮影方法 を TIAS に導入したものであり,紫外域に近い 波長光を撮影対象に照射し,対象物が発した蛍

(a) 側面

(b) 正面

図1 積分球を用いた舌撮影装置(TIAS) [2]

図 2 TIAS 内部に設置した励起光源

(a) RGB撮影

(b) 蛍光撮影

図 3 TIAS による撮影画像例

光を取得する.

蛍光撮影には 405nm にピークを持つ LED 光 源(OSV5XME1C1E, OptoSupply Co.Ltd.)を TIAS 内部に 12 個設置した.設置した光源を図 2 に 示す.光源により舌苔が励起され発生した蛍光 を取得することで蛍光画像を撮影する.蛍光撮 影装置で使用する励起光源は近紫外領域に近 く,撮影対象も粘膜組織である舌であるため安 全性に配慮が必要である.提案システムでは, ACGIH(American Conference of Governmental Industrial Hygienists)の指針である,波長 380nm の場合,最大 $47J/cm^2$ という指標に対して, $245 \mu W/cm^2$ であり,およそ 53 時間連続照射し ない限り基準値を超えない事を確認した.更に 安全性をより高めるために励起光源の照射時 間を最小にすることを試みた.励起光源と撮影 装置をストロボで同期させ,撮影する瞬間のみ 励起光源を照射した.

舌撮影装置による同被験者の RGB 撮影画像 と蛍光撮影画像例を図3に示す.図3(a)におい て,舌苔が被覆している部位は白みが強く示さ れており,舌苔量が増すほど図3(b)において, 蛍光が強くなっていることが確認できる.

3. 提案手法

初めに TIAS により舌の RGB 画像と蛍光撮 影された蛍光画像を取得する. RGB 画像から算 出された複数の画像特徴量を入力とし,蛍光画 像を教師データとした学習器により,舌の蛍光 強度を推定する.また同様に蛍光画像を教師デ ータとした学習器により,舌苔被覆領域の推定 も行った.舌の RGB 画像と蛍光画像の画像サ イズは共に 5184 画素×3456 画素である.

1) 舌輪郭の位置合わせ

TIAS を用いた実験では、RGB 画像と蛍光画 像を取得する際、異なった光の照射を行ってい るため、同時に撮像する事は出来ない.従って 舌領域において同一箇所の特徴量と教師デー タを生成するために RGB 画像と蛍光画像にお ける舌輪郭の位置合わせを行う必要がある.

舌輪郭の位置合わせ手法は村井らの手法[5] を用いた.まず図4中の白線のようにそれぞれ の舌画像において舌輪郭を手動で指定する.そ して,黄色に示す重心を通る水平な線を基準に 15°ごと引いた直線と,緑点で示した輪郭線と の24の交点と重心点を対応点として Thin Plate Spline method[13]により変形を行った.

2) 蛍光強度の推定

舌輪郭の位置合わせを行った舌画像を使用 し、図4中の青いグリッド線に示すように、そ の領域内を100画素×100画素の矩形の小領域

(a) RGB撮影

(b) 蛍光撮影

図4 舌輪郭の位置合わせと小領域分割

表1 学習に使用した特徴量

• R, G,	B, R/G, R/B値の平均
● L*, a*,	b*, a*/b*値の平均
● H, S,	V値の平均
● グレース	スケール値の平均
● フラク:	タル次元(FD)値
● ガボ-	ー ル フ ィ ル タ (GF) 値
波長0.1	, 0.2, 0.3, 0.4, 0.5[mm]
● フーリニ	エ解析の高周波成分
● 同時生却	起行列
14種類(の特徴量
● 輝度値 6	ヒストグラムの統計量
分散, 雪	至度,尖度

に分割する.小領域ごとに, RGB 画像からはデ クスチャや色彩に関する計 37 種類の特徴量を 算出して学習器に入力した.蛍光画像からは小 領域内の平均輝度値を蛍光強度として算出し, 学習器出力の教師データとして使用した.算出 した特徴量を表1に示す.色彩に関する特徴量 として RGB 値や L*a*b*値等をはじめとした基 本的な色成分とそれらの比を用いた値を使用 した.またテクスチャ特徴量としてフラクタル 次元やガボールフィルタを算出し,舌表面の凹 凸等の部分的変化を定量化した.

機械学習手法としては Random Forest 法[14] を使用し、ハイパーパラメータは Grid Search に より最適化した.提案手法により学習された学 習器を用いて舌の RGB 画像から舌表面の小領 域ごとの蛍光強度を推定した.

3) 舌苔被覆領域の推定

蛍光強度の推定が可能となったことにより, 矩形の小領域毎の蛍光量から,機械学習を用い

表2 被験者の諸元

被験者	年齢	性別	疾患
1	24	男性	無し
2	22	男性	無し
3	24	男性	無し
4	25	女性	無し
5	22	女性	無し
6	22	女性	無し
7	23	女性	無し
8	24	女性	無し
9	24	男性	無し
10	22	男性	無し
11	23	男性	無し
12	24	男性	無し
13	22	女性	無し

図5 舌苔被覆領域の蛍光量分布

て舌苔領域の推定を行うことを検討した.

蛍光量を基に舌苔の被覆領域を決定するた めには、蛍光量のしきい値を設定する必要があ る.そこで比較的被覆領域が明瞭な3名の被験 者の舌画像から、舌苔が被覆している領域と被 覆していない領域のマーキングデータを作製 した.図5に抽出した領域における、蛍光量の 確率密度分布を示す.図5中の緑線は舌苔が被 覆している領域の蛍光量を表し、青線は舌苔が 被覆していない領域の蛍光量を表す.本研究に おいては、確率密度分布の交点である蛍光量68 を舌苔被覆領域のしきい値として設定した.

この基準を基に、全ての蛍光画像から舌苔領 域のマーキングデータを作製する.本データは RGB 画像と共に舌苔領域推定のための、機械学 習における教師データとして使用する.機械学 習手法には、同様に Random Forest 法を使用し、 ハイパーパラメータは Grid Search により最適 化した.提案手法により学習された学習器を用 いて舌の RGB 画像から舌表面の小領域ごとの

図6 推定結果例

舌苔被覆の有無を推定した.

4. 実験

1) 蛍光強度の推定実験方法

蛍光強度推定における提案手法の有効性を 評価するために 13 名の被験者に対して実験を 行った.それぞれの被験者の諸元を表2に示す. 尚,後述する実験結果などにおける被験者番号 は,全て表2の被験者と対応している.実験で は TIAS を用いて舌の RGB 画像と蛍光画像を 連続して撮影し,上記の手法を用いて画像を矩 形の小領域に分割する.全被験者の小領域の合 計は 3231 サンプルとなった.

Leave One Subject Out (LOSO)の交差検証を 行い,全ての被験者の舌画像で評価を行った. LOSO 交差検証とは,一人の被験者から得られ るデータセットを評価用セット,残り被験者の 全データセットを学習用セットとし,N人の被 験者に対して評価者を切り替えてN回の評価では 13名の被験者でLOSO 交差検証を実施した.

有効性を評価するために,提案手法により推 定される蛍光強度と撮影された蛍光画像から 取得される蛍光強度の差を平均平方二乗誤差 により評価した.また,より視覚的に評価する ために縦軸を提案手法により推定される蛍光 強度,横軸を蛍光画像から取得される蛍光強度 として交差検証ごとに誤差図を作成した.推定 結果の出力例を図6に示す.誤差図内の青い点 は矩形領域ごとの結果を示しており,正確な推 表3特徴量の重要度(1%以上)

特徴量	重要度[%]
R/G	16.35
Н	15.70
a*/b*	14.34
a*	12.04
R/B	7.57
S	5.73
G	4.06
В	2.34
GF[波長 :0.2mm]	2.08
FD	1.78
グレースケール	1.59
歪度	1.44
R	1.37
GF[波長 :0.3mm]	1.35
L*	1.33
GF[波長 :0.4mm]	1.19
GF[波長 :0.5mm]	1.07

図7 許容誤差決定における医師の基準

定である程,対角を結ぶ赤で示した理想直線の 近くに位置する.

また特徴量の重要度を算出することで,各特 徴量が推定精度にどの程度寄与しているかに ついて検証を行った.重要度が1%以上である 上位17種類の特徴量とその重要度を表3に示 す.全37種類の特徴量を学習器に入力した場 合と,前述の基準で選択した17種類の特徴量 のみを学習器に入力した場合で精度評価を行 い,特徴量選択の有効性を評価した.

更に蛍光量推定の精度評価における許容誤 差を設定した.許容誤差決定の概要図を図7に 示す.漢方医学における従来の舌苔評価は,医 師の目視による経験的評価がなされており,舌 苔の厚さは3段階で評価される.この時実際に 医師が見分けている診断幅は赤矢印で示した 範囲で存在することから,今回は医師が見分け ている診断幅の半分の値を許容誤差として設 定した.よって本研究における医師の診断幅は

表4 平均平方二乗誤差による評価

	一重型均		
<i>依</i> 厥者	平方根誤差	被験者	二乗平均 平方根誤差
1	36.14	1	31.38
2	23.89	2	23.36
3	18.72	3	17.07
4	18.01	4	17.70
5	15.99	5	15.79
6	20.00	6	14.49
7	19.33	7	16.75
8	34.24	8	32.87
9	37.97	9	33.87
10	9.86	10	13.68
11	15.72	11	20.98
12	21.14	12	22.84
13	19.23	13	16.92
平均	22.33	平均	21.35

被験者5

RGB舌画像

(a) 被験者5の結果(許容誤差範囲内)

被験者9 誤差:33.87 型 200 型 200

0

100 150 200 250

蛍光量の正解値

(b) 被験者9の結果(許容誤差範囲外)図8 蛍光量推定の評価結果

蛍光舌画像

医師の診断幅 =
$$\frac{ $\underline{\mathscr{G}} \mathcal{X} \underline{\mathscr{G}}_{max} - \underline{\mathscr{G}} \mathcal{X} \underline{\mathscr{G}}_{min}}{3 \, \underline{\mathscr{G}} \mathbf{\mathscr{B}}}$ (1)$$

で示され許容誤差は

RGB舌画像

として設定する.

2) 蛍光強度の推定実験

被験者 13 名を交差検証し,平均平方二乗誤 差により評価をした.全 37 種類の特徴量を入 力した場合と 17 特徴量のみを学習器に入力し た場合の交差検証における推定誤差を表4に示 す. 平均推定誤差,最大推定誤差及び 13 名中 10 名の被験者における推定誤差で 17 特徴量の みを使用した場合の精度が,上回ったことを確 認した.従って特徴量選択の有効性が示唆され たことから,後述する実験においては 17 特徴 量のみを使用した結果を示す.

交差検証の平均誤差は 21.35,最大誤差は 33.87 となった.また本実験における許容誤差 は式(1),(2)と表4(b)より27.29 である.交差検 証の推定結果において,許容誤差範囲内にある 被験者例を図8(a)に,範囲外の被験者例を図 8(b)にそれぞれ示す.

評価結果より、13名中10名の被験者は許容 誤差範囲内となった.図8(a)に示すように、誤 差が少ない被験者の場合, 蛍光画像から取得さ れた蛍光量が上昇するにつれて,提案手法によ り推定した蛍光量が上昇していることが確認 できる. つまり舌苔の被覆度合いに応じた, 正 確な推定がなされていることが確認できる. 一 方で、図 8(b)に示す被験者においては、推定誤 差が大きく,許容誤差が達成できていない.ま た推定結果より,舌苔の被覆が少ない領域にお いては推定精度が高いが,舌苔が多く被覆して いる領域においては,推定精度が低いことが確 認された.これらの誤差が大きい被験者は、舌 苔が比較的多量に被覆している傾向が確認で きることから,学習データの多様性が十分では 無いことが考えられる.本実験で用いたデータ セットにおいて,舌苔が多量に被覆しており, 蛍光量が非常に大きいサンプルや,舌苔の色調 が異なるサンプルが被験者毎にのみ存在する 場合がある.この誤差は多様な舌苔サンプル画 像を取得する事で改善が可能であるため,新た な画像の収集を試みることを検討する.

3) 舌苔分布の推定実験方法

提案手法により RGB 画像より,舌苔量の推 定が可能となったことから,次に舌苔分布の推 定を行う.教師データとしては,引き続き舌輪 郭の位置合わせ済みの,RGB 画像と蛍光画像を 用いる.学習及び識別時には,前述の実験と同 様に,100 画素×100 画素の矩形の小領域ごと に有無を判別する.正解ラベルは,被験者ごと

表5 混同行列と識別率

		舌苔推定	
		陽性	陰性
正解	あり	78.9%	21.1%
ラベル	なし	31.0%	69.0%

正答率 74.2%

被験者5 正答率:81.0%

(a) 被験者5の推定結果

被験者9 正答率:72.1%

推定領域

正解領域

(b) 被験者9の推定結果図9舌苔被覆領域の推定結果

の蛍光画像から,3.3 節にて設定したしきい値 を用いて舌苔の被覆の有無を判定する.舌苔被 覆領域の推定精度は推定結果と正解ラベルを 比較し,混同行列と識別正答率によって評価す る.被験者数及び小領域数は前述の実験と同一 の条件である.

混同行列を表5に示す.識別正答率は74.2% であり,感度は78.9%,特異度は69.0%となっ た.被験者ごとの舌苔被覆領域推定結果例を図 9に示す.図9(a)は比較的高精度で舌苔被覆領 域が推定された例であり,図9(b)は一部の舌苔 被覆領域が推定できていない例である.これは 3.3 節にて設定した,しきい値や小領域中に舌 苔が占める割合が少ないような,境界付近の蛍 光量推定精度が起因していると考えられる.従って今後,医師などの専門家が領域を指定したマーキングデータを作製し,実験を行うことにより,精度が向上する事が期待できる.

5. 結論

本研究において,通常撮影された RGB 画像 のみを用いて,舌苔の蛍光強度と舌苔分布を推 定する手法を提案した.積分球を用いた舌撮影 装置(TIAS)により取得される舌の RGB 画像か ら特徴量を算出する.また舌の蛍光画像から教 師データとして蛍光強度を算出し,同一領域か ら特徴と蛍光強度を算出するために,RGB 画像 と蛍光画像の舌輪郭の位置合わせを行った.

Random Forest 法により蛍光強度と舌苔被覆領 域を推定し,実験により有効性を評価した.

今後の課題として,現在 20 から 24 歳の被験 者 13 名からなるデータセットにより評価を行 っており,データセット中の舌苔の多様性が不 足していることが挙げられる.様々な年齢層, 健康状態の被験者の舌画像を取得し,学習デー タセットにおける舌苔の多様性を向上させる ことが,今後の課題である.また舌苔の被覆領 域を推定できたことにより,専門医が舌苔量を 基準として診断を行う所見に対して,舌診断支 援システムを開発し診断の提示方法について 検討を行う.

利益相反の有無

なし

文 献

- S. Yamamoto, Y. Ishikawa, T. Nakaguchi, et.al.: Temporal Changes in Tongue Color as Criterion for Tongue Diagnosis in Kampo Medicine, Forsch Komplementmed 2012, 80-85, 2012
- [2] Toshiya Nakaguchi, Kanako Takeda, Yuya Ishikawa, et.al.: Proposal for a new noncontact method for measuring tongue moisture to assist in tongue diagnosis, and development of the Tongue Image Analyzing System, which can separately

record the gloss components of the tongue, BioMed Research International, vol. 2015, ID 249609, 10, 2015

- [3] Fumina Kobayashi, Akira Morita, Takeshi
 Oji, et.al.: Breadth Measurement of Sublingual Vein using Near-Infrared Photography,Proc. 1st International Conference on Advanced Imaging (ICAI2015), 269-271 (PB1-07), 2015
- [4] Yudai Ota, Toshiya Nakaguchi, Masami Shishikura, et.al.: Evaluation of Color Conversion Accuracy using Tongue Color Chart, Proc. of 13th AIC Congress 2017, OS24-04, 2017
- [5] Kazunari Murai, Toshiya Nakaguchi, Akira Morita, et.al.: Association Analysis of Tongue Color Spatial Distribution and Physiological Index based on Tongue Shape Normalization, Proc. of 13th AIC Congress 2017, OS24-03, 2017
- [6] Kazunari Murai, Toshiya Nakaguchi, Yuichiro Yoshimura, et.al.: Optimization for Thin Plate Spline Registration of Tongue Spectral Images, Proc. of NOLTA2018, 5183, 196-199, 2018
- [7] Tingxiao Yang, Yuichiro Yoshimura, Akira Morita, et.al.: Fully Automatic Segmentation of Sublingual Veins from Retrained U-net Model for Few Near Infrared Images, The Ninth International Workshop on Image Media Quality and its Applications (IMQA2018), 46-52, 2018
- [8] Qichao Tang, Tingxiao Yang, Yuichiro Yoshimura, et.al.: Full Automation of The Tongue Image Analyzing System, The Ninth International Workshop on Image Media Quality and its Applications (IMQA2018), 53-56, 2018
- [9] 小島健, "舌苔の臨床的研究", 日本口 腔外科学会, 31(7), 1659-1678 (1985)
- [10] Yudai Ota, Shuhei Iino, Toshiki Ichinose, et.al.: Proposal and Evaluation of

Fluorescence Imaging System for Non-Contact Tongue Coating Measurement and Tongue Protrusion Guide, 第 35 回日本医 用 画 像 工 学 会 大 会 (JAMIT2016), 48, 2016

- [11] Coulthwaite L, Pretty IA, Smith PW, et.al.: The microbiological origin of fluorescence observed in plaque on dentures during QLF analysis, Caries Res, 40(2), 112-116, 2006
- [12] Thomas RZ, Van der Mei HC, Van der Veen MH, et.al.: Bacterial composition and red fluorescence of plaque in relation to

primary and secondary caries next to composite : an in situ study, Oral Microbiol Immunol, 23(1), 7-13 ,2008

- Bookstein, F. L.: Principal Warps: Thin-Plate Splines and the Decomposition of Deformations, IEEE Transactions on Pattern Analysis and Machine Intelligence.11(6): 567–585, 1989
- [14] Breiman, L.: Random Forests, Machine Learning, Vol.45, 5-32, 2001

A Study for Tongue Coating Estimation

via Machine Learning using Tongue Surface Features

Yuichiro YOSHIMURA^{*1}, Yudai OTA^{*2}, Vladmir Bochko^{*3}, Pauli Falt^{*4}, Markku Hauta-Kasari^{*3}, Takao NAMIKI^{*5}, Toshiya NAKAGUCHI^{*1}

*1 Center for Frontier Medical Engineering, Chiba University

- *2 Graduate School of Science and Engineering, Chiba University
- *3 Electrical Engineering and Energy Technology, University of Vaasa
- *4 University of Eastern Finland
- *5 Dept. of Japanese-Oriental(Kampo) Medicine, Chiba University

Tongue diagnosis, which is one of the diagnostic methods of Kampo medicine, diagnoses the physical condition of patients from tongue features. Recently, computer-aided tongue diagnosis researches are in progress. However, there are few studies to measure tongue coating which is one of the most important tongue feature. Therefore, we aim to estimate fluorescence intensity related to tongue coating amount via machine learning from RGB images. First, the tongue image is divided into small rectangular regions. For each rectangular region, 17 feature values related to texture and color are calculated and input into the classifier. The tongue fluorescence images are used as the ground truth. The 3231 samples are extracted from 13 tongue images. The stable accuracy is confirmed, and the possibility of estimation indicated fluorescence intensity from RGB images.

Key words: tongue image diagnosis, Kampo medicine, tongue coating, machine learning, texture analysis

Dense V-Net automated segmentation approach for gross tumor volumes on 3D planning CT images for lung cancer stereotactic body radiation therapy

Risa NAKANO^{*1}, Hidetaka ARIMURA^{*2}, Mohammad HAEKAL^{*3}, Saiji OHGA^{*4}, Tadamasa YOSHITAKE^{*4}, Yoshiyuki SHIOYAMA^{*4}

Abstract

Automated segmentation of gross tumor volumes (GTVs) for lung cancer are highly demanded in clinical practice of stereotactic body radiation therapy (SBRT) to reduce intra- and inter-observer variabilities in GTV contours, which may lead to the variability of treatment dose distributions. Hence, we attempted to develop an automated segmentation approach for lung cancer GTVs using a dense V-Net deep learning, which has more advantages to the segmentation of smaller structures than the conventional V-Net. Datasets of 3D planning CT images and GTV contours determined by radiation oncologists for 194 lung cancer cases were fed into the dense V-Net as input and teacher data, respectively. Dice's similarity coefficients (DSCs) were calculated to evaluate the proposed approach. The proposed approach achieved an average DSC of 0.792. The average DSCs for solid and part solid GGO types were 0.807 and 0.782, respectively. The proposed approach could be useful to delineate the various types of GTVs in treatment planning for lung cancer SBRT.

Keywords : deep learning, segmentation, dense V-Net, 3D-medical image

1. Introduction

Delineation of the gross tumor volumes (GTVs) constitutes one of the most important phases of treatment planning [1]. However, the delineation is time-consuming and has a potential source of errors in radiation therapy, because the GTV regions are manually delineated on treatment planning computed tomography (CT) images by treatment planners with having different skill level in current radiation therapy [2]-[5]. In this regards, automated segmentation approaches of GTVs are highly demanded in clinical practice of stereotactic body radiation therapy (SBRT) to reduce intra- and inter-observer variabilities in GTV contours, which may lead to the variability of treatment dose distributions. In past studies, a lot of efforts have been made in developments of more accurate segmentation approaches of the GTVs using

- *1 Department of Health Sciences, Graduate School of Medicines, Kyushu University [3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan]
 - e-mail: rs19nkn@gmail.com

- *3 Department of Physics, Faculty of Mathematics and Natural sciences, Institut Teknologi Bandung
- *4 Department of Clinical Radiology, Graduate School of Medicines, Kyushu University

^{*2} Department of Health Sciences, Faculty of Medical Sciences, Kyushu University

machine learning techniques including deep learning to recognize structures in various imaging modalities (e.g. CT, positron emission tomography, and magnetic resonance imaging) [6]-[8]. Hence, we have attempted to develop an automated segmentation approach for lung cancer GTV in SBRT using a dense V-Net deep learning, which has more advantages in the segmentation of smaller structures with a novel loss function based on Dice's similarity coefficient (DSC) than the conventional V-Net [9],[10].

2. Materials and Methods

This study was performed under the approval of the Institutional Review Board of our university hospital. Datasets of three dimensional (3D) planning CT images and GTV contours determined by radiation oncologists for 194 lung cancer cases, who received SBRT were selected for this study. They were fed into the dense V-Net as input (3D-planning CT images) and teacher (GTV contours) data, respectively, by using a NiftyNet platform, which is an open source convolutional networks platform for medical image analysis and image-guided therapy [11]. The dense V-Net uses a fully convolutional neural network and enables high-resolution activation maps through memory-efficient dropout and feature reuse. Our dense V-Net was trained and tested in a 10-fold cross validation test with the 3D-planning CT volumes. In the training step, we employed an augmentation technique (flip, rotation and scaling) to avoid overfitting [12]. Table 1 shows the summary of hyper-parameters of this study. As a loss function, we selected a Dice loss function, which directly maximizes the similarity between the predicted GTVs and the reference regions over all voxels. In order to evaluate the proposed approach, we calculated DSC, which denotes the similarity between the reference region determined by radiation oncologists and the GTV region estimated using proposed approach and ranges from 0 to 1.

Table I Hyper-parameters for dense V-Net deep learning.		
Number of iterations	25000 times	
Batch size	1	
Learning rate	0.0001	
Dropout	0.75	
Activation function	Scaled exponential Linear Unit	
Network	Dense V-Net	
Number of data	194	
Types of augmentations	Rotate, flip, scale	
Loss function	Dice function	
Optimizer	RMSprop	

TT 1 1 1 1 11 for dance V Not doop loom

3. Results and Discussion

Figure 1 illustrates segmentation results for 3 cases with reference GTVs (white line) and regions estimated by the proposed approach (green line). The proposed approach achieved an average DSC of 0.792. The average DSCs for solid and part solid GGO types were 0.807 and 0.782, respectively.

In this study, we attempted to develop an automated approach for delineation of GTV region and compare the accuracy by using DSC. As a result, the dense V-Net deep learning approach achieved the better performance for lung cancer cases. However, the number of data in this study is not sufficient for deep learning. Therefore, we attempt to use augmentation technique which can increase training cases similar to clinical cases with artifact and noise at the same time as collecting high quality data.

In conclusion, the proposed approach can shows the potential to be useful to delineate the various types of GTVs in treatment planning for lung cancer SBRT.

Fig. 1 Segmentation results for 3 cases. White line shows the reference GTVs and green line shows the regions estimated by the proposed method. 3D-DSCs are shown in these planning CT images.

Competing interests

The authors have no conflicts of interest to declare. The authors alone are responsible for the contents and writing of the paper.

Acknowledgement

The authors are grateful to all members in Arimura laboratory (http://web.shs.kyushu-u.ac.jp/~arimura), whose comments made enormous contribution to this study.

References

- [1] Shalini KV, Michael GJ, Myo M, et al.: Uncertainties in volume delineation in radiation oncology: A systematic review and recommendations for future studies. Radiother Oncol J Eur Soc Ther Radiol Oncol, 121 (2): 169-179, 2016
- [2] Emmanuel RV, Hugi JWLA, Yuhua G, et al.: A semiautomatic CT-based ensemble segmentation of lung tumors: Comparison with oncologist's delineations and with the surgical specimen. Radiotherapy and Oncology, 105(2):167-173 2012
- [3] Tim L, Johan van S, Mark G, et al.: Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiotherapy and Oncology, 126(2): 312-317, 2018
- [4] Sharp G, Fritscher KD, Pekar V, et al.: Vision 20/20: perspectives on automated image segmentation for radiotherapy. Medical Physics, 41(5),2014
- [5] Angela VB, Geert B, Liesbeth B, et al.: ET-CT-Based Auto-Contouring in Non-Small-Cell Lung Cancer Correlates With Pathology and Reduces Interobserver Variability in the Delineation of the Primary Tumor and Involved Nodal Volumes. International Journal of Radiation Oncology*Biology*Physics, 68(3):771-778, 2018
- [6] Kawata Y, Arimura H, Ikushima K, et al.: Impact of pixel-based machine-learning techniques on automated frameworks for delineation of gross tumor volume regions for stereotactic body radiation therapy. Physica Medica, 42: 141-149, 2017
- [7] Liu Y, Stojadinovic S, Hrycushko B, et al.: A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery. PLoS One, 12(10), 2017
- [8] Men K, Chen X, Zhang Y, et al,: Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images. Front Oncol, 2017
- [9] Eli G, Francesco G, Yipeng H, et al.: Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks.
 IEEE Transactions on Medical Imaging, 37(8):1822-1834, 2018
- [10] Fausto M, Nassir N, Seyed-Ahmad A, et al.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. 3D Vision, 2016
- [11] Eli G, Wenqi L, Carole S, et al.: NyftyNet : a deep-learning platform for medical imaging. Computer Methods and Programs in Biomedicine, 158:113-122, 2018
- Hussain Z, Gimenez F, Yi D, et al, Differential Data Augmentation Techniques for Medical Imaging Classification Tasks."
 AMIA Annu Symp Proc. 2017: 979–984, 2017

半教師あり学習を用いた根拠提示可能なメラノーマ識別

村林 誠也*1 仁*1 禰冨

要旨

深層学習を用いたメラノーマ自動診断支援における信頼性向上のため、我々は識別根拠の提示技術にお いて一定の成果を実現してきた.しかしながら臨床現場で利用される指標に基づく可読性の高い教師デー タ作成は医師に依頼する必要があるため数が限られ、それに起因する予測器の過学習、精度面での改善の 必要性が残されていた.そこで本研究では、半教師あり学習手法である Virtual adversarial training を応用し、 限られた数の教師ラベル付きデータに加え、比較的入手しやすい異なる関連するラベル(診断ラベル)付 きのデータを活用することで、メラノーマの診断指標である 7-point checklist の各項目予測器の改良を検討 した. 教師ラベル付きの 226 症例に加えて、メラノーマ or 母斑の診断ラベルのみが付与された 9.124 症例 を学習に利用することで、診断指標各項の予測誤差は2%程度改善、診断指標の各数値から求められる診断 精度は AUC で 6.5%程度向上し、同診断指標を適用した皮膚科医と同等の診断精度を実現した.

キーワード:ダーモスコピー、コンピュータ自動診断(CAD)、深層学習、半教師あり学習

1. はじめに

診断が難しい悪性度の高い皮膚がんであるメラ ノーマ (悪性黒色腫)の早期発見と高精度な診断 実現のため、特に近年深層学習技術による自動診 断手法の開発が行われている [1]. これらの手法 は専門医に匹敵する高い識別精度を実現してい るが、識別根拠を提示できず信頼性の面で改善の 余地が残されていた.この問題に対し我々は臨床 現場で利用される診断指標に基づくダーモスコ ピー特徴の数値予測器を試作した「2].しかし、 学習のために必要な教師データは医師に依頼す る必要から作成コストが高く,極めて少量(226例) ResNet-101を用い,臨床におけるメラノーマの診 のデータのみで構築された予測器においては、精 度面での改善の必要性が残されていた.一方,少 量のラベル付き学習データに加え,大量のラベル なしデータを学習に活用する半教師あり学習の 枠組みの中で, Virtual adversarial training (VAT)[3] は、なめらかな識別境界を構築する制約を導入す ることで優れた成果を実現している.

本研究では VAT を応用することで,限られた数

*1 法政大学大学院理工学研究科応用情報工学 専攻

〔〒184-8584 東京都小金井市梶野町 3-7-2〕 e-mail:seiya.murabayashi.9j@stu.hosei.ac.jp

の教師つきデータと、それらの情報のないより多 くの画像データを用いて上記診断指標の優れた 予測器を構築した.本研究の目的は、他に多く見 られる自動診断精度を追及する事ではなく、ブラ ックボックス化されたシステムの結果に対する 可読性・信頼性向上のために、診断根拠の定量的 な提示を目指したものである.

2. 方法

1) 深層学習を用いた診断指標予測器

本実験では,一般物体画像で事前学習済みの 断指標である 7-point checklist [4] {S1:不規則な網 構造, S2:青白い領域, S3:不規則な血管パターン, S4:不規則な枝状構造,S5:不規則な色素沈着,S6:不 均一な点, S7:色素抜け構造}の有無[1,0]とメラノ ーマ/母斑の計8項目の予測器を構築した.診断指 標7項目の学習には4人の皮膚科専門医によって 同項目への評価がなされた 226 症例のデータを用 い,メラノーマ/母斑の学習にはメラノーマ/母斑 ラベルのみ付与済みの9,124 症例も用いた.

2)半教師あり学習による準ラベルデータ活用 本実験では、半教師あり学習手法の一つである

ID	皮膚科医	(i) 教師 あり	(ii)半教師	(iii)半教師+MN
	(σ)	(MAE)	(MAE)	(MAE)
S1	0.250	0.342	0.324	0.329
S2	0.209	0.200	0.141	0.154
S3	0.072	0.106	0.090	0.071
S4	0.154	0.244	0.327	0.369
S5	0.297	0.265	0.174	0.191
S6	0.250	0.314	0.299	0.322
S7	0.148	0.225	0.206	0.213
ave	0.197	0.242	0.222	0.236

表1 7-point checklist 各項目の予測

表2 7-point checklist に基づく診断結果†

討合法事	診断精度			
評価指標	感度[%]	特異度[%]	AUC	
皮膚科医	76.0	80.3	0.781	
(i) 教師あり	59.6	82.8	0.712	
(ii) 半教師	63.6	92.3	0.780	
(iii) 半教師+MN	72.7	84.6	0.787	

†: $2 \times (S1 + S2 + S3) + S4 + S5 + S6 + S7 \ge 3.0$ が悪性

Virtual adversarial training (VAT)を参考に,教師デ ータ付与済みの226 症例に加え,診断指標の情報 はないものの,最終的な診断結果であるメラノー マ or 母斑のラベルのみが付与された計9,124 症例 のデータも診断指標予測器の学習に利用し,予測 能向上への影響を検証した.

3) 評価実験

本研究では以下の3条件で予測器の学習を行い, 比較を行った.

- (i) 教師あり:診断指標ラベル付き226 例のみ
- (ii) 半教師: VAT 適用, 226 例+9,124 症例(メラノーマ or 母斑ラベル非活用)
- (iii) 半教師+MN: VAT 適用, 226 例+9,124 症例
 (メラノーマ or 母斑ラベル活用)

7-point checklist の各項目の数値予測能は平均絶 対誤差(MAE)で、7-point checklist の各数値から 求められる診断結果については、10-fold cross validation 法で評価した.

3. 結果

7-point checklist 各項目の予測結果および皮膚科 医4名による評価の分散を表1に示す.また, 7-point checklist に基づく診断結果の感度,特異度, area under the ROC curve (AUC)を表2に示す.

7-point checklist 各項目の予測において半教師あ り学習適用後の予測誤差は 2%程度改善した.ま た,診断指標の各数値から求められる診断精度 は AUC で 6.5%程度向上し,特にメラノーマ or 母斑ラベル利用時には皮膚科医を上回る結果を 示した.

4. 考察とまとめ

半教師あり学習手法を用いた非ラベルまたは 異なるラベル情報が付与されたデータの追加活 用により、臨床で使用される指標に基づく可読 性高い診断において皮膚科専門医に匹敵する診 断精度を示した.これにより、純粋なメラノーマ /母斑識別について90%程度である同識別器と併 せて用いることで高精度かつ定量的な診断根拠 の提示可能な自動診断の実現が期待できる.

今後,各予測項目と実際のダーモスコピー特 徴の対応について更なる妥当性の検証を行う.

利益相反の有無

なし

文献

- [1] A. Esteva, B. Kuprel, R. A. Novoa et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115-118, doi:10.1038/nature21056, Feb. 2017.
- [2] 村林誠也, 彌冨仁: 深層学習器を用いた
 悪性黒色腫自動識別の識別根拠の評価.第
 37回日本医用画像工学会大会, 2018
- [3] T. Miyato, S. Maeda, S.Ishii, et, al.: Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning. IEEE Trans Pattern Analysis and Machine Intelligence, 2018
- [4] G. Argenziano, G. Fabbrocini, P. Carli et al.: Epiluminescence microscopy for the diagnosis of ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Archives of Dermatology No.134, pp.1536-1570 1998.

Explainable melanoma diagnosis using semi-supervised learning Seiya MURABAYASHI^{*1}, Hitoshi IYATOMI^{*1}

*1 Graduate school of Science and Engineering, Hosei University

In order to improve the readability of automated diagnosis support for melanoma, we have realized certain achievements on quantifying their clinical findings such as 7-point checklist. Here, we need to ask dermatologists to create gold standard label based on the criteria in advance, while it is so expensive that the number of available labeled data is limited. Therefore, there remains a need for improvements in over-fitting and accuracy in our previous model. In this study, we applied a virtual adversarial training (VAT) as a semi-supervised training framework and build a reliable estimator of each item defined in the 7-point checklist using quite limited number of labeled data and larger number of data with relevant but different label. We used a total of 226 labeled images and other 9,124 images with different type of label information, i.e. melanoma or benign. In our model, the prediction error of each clinical item is improved by about 2% and the diagnostic accuracy obtained based on them is improved by about 6.5% by AUC. We confirmed the diagnosis performance is equivalent to expert dermatologists who applied the same criteria.

Key words: Dermoscopy, Computer-aided diagnosis (CAD), Deep learning, Semi-supervised leaning

著者紹介

村林 誠也 (むらばやし せいや) 2018 年法政大・理工・応用情報工 卒.現在,同大大学院修士課程在学 中.電子情報通信学会学生会員.

彌富 仁 (いやとみ ひとし) 1998 年慶大・理工・電気卒. 2000 年同大大学院・理工研・電気修士課 程, 2004 年同博士課程修了. 2000-2004 年日本ヒューレット・パッカ ード(株).現在,法政大・理工・ 教授.博士(工学),博士(医学). 機械学習および,それらを元にした 画像解析,言語処理,セキュリティ などの研究に従事.

肝臓がん検出器のための Conditional GAN

による病変画像生成

池田 裕亮*1 道満 恵介*1 目加田 慶人*1 縄野 繁*2

要旨

肝がんの読影において CT 画像を医師が目視で行っており, 医師の負担となっている. そのため, 機械学習 による読影支援が求められているが, 機械学習に用いる症例画像を大量に集めることは困難である. その ため病変画像の生成手法が研究されている. 従来手法である DCGAN による病変画像生成では, 学習デー タに見えが異なる病変画像を混ぜて用いたため, 異なる特徴が混ざった病変が生成される問題があった. 本稿では CGAN を用いた病変画像生成手法を提案し, CNN で構築した検出器の精度により評価した結果 を報告する. 肝臓の辺縁部と非辺縁部の2種類のラベルを付与し, CGAN の学習を行った. 学習後, CGAN で生成した病変画像を検出器の学習に用いた結果, 検出率が 0.85, 一症例当たりの誤検出が 0.20 となり, 従来手法より検出精度が向上した.

キーワード:CT 画像,深層学習,コンピュータ診断支援,画像生成

1. はじめに

肝がんの診断は CT 画像を医師が目視で行っ ている.医師の負担を軽減するため機械学習を 用いた自動検出による読影支援が求められて いる.しかし,機械学習に用いる大量の学習デ ータを集めることは困難である.そのため病変 画像の生成手法が研究されている.

これまで我々は肝臓がん検出器を二次元の 畳み込みニューラルネットワーク(2D-CNN)と 三次元の CNN(3D-CNN)で構築した[1].また, 検出器の学習データの不足を補うため以下の3 つの手法で生成した.

*1 中京大学 大学院工学研究科

〔〒470-0393 豊田市貝津町床立 101〕
e-mail: ikeda.y@md.sist.chukyo-u.ac.jp
e-mail: kdoman@sist.chukyo-u.ac.jp
e-mail: y-mekada@sist.chukyo-u.ac.jp
*2 国際医療福祉大学三田病院
e-mail: snawano@iuhw.ac.jp

- Poisson Blending 法(PB 法)[2]
- Deep Convolutional Generative Adversarial Networks (DCGAN) [4][5]

上記の3つの手法で生成した病変画像と実病変 画像を検出器の学習データとして用いること で検出精度が向上した.しかし,DCGAN を用 いた病変画像生成手法では3次元のDCGANの 学習に肝臓辺縁部と非辺縁部にある見えが異 なる病変画像を混ぜて用いたため,それらの特 徴が混在した不自然な病変画像が生成される 問題があった.

そこで本稿では DCGAN で表現できる病変の 多様さを維持しながら、不自然な病変画像の生 成を抑制するため、ラベル情報を用いることで 特徴が異なる病変を別々に学習する Conditional GAN (CGAN)を用いた病変画像生成を提案す る.

and the second	and sugar
1 als 100	10 (MAC)
Station .	5-23-88T
1.2.2.2.2.2.	10000000
2. S. S. S. S. S.	1. State 1.
(a) 非辺縁	(b) 辺縁

図1 辺縁と非辺縁の実病変画像断面

表 1	2D-CGAN の学習	「デー	・タ
夜 Ι	2D-CGAN の字省	ケ	_

	, ,	, .
ラベル	実病変	回転等
辺縁	255	1785
非辺縁	482	3374

表2 3D-CGAN の学習データ

ラベル	実病変	回転等	PB 法	濃度分 布法
辺縁	26	390	6087	5072
非辺縁	84	1260	4554	5926

(a) 非辺縁 (b) 辺縁 **図2** CGAN で生成した病変画像断面

2. CGAN を用いた画像生成

転移性肝がんは肝臓辺縁部と非辺縁部において異なる特徴を持つ.非辺縁部では図1(a)のように病変は球形になるが辺縁部では図1(b)のように辺縁に沿った形になる.そのためCGANの学習データに辺縁部と非辺縁部の2つのラベルを付与する.検出器は2D-CNNと3D-CNNで構成されているためCGANも二次元のCGAN(2D-CGAN)と三次元のCGAN(3D-CGAN)の二つのモデルを作成する.

3. 実験

CGANで生成した病変画像を評価するため検 出器の学習データとして生成画像を用いた.検 出器には学習に未使用の 20 症例の CT 画像を 入力し,その検出率と一症例当たりの誤検出率 を用いて提案手法の評価を行う.以降, CGAN の学習データ,検出器の学習データ,検出結果, 考察について述べる.

表3 検出器に共通の学習データ

モデル	実病変	PB 法	濃度分 布法	非肝 がん
2D	737	3,000	3,000	4,500
3D	110	1,000	1,000	1,500

表4 手法ごとに異なる検出器の学習データ

土汁	エデル	DCCAN	CGAN		
十伝	モテル DCGAN		辺縁	非辺縁	
從並	2D	3,000	0	0	
促木	3D	1,000	0	0	
CGAN	2D	0	3,000	0	
辺縁	3D	0	1,000	0	
CGAN	2D	0	0	3,000	
非辺縁	3D	0	0	1,000	
CCAN	2D	0	1,500	1,500	
CUAN	3D	0	500	500	

表5 検出器の検出結果

• •		
手法	検出率	誤検出率
従来	0.80	0.25
CGAN 辺縁	0.85	0.35
CGAN 非辺縁	0.75	0.20
CGAN	0.85	0.20

3.1. CGAN の学習データ

2D-CGANの学習に用いた病変画像を表1に, 3D-CGANの学習に用いた病変画像を表2に示 す.これらの表中の「回転等」は,幾何変形に 基づくデータオーギュメンテーションによる 水増しを表している.3D-CGANの学習データ においては実病変の数が十分ではないために 学習が収束しない.そのため文献[3]と同様に, PB 法と濃度分布法で生成した病変画像を加え 学習を行った.

これらの条件で学習した病変を図 2 に示す. これらの生成した病変画像を検出器の学習デ ータとして用いる.

3.2. 検出器の学習データ

検出器の学習に用いたデータのうち実病変 等の数を表3に, DCGAN または CGAN によっ て生成したデータ数を表4に示す.

3.3. 結果

20 症例に対する検出器の検出結果を表 5 に 示す. 従来手法と比べ CGAN で生成した辺縁部 と非辺縁部の病変のどちらも学習に用いた場 合では検出率は上がり,一症例当たりの誤検出 率は低下した.このことから提案手法の有効性 を確認できる.

3.4. 考察

CGANで生成した辺縁部に特有なアピアラン スを持った病変画像のみで学習した場合,検出 率は向上したが,1症あたりの誤検出数は増え た.また,非辺縁部の特徴のみを持った病変画 像で学習した場合はこれとは逆の結果となっ た.一方,これら両方を用いた場合,検出率と 1例あたりの誤検出数が共に最も良い結果にな った.学習データ数の比率については検討の余 地があるものの,辺縁と非辺縁の特徴を個別に 生成して利用することは有効であることが示 唆された.

4. まとめ

機械学習のために必要な大量の学習データ を生成する手法として,CGANを用いた病変生 成手法を提案した.肝臓がんにおいては,肝臓 の辺縁部と非辺縁部においてその見た目が異 なるため,それぞれ個別に生成し,CNNによる 検出器の学習データとして利用することで, DCGANを用いた病変生成手法よりも検出器の 検出精度が向上した.しかし,評価に用いた症 例が 20 症例と少ないため十分な評価とはいえ ない.そのため今後大規模な評価実験を行う必 要がある

謝辞

本研究の一部は、日本学術振興会科研費補助 金の援助による.

利益相反の有無

なし

文 献

- [1] 小西他,"人工的な病変画像を用いた 3D-CNN による転移性肝がん検出",電 子通信学会 医用画像研究会(MI)技術研 究報告, vol.116, no.393, pp.21-22, Jan. 2017
- P. Perez et al. "Poisson image editing", ACM Special Interest Group on Computer 2003, pp.27-31, July 2003
- [3] 小西他、"人工的病変画像を用いた CNN による転移性肝がん検出手法", Medical Imaging Technology 「研究速報 (A)」, vol.37, no.1, pp46-50, Jan.2019
- [4] A. Radford et al. "Unsupervised representation learning with deep convolutional generative adversarial networks", Int. Conf. on Learning Representations 2016, 67, May. 2016
- [5] T. Konishi et al. "Lesion image synthesis using DCGANs for metastatic liver cancer detection", Proc. of Int. Workshop on Frontiers of Computer Vision 2018, O4-4, Feb. 2018

Image Generation using Conditional GAN for Constructing

a Metastatic Liver Cancer Detection

Yusuke IKEDA*1, Keisuke DOMAN*1, Yoshito MEKADA*1, Shigeru NAWANO*2

*1 Graduate School of Engineering, Chukyo University*2 International University of Health and Welfare Mita Hospital

The diagnosis for liver cancer is visually performed by doctors with CT images, which take a lot of time. For this reason, an interpretation support using machine learning is required. It is, however, difficult to collect a large number of case images for machine learning. Thus, we study a lesion image generation method. In the conventional method using DCGAN, lesion images with different appearance features were mixed and used as learning data. As a result, generated images had features with different features mixed. The method proposed in this paper generates lesion images using CGAN. CGAN is trained with learning data labeled with "edge" and "non-edge" of the liver. We confirmed that the proposed method achieved the detection rate of 0.85 and the false detection per case of 0.20. The detection accuracy was higher than the conventional method.

Key words: CT image, Deep Learning, Computer Aided Diagnosis, Image Synthetic

Deep CNN における分類器のアテンションメカニズムを

利用した CT 画像からの乳腺領域の自動抽出法

山岸 誠也*1 周 向栄*1 原 武史*1 加賀 徹郎*2

加藤 博基*2 松尾 政之*2 藤田 広志*1

要旨

本研究は、様々な検査の目的で撮影された3次元CT画像から乳腺領域を自動抽出することを目的とする. CT画像における乳腺領域の自動抽出に関する先行研究として、確率的アトラスに基づくアプローチが提案 され、良好な抽出結果が示された.しかし、従来法では確率アトラスの作成に時間と労力が必要であった. 本研究は、以上の確率アトラスを患者ごとに自動生成する方法を提案する.具体的には、深層学習によっ て得られた画像分類器から乳腺領域のAttention Map を生成して確率アトラスとして代用する.提案手法を 体幹部 CT 画像 16 症例に適用した結果、生成した Attention Map は真の乳腺領域との一致度の平均値が 49.6%であることを確認した.また、この Attention Map を従来法に組み込んで乳腺領域を抽出した結果、 一致度が 65.3%に向上した.実験結果から、提案手法によって各 CT 画像に適切な Attention Map を動的に 生成することが可能であり、乳腺領域の自動抽出の効率化が期待できる.

キーワード:乳腺領域,Attention Map,深層学習

1. はじめに

近年,女性における乳癌の罹患率が増加して いる.乳癌は女性が罹患する癌の中で最も罹患 率が高く,早期発見が求められている[1].乳癌 検診において,マンモグラフィの高濃度乳腺で は乳癌発症リスクが増加することは確実であ る[2].計算機で乳腺量を定量できれば,乳癌発 症リスクの予測に関する計算機支援診断が可 能になる[3].

また, 医療現場では CT 検査が頻繁に行われ,

*1 岐阜大学大学院自然科学技術研究
 科知能理工学専攻
 (〒501-1193 岐阜県岐阜市 1-1)
 e-mail: syama@fjt.info.gifu-u.ac.jp
 *2 岐阜大学医学部附属病院放射線科

検査対象とする臓器以外の画像情報の活用が 望ましい.他の診断目的で撮影された3次元 CT 画像から乳癌のリスク評価への応用が期待 される[4].その際には,3次元 CT 画像から乳 腺領域の自動抽出が必要とされる[5-6].

先行研究では,解剖構造の類似性に基づいて 推定された乳腺位置(以下では確率アトラスと 呼ぶ)を CT 画像上の濃淡分布(尤度画像と呼 ぶ)に合わせて,乳腺領域を自動的に抽出する 処理手法が提案され,66 例の CT 画像に適用し た結果から確率アトラスの有効性が確認され た[7].しかし,確率アトラスの作成には,数多 くの CT 画像から乳腺領域を手動で抽出する必 要があり,作業時間がかかる問題があった.ま た,作成された確率アトラスが汎用なものでな く,患者の個人状況を表現する能力が不十分で あった.そのために,各患者に個別な確率アト ラスを効率的に生成する方法が期待されてい

る[7].

本研究は、各患者に乳腺の確率アトラスを動 的に生成する方法を提案する.具体的には、乳 腺濃度を分類するためのニューラルネットワ ークが、入力された CT 画像上に注目する領域 (Attention Map と呼ぶ)を乳腺領域の確率アト ラスとして活用する.これにより、従来法[7]に 必要とされる確率アトラスの構築に関する手 作業を軽減して、CT 画像からの乳腺領域の抽 出処理の効率化を目指す.

2. 方法

2.1 深層学習による Attention Map の生成

Attention Map は Global Average Pooling の特 性を利用し,深層学習に得られたネットワーク が入力画像上に注目している領域を可視化し たものである.今回,Attention Map を作成す る手法として Grad-CAM[8]を使用した.Grad-CAM は可視化手法の1つであり,分類モデル の特徴マップから確率スコアの変化に影響を 与えた箇所を特定する手法である.画像処理分 野において,深層学習のパラメータの調整や, 判断根拠の理解に利用されている[9].

深層学習のネットワークは CT 画像上にある 乳腺領域を 2 つのカテゴリーに分類する AlexNet[10]を利用した.学習サンプルとして, 3 次元 CT 画像 80 症例において乳頭方向を回転 軸とする 2 次元断面画像(28800枚)を利用し た.医師が乳腺濃度を 2 つのカテゴリーに分類 し,その分類結果を深層学習の教師信号として 利用した.深層学習で得られたネットワークを 利用して,入力の CT 画像から乳腺領域の Attention Map を生成する.

2.2 乳腺の確率アトラス

確率アトラスは,複数の患者データにより作 成される,解剖学的な構造上に乳腺位置の頻度 を表すマップである.従来法では,確率アトラ スの作成過程で大量な CT 画像から乳腺領域の 正解画像を必要とした[7].手動で抽出した複数 の乳腺領域を,解剖学的なランドマークによっ て位置合わせし,空間的に乳腺領域の頻度を測 定することで確率アトラスを作成している[7].

本手法は深層学習に基づく画像分類器の Attention Map を確率アトラス(Latlas)として活用 する.ここで、乳腺濃度(密度)を分類する際 に、画像分類器が CT 画像上にある乳腺領域の みを注目することと想定して、大まかな乳腺領 域の位置が深層学習を通じてネットワークに 記憶されることを想定する.画像分類器の学習 過程に真の乳腺領域が必要とされないため、従 来法より確率アトラスの構築作業を容易行う ことができる.

2.3 乳腺領域の尤度画像

深層学習から得られた Attention Map と CT 画 像の濃淡値分布から乳腺の存在確率を表す画 像(*L_{mammary}*)を作成する.図1に処理の流れを 示す.

まず,乳腺領域の位置尤度画像(*L_{density}*)を作 成する乳腺領域の濃淡分布を正規分布と仮定 し,正規分布のパラメータμとσを以下手順で 推定する.

- 乳腺領域の濃淡分布の最頻値を乳腺領域の 平均濃淡値 μとする
- (2) µ以下の濃淡分布を削除し,µを基点とした 線対称の濃淡分布を作成する.
- (3) 作成された濃淡分布から標準偏差 σ を推定 する.

推定されたパラメータをガウス関数に基づい た式へ代入する(式 1). ここで(式 1)中の V_{xyz} は CT 画像の座標(x,y,z)における CT 値を表す. CT 画像(図 2-a)を $L_{density}$ に変換する(図 2-b). 図 2-b において,緑で示される箇所が $L_{density}$ で最も値 の大きい領域となっている.直感的に,CT 画像 の CT 値が乳腺領域の平均濃淡値 μ に近いほど 値が大きくなる. $L_{density}$ に Attention Map(図 2c)を乗じることで乳腺の存在確率画像 ($L_{mammary}$)を生成する(図 2-d). 作成された $L_{mammary}$ に膨張処理と収縮処理を施した後,閾 値処理によって得られた領域を乳腺領域の抽 出結果とする[11].

図1CT 画像からの乳腺領域の自動抽出の流れ

$$L_{density} = \exp\{-\frac{(V_{xyz}-\mu)^2}{2\sigma^2}\}$$
(1)

(a)

(b)

(c)(d)図 2 CT 画像と乳腺領域の抽出結果(a): CT 画像(1 断面)(b): L_{density}(c): Attention Map(d): L_{mammary}

3. 実験と結果

3.1 Attention Map の性能評価

Attention Map による乳腺領域の位置推定の精

度を確認する. Attention Map での画素値(確率) が 0.5 以上を示す箇所を乳腺領域と推定したと 仮定する. 正解領域は医師の指導の下, 16 症例 の乳腺領域を手動で作成した. 推定した領域と 乳腺領域の正解領域との Dice 値によって評価 する. Dice 値の平均が 49.6%であった. Attention Map は乳腺領域の大まかな位置を示している ことを確認した. 乳腺領域が散在している症例 に対しての過抽出が平均一致度低下の原因と なった.

3.2 乳腺領域の自動抽出

Attention Map を確率アトラスとして従来法 に組み込むことにより得られた最終的な抽出 結果と,正解領域のDice 値により抽出精度の評 価を行う.乳腺領域の正解画像は 3.1 で使用し た 16 症例と同様のものとする.

本手法によって求められる Dice 値の平均は 65.3%を示した. ガウス関数で使用した $\mu \ge \sigma$ の 16 症例の平均はそれぞれ 157.0[HU] と 36.0[HU]であった. Attention Map に $L_{density}$ を乗 じることで散在する乳腺領域や乳腺領域の末 端を抽出可能にしている. 図3に抽出結果の画 像を示す. 抽出に失敗している症例は $L_{density}$ の 作成段階で乳腺領域と脂肪領域の分離が不十 分であることを確認した. (図4)

図3乳腺領域の抽出結果(成功例) 左:CT画像中:正解領域(黄)右:抽出結果(緑)

図4乳腺領域の抽出結果(失敗例) 左:CT 画像 中:正解領域(黄)右:L_{density}

4. 考察

提案手法では各 CT 画像に対する患者の乳腺 位置を動的に推定することが可能である.乳腺 領域の正解画像の作成に1症例あたり平均で57 分かかった. それに対して, Attention Map の作 成には1症例あたり2分で行うことができる. 特に、低濃度乳腺の正解画像の作成には多くの 時間が必要となる.今回テストに使用した16症 例のうち,8症例が低濃度乳腺となっている. 低濃度乳腺の正解画像の作成には平均で1時間 21 分の時間が必要であった.また,乳腺領域の 正解画像の作成は医師の経験則に頼る部分が 大きい.以上より、多症例にわたる従来法での 確率アトラスの作成は困難であり、本提案手法 による乳腺位置の自動推定が現実的な解決法 と言える. さらに、従来法では確率アトラスの 作成において不可欠であった,解剖学的ランド マークによる画像位置合わせと乳腺領域の変 形処理を削減できるため、本手法による乳腺領 域の自動抽出の効率化が期待できる.

作成された Attention Map が真の乳腺領域を 推定することができれば、適切な濃淡分布のパ ラメータμとσの推定が可能となる.現段階で は推定結果として 49.6%を示しており、適切な パラメータを推測できていないと考える.精度 の高い Attention Map を作成することで尤度画 像を用いた抽出結果が向上すると考えられる. また、分類器は患者専用の Attention Map を作成 するため、従来の確率アトラスと比べて精度が 良いと考える.よって、Attention Map を確率ア トラスとして利用することは乳腺領域の抽出 に適していると考える.

今後は高精度の Attention Map を作成するために,深層学習における分類器の作成を工夫する必要があると考える.

5. まとめ

本研究は, CT 画像からの乳腺領域の自動抽 出を目指して,従来法の難点であった確率アト ラスを自動的に生成する方法を提案した.深層 学習のアプローチを従来の処理手順に組み込 んで, CT 画像における乳腺領域の自動抽出の 効率化を進めた.体幹部 CT 画像に適用した結 果から,提案法の有効性が示された.

謝辞

本研究の一部は文部科学省科学研究費・新学 術領域研究(課題番号 26108005),及び JSPS 科 学研究費補助金(基盤研究(C) 26330134)によ って行われました.

利益相反の有無

なし

文 献

- [1] 池戸祐司, 福岡大輔, 原武史, 他:全 乳房超音波画像における腫瘤像自動検 出システムのための左右乳房画像の比 較による偽陽性削除法. 電子情報通信 学会論文誌 D 91: 1923-1926, 2008
- [2] Huo CW, Chew GL, Britt KL, et al.: Mammographic density—a review on the current understanding of its association with breast cancer. Breast Cancer Research and Treatment 144: 479-502, 2014
- [3] Zhou X, Kano T, Cai Y, et al.:Automatic quantification of mammary glands on noncontrast X-ray CT by using a novel segmentation approach. SPIE Medical Imaging 2016 9785: 97851Z, 2016
- [4] 藤田広志:肺がんCT検診CADシステムの現状と今後の展望.医学物理 35: 163-166,2015
- Liu S, Salvatore M, Yankelevitz D, et al.:
 Segmentation of the whole breast from lowdose chest CT images. Proceedings of SPIE Medical Imaging 2015 9414: 94140I, 2015
- Liu S, Margolies L, Xie Y, et al.: Fully automated Breast density assessment from low-dose chest CT. Proceedings of SPIE Medical Imaging 2017 10134: 101340R, 2017
- Zhou X, Kan M, Hara T, et al.: Automated segmentation of mammary gland regions in non-contrast torso CT images based on probabilistic atlas. Proceedings of SPIE Medical Imaging 2007 6512: 65123O, 2007

- [8] Selvaraju RR, Cogswell M, Das A, et al.: Grad-cam: Visual explanations from deep networks via gradient-based localization.
 2017 IEEE International Conference on Computer Vision (ICCV), 618-626, 2017
- [9] Iizuka T, Fukasawa M, & Kameyama M: Deep learning-based imaging classification identified cingulate island sign in dementia with Lewy bodies. BioRxiv 592865: 2019
- [10] Krizhevsky A, Sutskever I, & Hinton GE: Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, 1097-1105, 2012
- [11] Zhou X, Kitagawa T, Hara T, et al.: Constructing a probabilistic model for automated liver region segmentation using non-contrast X-ray torso CT images. In International Conference on Medical Image Computing and Computer-Assisted Intervention 856-863, 2006

Automatic segmentation of mammary gland region on CT images based on attention mechanism in deep learning classifier

Seiya YAMAGISHI^{*1}, Xiangrong ZHOU^{*1}, Takeshi HARA^{*1}, Tetsuro KAGA^{*2} Hiroki KATO^{*2} Masayuki MATSUO^{*2} Hiroshi FUJITA^{*1}

 *1 Department of Intelligence Science and Engineering, Graduate School of National Science and Technology, Gifu University
 *2 Department of Radiology, Gifu University Hospital

The purpose of this study is to automatically segment mammary gland region on 3D CT images that scanned for various diagnostic purposes. In our previous work, we proposed an approach that used a probabilistic atlas to segment mammary gland regions on CT images and showed good performance with promising experimental results. However, constructing a probabilistic atlas that required in our previous work was time-consuming and effort-expensive. In this study, we propose a method to automatically generate a probabilistic atlas for each patient. Our method uses the attention map of a deep learning classifier as a substitute for probabilistic atlas. We applied the proposed method to 16 cases of torso CT images and confirmed that the average value of the coincidences between the attention map with the ground truth of mammary gland region, and confirmed the coincidence value was improved to 65.3%. These experimental results demonstrated the capability of our proposed method that can dynamically generate a probabilistic atlas for each CT image specifically. This progress is expected to improve the efficiency of automatic segmentation of the mammary gland region on CT images.

Key words: Mammary Gland, Attention Map, Deep Learning

Automated approach for estimation of sizes of lung tumor on planning CT images using dense V-net CNN with non-negative matrix factorization

Zhuangfei MA^{*1}, Hidetaka ARIMURA^{*2}, Risa NAKANO^{*1}, Tadamasa YOSHITAKE^{*2}, Yoshiyuki SHIOYAMA^{*2}

Abstract

Assessment of the change in tumor volume is a substantial factor in the clinical evaluation of cancer treatment. However, it is tedious and difficult for medical doctors to manually measure the longest diameters of lung tumors (\geq 10 mm) in three-dimensional medical images such as computed tomography (CT) images, and evaluate tumor responses. We have developed an automated approach to estimate lung tumor sizes on planning CT images using dense v-net CNN with non-negative matrix factorization (NMF). The longest, middle and shortest diameters of lung tumor were estimated by the largest, middle and smallest standard deviations in the coefficient matrices, respectively. The errors of estimated lung tumor sizes in the longest, middle and shortest diameters were 17.53%, 21.14% and 20.58%. The NMF would have a potential for estimating the longest diameters in the lung tumor sizes.

Keywords : lung tumor sizes, planning computed tomography images, dense v-net CNN, non-negative matrix factorization

1. Introduction

Lung tumor is the commonest fatal malignancy in the developed world [1]. It has been reported by world health organization (WHO) that lung tumor causes more than 1.3 million deaths each year in the world [2],[3]. Lung tumor is the most commonly occurring tumor in men and the third most commonly occurring tumor in women [4],[5]. Evaluation of lung tumor treatment outcome is a crucial task by radiologists [6]. Assessment of the change in tumor volume is an important feature of the clinical evaluation of lung tumor therapeutics: both tumor shrinkage (objective response), and disease progression are useful endpoints in clinical trials [7]. In clinical practice, three-dimensional (3D) medical images such as computed tomography (CT) images are used to measure the lung tumor sizes and evaluate their change. However, it is tedious and difficult for medical doctors to manually measure lung tumor longest

e-mail: ma_zhuangfei@outlook.com

^{*1} Department of Health Sciences, Graduate School of Medicines, Kyushu University [Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan]

^{*2} Department of Health Sciences, Faculty of Medical Sciences, Kyushu University

diameters (\geq 10 mm) in CT images, and evaluate tumor responses (Complete Response: CR, Partial Response: PR, Progressive Disease: PD, Stable Disease: SD). Dense V-net convolutional neural network has advantage to segment small structures such as stage I lung tumor (\leq 5 cm) in stereotactic body radiation therapy (SBRT) from medical images. Non-negative matrix factorization (NMF) can make a new coordinate system to obtain a linear representation of data. Therefore, we have developed an automated approach for estimation of sizes of lung tumor on planning CT images using dense v-net CNN with NMF.

2. Materials and Methods

Three-dimensional planning CT images and gross tumor volumes (GTV) regions for 193 lung tumor cases (size: 4.77 mm - 71.1 mm) were selected in this study. The sizes of lung tumor were calculated in terms of a longest, middle and shortest diameter which are orthogonal to each other by using matlab. The input data (3D planning CT images) and teacher data (GTV regions) were fed into the dense V-Net convolutional neural network in a NiftyNet platform which produced estimated GTV regions. The coordinates of voxels within an estimated GTV region were extracted to be inputted as the matrix to NMF. The NMF calculated the basis matrix and coefficient matrix. The standard deviation of each row in the coefficient matrix was calculated for estimation of sizes of lung tumor. The longest, middle and shortest diameters of lung tumor were estimated from the largest, middle and smallest standard deviations in the coefficient matrices, respectively.

3. Results and Discussion

Figure 1 shows the relationship between the reference lung tumor sizes in the longest, middle and shortest diameter and the largest (a), middle (b) and smallest (c) standard deviations which are calcualted from NMF. The errors of estimated lung tumor sizes in the longest, middle and shortest diameters were 17.53%, 21.14% and 20.58%, respectively.

Fig.1 Relationship between the reference lung tumor sizes and the largest (a), middle (b) and smallest (c) standard deviations using NMF

In this study, the estimation error of the longest diameter was smaller than 20%, but the estimation error of the middle and shortest diameter were larger than 20%, because the NMF method was not appropriate for estimation of the middle and shortest diameters. Another limitation of this study is the limited number of patients (only 193). Therefore, we have to increase the number of cases to improve our approach.

In conclusion, the proposed approach would have a potential for estimating the longest diameter in lung tumor sizes.

Competing interests

The authors have no conflicts of interest to declare. The authors alone are responsible for the contents and writing of paper.

Acknowledgements

My special thanks are given to all members of Arimura's laboratory in Kyushu University for their great contributions to this research.

References

- [1] Sethi T: Lung cancer. Introduction. Thorax 57(11): 992-993, 2002
- [2] Sun S, Bauer C, Beichel R: Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach. Medical imaging, IEEE Transaction on, 31(2): 449-460, 2012
- [3] Cheng W, Ma L, Yang T, et al: Joint Lung CT Image Segmentation: A Hierarchical Bayesian Approach, 11(9): e0162211, 2016
- [4] de Margerie-Mellon C, de Bazelaire C, de Kerviler E: Image-guided biopsy in primary lung cancer: Why, when and how, 97(10): 965-972, 2016
- [5] Zhu H, Pak CH, Song C, et al: A novel lung cancer detection algorithm for CADs based on SSP and Level Set, 25(S1): 345-355, 2017
- [6] Peungjesada S, Chuang HH, Prasad SR, et al: Evaluation of cancer treatment in the abdomen: Trends and advances, 5(3): 126-142, 2013
- [7] Eisenhauer EA, Therasse P, Bogaerts J, et al: New response evaluation criteria in solid tumours: revised RECIST guideline

(version 1.1), 45(2): 228-247, 2009

非ランダム間引き収集による MR 圧縮センシング の深層学習再構成

佐藤 佑紀*1 風間 椋*2 伊藤 聡志*1

要旨

MRI は撮像の高速化が課題であり、近年では圧縮センシング(Compressed Sensing: CS)を用いた高速撮像 が利用され始めている. CS にはサンプリングのランダム性による画質変動、反復処理に伴う計算時間の大 きさなどの課題がある. ランダム性による画質変動の改善と再構成の高速化を目的として本研究では非ラ ンダム間引き収集信号の畳み込みニューラルネットワークによる再構成について検討を行った. その結果、 ランダム間引きよりも構造の保存性に優れた良好な再生像を得ることができた. 本研究により深層学習の 利用によって圧縮センシングの間引き法に関して新たな可能性が示された.

キーワード: 非ランダム間引き, 圧縮センシング, 深層学習, 残差学習法, 再構成

1. はじめに

核磁気共鳴現象を利用した生体断面の撮像法 (Magnetic Resonance Imaging: MRI)は、一般的に X線CTに比べると撮像時間が長く,緊急性を要す る場合には使用できないなどの課題がある. 撮像 の高速化を目的として圧縮センシング (Compressed Sensing: CS)[1,2]を使用した高速撮 像法[3]が研究され、一部は臨床で応用され始めて いる. CS によれば、少数の信号から画像を得られ るため MRI に応用することにより撮像時間の短縮 が期待される.一方で、CSによる画像再構成には 数理的な反復処理に伴う計算コストの大きさや信 号収集点の間引き方に依存した画質変動といった 課題がある. MRIの2次元撮像にCSを応用する とき,信号は位相エンコード方向にランダムに間 引きが行われる. ランダム間引き収集された信号 から画像再構成を行うとき、全信号を収集した場

*1 宇都宮大学 大学院地域創生科学研究科 工農総合科学専攻 情報電気電子システム工学プログラム [〒321-8585 栃木県宇都宮市陽東 7-1-2] e-mail: <u>mc196833@cc.utsunomiya-u.ac.jp</u> *2 現在, 医療システムズ株式会社 合のように再構成像は一意に定まるものではなく, 収集点の間引き方のランダムさ,すなわち収集点 の選び方に依存して画質は変動する.ここで,信号 の間引き方を非ランダムとすることができれば信 号収集点分布のランダム性を排除できるため,再 構成像の画質安定化と信頼性の向上が期待できる. これまでに我々は非ランダム間引き収集について 検討を行ってきた.結果,スパース化変換にマルチ スケール化したカーブレット変換を使用すること によりランダム間引きに比肩する画質の再構成像 を得ることができた[3].しかしながら,この方法で も再構成にはランダム間引きと同程度の計算コス トを必要とした.

近年,医用画像の再構成や雑音除去に深層学習 を利用する方法が検討されている[4].画像に生じ た誤差成分をネットワークにより推定する残差学 習法は,高い精度で画像を復元できること,および 処理が従来法と比べて極めて短時間であることの 2点により大きな注目を集めている[5].深層学習に よれば信号の間引きによる誤差を学習することが できるため,信号の間引きは必ずしもランダムで ある必要は無く,規則的なアーティファクトの方

図1. DRL-CNN のアーキテクチャ

が学習をより容易にする可能性もある. そこで,本 研究では再構成のさらなる高速化と再構成像の高 品質化を目的として,残差学習法を応用した非ラ ンダム間引き収集を利用した CS 深層学習再構成 について検討を行った. ランダム間引き収集によ る再構成像と比較を行い本方法の有効性を検証す る.

2. 残差学習法

残差学習法は, K. He らが提案した残差学習[6] にバッチ正則化[7]を組合せて応用したものである. 残差学習法では, 雑音重畳画像から雑音除去像を 推定するのではなく, ネットワークに入力された 画像に重畳している雑音成分を推定し, それを入 力画像から減算処理することで雑音除去像を出力 する. K. Zhang らは残差学習法を利用した CNN を雑音除去に応用し, 従前の非線形フィルタを上 回る雑音除去性能が得られることを示した.

3. 深層学習を利用した CS 再構成

本研究では残差学習法を用いる CNN(Deep Residual Learning CNN: DRL-CNN と称する). を使用する.図1にDRL-CNNのアーキテクチャ を示す. DRL-CNN は全 17 層で構成され, 畳み込 み処理(Conv)とバッチ正規化(BN), Rectified Linear Unit(ReLU)の3つの処理から構成される. Conv と ReLU には入力データの特徴を抽出する 役割があり, BN には学習効率向上の役割がある. 入力層では Conv と ReLU を, 中間層では Conv と BN と ReLU を, 出力層では Conv を行う. DRL-CNN では, 信号の未収集点にゼロデータを充填し て再構成を行った画像(ゼロフィル再構成画像)に 生じるアーティファクトを推定し, ゼロフィル再 構成画像から推定したアーティファクトを減算処 理することで目標とする画像を出力する.

4. 画像再構成シミュレーション 4.1 学習用データセット

本研究では、学習用データセットにフルデータ 像とゼロフィル再構成画像の画像対40組を用いた. 書面により同意を得たボランティアに対し、主磁 界強度が1.5Tのキヤノンメディカル社製MRIに よって撮像を行った頭部のプロトン密度強調像を 使用した.撮像条件として、高速スピンエコー法を 使用し、各パラメータはTRが3000ms、TEが 13ms、スライス厚3.0mm、フリップ角度90°、分 解能0.94mm、マトリクスサイズ256×256である.

4.2 ネットワークの学習条件と計算機環境

ネットワークの学習および画像再構成に用いた 計算機環境を表1に示す.学習にはGPUを用いて 約20分を要した.また,学習の際に使用したネッ トワークの設定を表2に示す.パラメータ更新に 用いる損失関数は,真のアーティファクトと推定 アーティファクトの平均二乗誤差*l*(Θ)とした.全N 枚の学習用画像のうち*i*番目の画像における損失 関数には次の式(1)を使用した[8].このときΘはネッ トワークのパラメータを表している.

$$l(\Theta) = \frac{1}{2N} \sum_{i=1}^{N} ||R(y_i; \Theta) - (y_i - x_i)||_2^2$$
(1)

我 1 时 并派珠先			
CPU	Intel Core i7-4790 (3.60GHz)		
RAM	32GB (PC3-12800)		
GPU	NVIDIA GeForce GTX1800		
	MATLAB R2017b		
Software	MatConvNet 1.0-beta25		
	CUDA Toolkid 9.0/ cuDNN 7.0.5		

表1 計算機環境

表2 学習時のネットワーク設定

パラメータ更新手法	Adam	
バッチサイズ	128	
パッチ マトリクスサイズ	40×40	
パッチのストライド	10	
エポック数	30	
学習用画像	MR 実画像 40 枚	
学習係数	1~10 エポック:10 ⁻³ 11~20 エポック:10 ⁻⁴ 21~30 エポック:10 ⁻⁵	

4.3 画像再構成

学習用データセットとは異なる 7 枚のプロトン 密度強調像を使用し,信号収集比を 30%, 40%, 50% として画像再構成を行った.使用した信号間引き 収集のパターンを図 2 に,再構成の結果を図 3 に 示す.

画質の定量的評価にはピーク信号対雑音比 PSNR(Peak Signal-to-Noise Ratio)および画像の構造 的類似性を評価する SSIM(Structural SIMilarity index)[9]を用い,7枚の再構成画像の評価値を平均 したものを比較に使用した.表3にPSNRとSSIM の評価結果を示す.

5. 考察

非ランダム間引きによる再構成とランダム間引 きによる再構成を比較すると、図3より非ランダ ムの方が弱いアーティファクトがやや多く認めら れるが,図3(b)に示すCNNに入力したゼロフィル 再構成像上の殆どのアーティファクトを除去する ことができた.これは非ランダム間引きによって ゼロフィル再構成像に生じたアーティファクトが ランダム雑音状にならずにコヒーレント性の強い 規則的な現れ方をすることにより、CNN による学 習が容易になり、効果的にアーティファクトの除 去が行われたものと考える. 表 3 に示す PSNR と SSIM の評価結果より, PSNR と SSIM のいずれも 非ランダム間引きの方が優れた数値が得られた. また、再構成像の拡大図においてコントラストの 表現を比較すると,信号収集比が小さい場合のラ ンダム間引きによる再構成は、ややぼやけた画像 になる傾向にあったが, 非ランダムによる再構成 ではより鮮鋭な画像が得られた.赤矢印に示す個 所に着目すると、非ランダム再構成の方が鮮鋭さ を有しており、画像の構造保存性が高いことがわ かる. コントラストの面でも良好な復元が行われ ていた.規則的に信号間引きを行うと折り返しア ーティファクトが現れるが、像自体に"ぼけ"は生 じにくい. 一方, ランダム間引きでは, アーティフ ァクトのコヒーレンス性は低くなるが、画像に"ぼ け"が生じる傾向がある. そのため, アーティファ クトを正確に検出・除去することができれば,規則

表3 再構成画像の評価結果

信号収集比	信号間引き法	PSNR[dB]	SSIM
200/	非ランダム	30.74	0.9532
3070	ランダム	27.81	0.9320
400/	非ランダム	33.66	0.9761
4070	ランダム	29.65	0.9508
500/	非ランダム	38.16	0.9913
30%	ランダム	33.00	0.9714

的な間引きを行う提案法の方が鮮鋭な画像を再構 成できる可能性がある.以上の理由により,表3に 示すように非ランダムな間引き収集による再構成 像は,PSNR と SSIM ともにランダム間引きよりも 高い値を示したものと考える.CNN を利用する再 構成法にあっては,規則的な間引きは有望な方法 である可能性が本研究により示された.

6. まとめ

本研究では、圧縮センシングの MRI 応用におい て再構成像の品質安定化と再構成の高速化を目的 として、非ランダム間引き収集を利用した深層学 習再構成について検討を行った.その結果,汎用的 なランダム間引き収集を利用した CS 深層学習再構 成よりも構造の保存性に優れ、かつコントラスト の良好な再構成像を得ることができた.今後は再 構成像のさらなる高品質化に向けてネットワーク アーキテクチャの改良について検討するほか、3 次 元撮像について検討を行う予定である.

謝 辞

本研究の一部は,科学研究費補助金(16K06379, 19K04423)の補助を受けて実施された.また,研究 遂行にあたり,画像データを提供いただいたキヤ ノンメディカルシステムズ(株)に感謝の意を表し ます. 利益相反の有無

なし

文 献

- Donoho DL: Compressed sensing. IEEE Trans Inform Theory, 52: 1289–1306, 2006
- [2] Candès EJ, Wakin MB: An Introduction To Compressive Sampling. IEEE Signal Processing Magazine, 25: 21–30, 2008
- [3] Ito S, Ito K, Shibuya M, et al: Compressed Sensing MRI using Higher Order Multi-scale FREBAS for Sparsifying Transform Function, SPIE Medical Imaging 2015, 9413-16, Orlando, USA, 2015
- [4] Wang S, Su Z, Ying L, et al: Accelerating magnetic resonance imaging via deep learning. IEEE 13th International Symposium on Biomedical Imaging, Prague, 2016, pp514-517
- [5] Han YS, Lee D, Yoo J, et al: Accelerated Projection Reconstruction MR imaging using Deep Residual Learning. 25th Annual Meeting of International Society for Magnetic Resonance in Medicine, Hawaii, 0690, 2017
- [6] He K, Zhang X, Ren X, et al: Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognision, Las Vegas, 2016, pp770-778
- [7] Ioffe S , Szegedy C: Batch normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift . 32nd International Conference on Machine Learning, 37, 448-456, 2015
- [8] Zhang K, Zuo W, Chen Y, et al: Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Transactions on Image Processing, 26, 3142-3155, 2017
- [9] Wang Z, Bovik AC, Sheikh HR, et al: Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans Image Proc, 13:600-612, 2004

図 3 再構成結果: (a, c)フルデータ像, (b, d)ゼロフィル再構成画像, (e, g, i, k, m, o)非ランダム間引き 再構成, (f, h, j, l, n, p)ランダム間引き再構成

Deep Learning based Image Reconstruction in MR Compressed Sensing using Non-randomly Under-sampled Signal

Yuki SATO^{*1}, Ryo KAZAMA^{*2}, Satoshi ITO^{*1}

*1 Graduate School of Regional Development and Creativity, Utsunomiya University
 *2 Medical Systems Co., Ltd.

Reduction of acquisition time is a major issue in MRI. A recently proposed theory, Compressed Sensing (CS) has been applied to MR imaging (CS-MRI). In general, random under-sampling in signal space is used in CS-MRI and high-quality images can be reconstructed using small amount of signal; however, image quality depends on the randomness of sampling pattern. We have been studied a new CS-MRI method that uses regularly under-sampled signal in order to stabilize the obtained image quality.

In this paper, a novel CS-MRI image reconstruction method for non-randomly under-sampled signal using Deep learning was proposed and demonstrated. Simulation and experiments showed that high quality images having sharp edges and keeping the contrast of tissue ware obtained.

Key words: Non-randomly sampling, Compressed Sensing, Deep Learning, Residual Learning, Reconstruction

CT 画像再構成における

メタルアーティファクト除去の新手法

千北 一期*1 工藤 博幸*1 森 和希*1 金 鎔采*1

要旨

金属クリップや歯科用インプラント等,人体に比べて吸収係数が高いオブジェクトを含む対象に対して CT 画像再構成を行った場合,ビームハードニング等の物理現象によって再構成画像にメタルアーティファクトが発生する.従来は step 1.メタル部分を同定し, step 2.金属部分を通過する投影データを補間等によって 埋めることでアーティファクトを抑制していた.この方法は 2step 必要であり演算の過程で数理的に不確か な仮定を置くことによって解かれる.提案法では,これらの問題を解決する.方法は Kudo によって提案されたフォルトトレラント画像再構成[1]に基づいており金属部分を通過した投影データを異常値としてみ なしこれを除去する再構成法として適用する.また,データ項には Huber ノルム,損失項には NonLocalTV [2]を適用することで,従来の方法と同程度の精度の再構成画像を構築することができ,メタ ルアーティファクト問題に対する新しい方向性の枠組みが提唱された.

キーワード: CT 画像再構成, メタルアーティファクト, フォルトトレラント CT, NonLocalTV, Row-Action

1. はじめに

人体の吸収係数に比べて高いオブジェクト を含む物体に対して CT 画像再構成を行うと, 筋状のアーティファクトや黒い帯状のアーテ ィファクト等が発生する.原因は連続 X 線が物 質を透過する際,高エネルギーのものに比べ低 エネルギーのほうがより吸収するという性質 のためである.この結果,エネルギーのピーク が本来の位置よりも低い方向にシフトしてし まい画像に不合理が発生する.これらの問題は 総称としてメタルアーティファクトと呼ばれ

*1 筑波大学大学院システム情報工学研 究科コンピュータサイエンス専攻 〔〒305-8573 つくば市天王台 1-1-1〕 e-mail:chigita@imagelab.cs.tsukuba.ac.jp

投稿受付:2019年5月15日

る.

これまでこの問題に対して,主にセグメンテ ーションによってメタルの位置を同定し,この 事前情報を用いた再構成法[3] が多く取られて きた. この方法ではまず,メタル部分を二値化 処理等でマスクし,メタル部分の投影データ上 での影響を逆投影を用いて考える.次に,投影 データ上でのメタルの影響が現れる部分をマ スクしたデータから導き出し,ここを線形補間 や反復的な手法によってメタルの影響のない 状態の画像を復号する.これを背景画像と呼ぶ. 最後にマスクしたメタル画像と背景画像を画 像的に重ね合わせ最終的にメタルアーティフ ァクトを除去した画像を得る.

この方法は背景画像とメタル画像を分離す るステップと背景画像を復号するステップの 二段階のステップが必要であり、その過程で数 理的に不確かな仮定を置く必要がある、メタル を正しく分離する必要があるといった問題が 残る.

これらの問題点を解決するため本研究では, フォルトトレラント再構成法に基づく方法を 提案する.フォルトトレラント再構成法は投影 データ上に真値から大きく外れた値があると きにも,この外れ値や異常値の影響に頑健な再 構成法である.

フォルトトレラント再構成法を適用するこ とで,従来必要だった2つのステップを統合し, 数理的に正しい仮定のもとで問題を解くこと ができる.本研究では歯科用 CT 及び腹部 CT 画 像に対してメタルアーティファクトの除去の 実験を行った.

2. 手法

2.1 従来手法

フォルトトレラント再構成法について説明 するため,まずは通常の CT 画像再構成の方法 について示す.

通常の逐次近似的手法では評価関数として データ項 $f(\mathbf{x})$ と正則化項 $\psi(\mathbf{x})$ の和によって表 す方法である.特にデータ項は式(1)のように 表される.

$$f(x) = \|Ax - b\|_2^2$$
(1)

ここで、 $x \in \mathbb{R}^{J}$ は再構成対象となる画像の画素 を並べたベクトル、 $b \in \mathbb{R}^{I}$ は投影データの標本 地を並べたベクトル、 $A \in \mathbb{R}^{I \times J}$ は投影操作を意 味するシステム行列とする.

本論文ではL¹ノルムを用いたフォルトトレラント再構成法及び,Huber損失関数を用いたフォルトトレラント再構成法の2つについて示す.

2.2 提案手法 1: L¹ノルムを用いる方法

こちらのフォルトトレラント再構成法では データ項*f*(*x*)に対して,*L*¹ノルムを用いる. 適 用すると式(2)となる.

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{1}^{1}$$
$$= \sum_{i=1}^{I} |\mathbf{a}_{i}^{\mathrm{T}}\mathbf{x} - \mathbf{b}_{i}|$$
(2)

フォルトトレラント再構成法において,式(2) のようにL¹ノルムを用いる理由として,異常値 の影響を受けないように正しい画像を再構成 し,異常値に対して頑健であるためである.ま た通常の再構成法のL²ノルムを用いる方法に比 べて異常値に対して鈍感に再構成されるため, 異常値部分だけを取り除くことができる.

この再構成法が用いられる例として, CT 装 置の一部の検出器が壊れているケース,ある投 影方向のデータのみ欠損しているケースなど が挙げられる.これらは観測に失敗した欠損値 を異常値として捉えることで,フォルトトレラ ント再構成法を適用している.

メタルアーティファクト除去に適用する場 合にも同様に考える.メタルによる影響を異常 値として捉えることで、メタル位置やその影響 を同定し、影響を受けていない画像をフォルト トレラント再構成法によって作る.よって最終 的に以下の式(3)の一式のみを解くことでメタ ルアーティファクトの除去を実現する.

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{1}^{1} + \beta \psi(\mathbf{x})$$
(3)

正則化項 $\psi(\mathbf{x})$ は再構成画像の隣接画素のなめ らかな輝度変化を評価する TotalVariation のう ち,局所的な変化に対しても適切に評価され る NonLocalTV を用いる.ここで β は重みを示 すパラメータである.

2.3 提案手法 2: Huber 損失関数を用いる方法

こちらのフォルトトレラント再構成法では データ項**f(x)**に対して Huber 損失関数を用いる これを適用すると式(4)となる.ただし,式(4) 中で出てくる関数**H(x)**はHuber 損失関数であり, 式(5)で表される.

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\mathrm{T}}$$
$$= \sum_{i=1}^{l} H(\mathbf{a}_{i}^{\mathrm{T}}\mathbf{x} - \mathbf{b}_{i})$$
(4)

$$H(\mathbf{x}) = \begin{cases} \frac{x^2}{2} & |x| < T\\ T|x| - \frac{T^2}{2} & otherwise \end{cases}$$
(5)

また,式(5)においてTは原点付近での**L²**ノ ルム的振る舞いを行う部分とその他領域での **L¹**ノルム的振る舞いを行う部分の境目を担う 閾値である.

この性質はメタルアーティファクト除去に おいては、L¹ノルムが異常値に対して鈍感に作 用した結果、メタルアーティファクト以外のノ イズに対しても鈍感に反応してノイズがうま く消されない問題を解決する.L²ノルム的振る 舞いを行う部分で通常のノイズを除去し、L¹ノ ルム的振る舞いを行う部分によってメタルア ーティファクトを除去することにつながる.最 終的には式(6)のみを解くことで再構成画像を 得る.正則化項はL¹ノルムを用いる方法と同様 に NonLocalTV を用いる.

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\mathrm{T}} + \beta \psi(\mathbf{x})$$
(6)

2.4 NonLocalTV

NonLocalTV は, エッジ保存が効く非線形フ ィルタである (NonLocalMeans: NLM) をハイ パーパラメターとして用いる TV の拡張方法の 一つである.NLM の重みは線模様のようなもの に対して大きくなる性質がある.そのため,メ タルアーティファクトによって生じる線状の アーティファクトに対しても通常の TV や重み 付き TV に比べてノイズ除去に大きく寄与する ことが予想される.

2.5 反復式

式 (3) 及び式 (5) を Row-Action 型の近接ス プリッティング[4] によって解くために反復式 の形に変形する. まとめたものを Algorithm1 に 示す.

```
Algorithm 1 : Proposed Method
[step0] 初期化
Require: \alpha_0 > 0, \varepsilon > 0, x^{(0,1)} \leftarrow 0
Ensure: x^{(n,1)}
   for k \leftarrow 1, n do
       [step1] stepsize の更新
       \alpha^{(k)} \leftarrow \frac{\alpha^0}{\alpha^0}
                   1+\varepsilon k
       [step2] 各投影方向に対する演算
       for i \leftarrow 1, I do
           e \leftarrow -\frac{b_i - a_i^{\mathrm{T}} x^{(k,i)}}{2}
                       \alpha^{(k)} \| a_i \|_2^2
                       -1
                                 e < -1
                                 1 < e < 1
                       e
                      1
                                   e \ge 1
           [step3] 解の更新
           \mathbf{x}^{(k,i+1)} \leftarrow \mathbf{x}^{(k,i)} - \lambda \alpha^{(k)} \mathbf{a}_i
       endfor
   [step4] 正則化項の最適化問題を解く
   \mathbf{x}^{(k,l+2)} \leftarrow \operatorname{prox}_{\alpha^{(k)}\psi(\mathbf{x})}(\mathbf{x})
   [step5] kの更新
   \pmb{x}^{(k+1,1)} \leftarrow \pmb{x}^{(k,l+2)}
   endfor
   return x^{(n,1)}
```

3. 実験結果

3.1 データ作成

今回の実験ではメタルアーティファクトの 原因となる主に2つの現象をシミュレーション する.対象画像は歯科用 CT で用いられたデー タである.埋め込むメタルは直径2.6mm,3.6mm, 4.6mmの円形,素材はアマルガムとし,これら を画像中に埋め込む.画像は185mm×185mmと した.投影方向数は512方向とした.表示する コントラストレンジはµ換算で[0.0,1.0]とした. シミュレーションはビームハードニングに 関するもの[5-6]と,ポアソンノイズに基づく 計測誤差の2つである.

図 1 歯科用 CT 画像(左)及びメタルを含んだ 歯科用 CT 画像(右)

図2 実験結果

FBP 法

表1数值評価 提案法1 提案法2 FBP 法 OS-SART+TV 法 $(L^1 / \mathcal{N} \Delta)$ (Huber 損失関数) RMSE 0.411738 0.476509 0.233891 0.2332707 PSNR 37.168181 35.899183 42.080355 42.124429 SSIM 0.921136 0.961689 0.995088 0.995033

図1にメタルを埋め込む前の画像及び,メタル を埋め込んだ理想的な再構成画像を示す.

3.2 評価指標

定量的な評価指標として RMSE, PSNR, SSIM を用いる.また定性的にも評価する.各指標の 式は以下のようになる.

$$RMSE = \sqrt{\frac{1}{J} \sum_{j=1}^{J} (\mathbf{x}_j - \hat{\mathbf{x}}_j)^2}$$
(7)

$$PSNR = 20 \log_{10} \left(\frac{MAX^2}{\frac{1}{J} \sum_{j=1}^{J} (\boldsymbol{x}_j - \boldsymbol{\hat{x}}_j)^2} \right)$$
(8)

SSIM =
$$\frac{(2\mu_x\mu_{\hat{x}} + c_1)(2\sigma_{x\hat{x}} + c_2)}{(\mu_x^2 + \mu_{\hat{x}}^2 + c_1)(\sigma_x^2 + \sigma_{\hat{x}}^2 + c_2)}$$
(9)

3.2 実験

比較対象として FBP 法 , OS-SART+TV 法 [7],提案法(L¹ノルムを用いるもの),提案法 (Huber 損失関数を用いるもの)で比較する.実際 に再構成された画像を図2に示す.また、これ らの数値評価の結果を表1に示す.

まず定量的に評価する.表1を見ると提案法 がどの従来法に比べても良い結果を示してい

ることがわかる. 特に SSIM で比較した時によ り良い結果を示している事がわかる.これは評 価指標から考えるに、細部の構造が他の方法に 比べて詳細に再構成できていることを意味す る.

次に、定性的に評価する.定性的にみると、 提案法は他の 2 つの手法に比べてストリーク アーティファクトが除去できている.これは, 正則化項として, NonLocalTV を採用した結果 と考えられる. NonLocalTV は各サポートウィ ンドウの中で重みを最小にする効果があるた め、この結果が出ていると定性的に評価できる.

4. まとめ

実験により、メタルアーティファクトの問題 を1つの単純な式の求解にモデル化できたこと, フォルトトレラント再構成法がメタルアーテ ィファクトの除去に有効な手法であることが 示された. また, これが Row-Action 型の反復式 によって解くことが可能であることも示され た.

さらに、正則化項に NonLocalTV を用いるこ とでより効率的にノイズを除去できることが 分かった.

今後の課題として,より細かなコントラスト の保存の手法の検討が求められる.

利益相反の有無

なし

文 献

- H.Kudo, K.Takaki, F.Yamazaki et al.: Proposal of fault-tolerant tomographic image reconstruction Proceedings Volume 9967, Developments in X-Ray Tomography X; 99671K, 2016.
- [2] Xavier Bresson.: A Short Note for Nonlocal TV Minimization, Technical Report, 2009.
- Xiaomeng Zhang, Lei Xing.: Sequentially reweighted TV minimization for CT metal artifact reduction. Med. Phys., vol. 40, no. 7, pp. 071907-1-071907-12, 2013.
- PL.Comettes, J.-C.Pesquet.:Proximal splitting method in signal processing, Fixed Point Algorithmsfor Inverse Problems in Science and Engineering, 2010.

- [5] B. De Man, et al.: Metal Streak Artifacts in X-ray Computed Tomography: A Simulation Study.IEEE Trans. Nuclear Science Symposium, pp. 1860-1865, 1998.
- [6] Ramakrishna K, Muralidhar K, Munshi P.: Beam-hardening in simulated X-ray tomography.NDT&E International. vol 39, pp 449-457, 2006.
- [7] R. Gordon, R. Bender, and G. T. Herman. Algebraic reconstruction techniques (ART) for threedimensional electron microscopy and x-ray photography. J. Theor. Biol., Vol. 29, pp. 471481,1970.

A New Framework for Metal Artifacts Reduction

in CT Image Reconstruction

Kazuki CHIGITA^{*1}, Hiroyuki KUDO^{*1}, Kazuki MORI^{*1}, Yongchae KIM^{*1}

*1 Graduate School of Information and Systems University of Tsukuba

Metal artifacts caused by implants for teeth degrade quality of CT image. In this study, we propose a new framework to solve the problem of metal artifact in CT image reconstruction. Up to now, the algorithm for metal artifact reduction needs two step. In the first step, detecting metal in sonogram image. The second step, reconstruct CT image which exclude effect of metal using first step data with interpolation. However, our solution consists from only one step. The key idea of this method is using Fault-Tolerant image reconstruction. Fault-tolerant image reconstruction was developed for image of including deficit measurement data by Kudo et al [1]. We apply to the problem of metal artifacts reduction. In Fault-tolerant image reconstruction, it uses L1 norm error or Huber error for data term, and total variation for regularization term. In proposed method, NonLocal TV [2] is used for regularization term, and solved with proximal splitting. The results demonstrate that the proposed method is able to reduce the metal artifacts successfully most cases.

Key words: CT Image Reconstruction, Metal Artifact, Fault-Tolerant Image Reconstruction, NonLocal TV, Row-Action

Computed Tomography Image Reconstruction from Neighbor Slices using 2D U-Net Convolutional Networks

Shuqiong WU^{*1}, Megumi NAKAO^{*1}, Keiho IMANISHI^{*2} Mitsuhiro NAKAMURA^{*3}, Tetsuya MATSUDA^{*1}

Abstract

Usually, computed tomography (CT) image reconstruction refers to a process of creating tomographic images from the sinogram. To reduce the radiation during the scanning, many algorithms were proposed to realize the reconstruction from sparse viewpoints. Generally, these methods can be divided into two categories: analytical and iterative approaches. Analytical methods are difficult to achieve high accuracy, whereas iterative algorithms suffer from high computation cost. To solve the problem, we apply 2D U-Net convolutional networks to CT image reconstruction. In contrast to the conventional methods, the proposed approach realizes the reconstruction from already created CT slices, not the sinogram. Using the U-Net, we can create a middle slice between two adjacent CT slices. This means that we can decrease the number of slices to reduce the radiation. We compared the proposed algorithm with linear interpolation. Experiment results show that the proposed approach totally outperforms the linear interpolation.

Keywords : Computed tomography, sinogram, U-Net, CNN, reconstruction

1. Introduction

Medical diagnosis based on CT images brings people great benefits because they can present every detail of the inner human body. However, the patients also suffer from radiation during a CT scanning. To solve the problem, many researchers focus on developing approaches for low-dose CT. The mainstream is sparse-view-based image reconstruction [1-3], which reduces the radiation by scanning from less viewpoints. One popular method is Filtered back-projection (FBP) that can reconstruct CT images from the sinogram in a high speed [1]. However, noise and artifacts often occur as the number of scanning viewpoints reduces. To address this issue, many studies apply iterative techniques to refine the reconstruction, though it brings more calculation [2]. Recently, an approach based on convolutional neural networks (CNN) was proposed to reconstruct the CT images [3]. It outperforms many traditional methods in both accuracy and speed. Differently from these algorithms, our study aims at reconstructing CT images from already reconstructed slices, i.e. a new middle slice can be created from two adjacent slices. Then the radiation can be reduced by using less slices.

^{*1} Graduate School of Informatics, Kyoto University [Yoshida-honmachi, Kyoto, 606-8501, JAPAN] e-mail: wusq@i.kyoto-u.ac.jp [Shuqiong Wu]

^{*2} e-Growth Co., Ltd. [403, Shimo-Maruya-cho, Nakagyo-ku, Kyoto, 604-8006, JAPAN]

^{*3} Graduate School of Medicine, Kyoto University [53 Kawahara-cho, Shogoin, Kyoto, 606-8507, JAPAN]

This idea is almost novel, and a straightforward method to fulfill this goal is interpolation. However, to achieve higher accuracy, we propose a U-net based method for the reconstruction.

2. Proposed algorithm

Recently, U-net was widely applied to medical image segmentation because of its high efficiency. It is a CNN whose layers are aligned in a U structure [4]. It performs better on medical images than other machine-learning methods because the U structure extracts both global and local features. In this research, the U-net is adopted for creating new images instead of segmenting images. The whole architecture of the proposed method is shown in Fig. 1.

Fig. 1 Architecture of the proposed algorithm

Figure 1 shows the CT slices of one patient, where *T* denotes the index and *N* denotes the total number of the slices. The inputs of the U-net are two slices (*T*-1 and *T*+1), and the output is the middle slice (*T*) between the two inputs. The proposed method reconstructs half of the slices by U-net rather than CT scanning, so that the radiation can be halved. In our experiment, we totally collected CT data from 130 patients. We used 5 cross-validation to evaluate the proposed method, which means 104 are for training, and the remained 26 are for test. We used the absolute error in gray scale ([0-255]) for the evaluation. The proposed algorithm was compared with the traditional linear interpolation. Table 1 summarizes all the comparison results of five crosses, which shows that an average of 14.49% improvement was achieved by the proposed method. Figure 2 shows an example of the reconstructed CT images. The proposed method reduces noise and artifacts significantly comparing with the linear interpolation. Here, GT means the ground truth.

Table 1 Comparison of the proposed method with linear interpolation

Mean-error-rate	Interpolation	Proposed method	Improvement
Crease validation 1	2 129	1 840	12 000/
Cross-validation1	2.138	1.800	15.00%
Cross-validation2	2.481	2.124	14.39%
Cross-validation3	2.603	2.313	11.14%
Cross-validation4	2.677	2.289	14.49%
Cross-validation5	2.839	2.287	19.44%

3. Conclusions

This paper proposes a U-net-based method for CT image reconstruction. It reconstructs high quality CT images from adjacent slices. Compared with linear interpolation, the proposed approach reduces the absolute error rate significantly.

(g) Result 2: (h) Diff 2: (i) Amplified 2: Created by proposed method Difference of Result 2 and GT Three times enlarged of Diff 2

Fig. 2 Example of the CT image reconstruction

Competing interests

No conflict of interest

Acknowledgement

This research was funded by the Japan Agency for Medical Research (AMED) and the Acceleration Transformative Research for Medical Innovation (ACT-M) Program. A part of this study was also supported by JSPS Grant-in-Aid for Scientific Research (B) (grant number 18H02766). This study was performed in accordance with the ethics committee, Kyoto University.

References

- [1] Zhang S, Li W, Tang G, et al: Study on image reconstruction algorithm of filtered backprojection. Journal of Xianyang Normal University 23: pp. 47-49, 2008.
- [2] Selim M, Rashed E.A, Atiea M.A, et al.: Image reconstruction using self-prior information for sparse-view computed tomography.

The 9th Cairo International Biomedical Engineering Conference, pp. 146-149, 2018.

- [3] Gupta H, Jin K.H, Nguyen H.Q, et al.: CNN-based projected gradient descent for consistent CT image reconstruction. IEEE Transactions on Medical Imaging Vol. 31, No. 6, pp. 1440-1453, 2018.
- [4] Long J, Shelhamer E, Darrell T: Fully convolutional networks for semantic segmentation. CVPR: pp. 3431-3440, 2015.

TV 正則化と辞書学習を用いた

OS-EM 法における PET 画像再構成

奥村 直裕^{*1} 庄野 逸^{*1*2}

要旨

陽電子放射撮影(Positron Emission Tomography: PET)スキャンは、癌の発見などの病理診断で注目 されている. PET スキャンにおいて鮮明な画像を得ようとすれば、S/N 比をあげる必要があり、 これは観測時の被曝量増加につながる.このため被曝量を抑えつつ、画像の S/N 比をあげるこ とが望まれている.本研究ではこの問題に対して、実画像表現とサイノグラム表現のそれぞれに おけるノイズ除去手法を組み合わせた手法を提案する.サイノグラム表現に対するノイズ除去 手法としては、辞書学習を用いた手法を適用した.実画像表現に対するノイズ除去手法としては、 正則化アプローチに基づいた手法を適用した.このような2種類のノイズ除去手法を組み合わ せてノイズ除去を行うアプローチは、従来手法と比較して有効であることを確認した. キーワード: PET 画像再構成、スパースモデリング、辞書学習、K-SVD

1. はじめに

現在,癌の発見といった病理診断において, 陽電子放射断層撮影(Positron Emission Tomography: PET)スキャンが有効とされてい る.PETスキャンでは、トレーサと呼ばれる陽 電子を放射する放射性物質を患者に注入し,複 数方向から観測を行うスキャナに測定部位を 通すことでトレーサの分布データを採集する. 観測は投影とも呼ばれ、得られた観測データは サイノグラムと呼ばれる.サイノグラムから元 の空間でのトレーサ濃度の分布を画像化する 方法は、画像再構成と呼ばれる.画像再構成は、 サイノグラムからトレーサの濃度をパラメー タとして推定し、この推定濃度値を画素値とし

*1 電気通信大学情報理工学研究科情報学 専攻

〔〒182-8585東京都調布市調布ケ丘1-5-1〕 e-mail: okumura.naohiro@uec.ac.jp

*2 e-mail: shouno@uec.ac.jp

て扱うことが多い. このようなパラメータを推 定する方法の1つに最尤推定法 (Maximum Likelihood estimation: ML法) がある. 最尤推定 法は取得したデータに対して, モデルとなる確 率分布が,最も尤もらしくなるパラメータ値を 推定する手法である. ML 法を用いた場合, 推 定に用いるデータが多いほど,より正確にパラ メータを推定することができる. PET 画像や CT 画像において,最尤推定法を用いて再構成 画像を得る手法としては, ML-EM (Maximum Likelihood Expectation Maximization) 法が提案さ れており[1], ML-EM 法を高速化する手段とし て OS-EM (Ordered Subsets EM) 法が提案され ている[2]. このような最尤推定ベースの手法 で S/N比の高い鮮明な画像を得ようとした場合, 十分な投影角度数でS/N比の高い観測データが 必要となる. PET において, このような観測デ ータを得ようとすると被曝量を増やさなけれ ばならず,患者に健康上の悪影響を及ぼす可能 性がある.逆に、患者に考慮した観測を行うと、 S/N 比の低い画像しか得られず、アーチファク

トと呼ばれるノイズが発生してしまう.そのため,患者への被曝量を抑えつつ,画像の S/N 比の高い鮮明な画像を得ることが望まれている.

本研究ではこの問題に対して,実画像表現と サイノグラム表現の各々においてノイズ除去 手法適用した画像再構成手法を提案している. サイノグラム表現に対するノイズ除去では,K-SVD 法と呼ばれる辞書学習手法を適用した.辞 書学習はスパースモデリングの一種でデータ 表現を少ない基底の線形和で表現するための 手法である.一方の実画像表現に対するノイズ 除去としては正則化アプローチに基づいた手 法を適用した.正則化項としては,TV(Total Variation)ノルムを用いた TV-EM 法(Total variation EM)を導入した[3].この我々の提案手 法でノイズ除去をした画像と,従来手法で得ら れた再構成画像について,定量評価を行い結果 の比較を行った.

2. 手法

本研究では、2 つのノイズ除去手法を組み合 わせた画像再構成手法を提案する.ここでは、 提案手法でノイズ除去に用いる、画像再構成手 法と辞書学習を用いたノイズ除去手法につい て述べる.

2-1. 画像再構成のモデル化

本研究では、Shepp & Logan の想定した観測 モデルを用いている [4]. 図1に観測モデルの 概略図を示す.まず,撮像空間を図1のように 正方格子状に区切り,ここに観測対象を配置す るものとする.各正方格子には観測対象の断面

図1 再構成画像モデルの概略図

の小領域が割り当てられるので、この正方格子 状の各領域をセルとして考える.以後、各々の セルを再構成画像の1画素として扱う.各セル 内から放射された放射線は、外部に設置された 検出器において観測される.検出器の1つのセ ンサに対して、観測されうるセルからの放射線 の総和を1つの観測データとして扱う.

ここで、セルの番号をi、センサの番号をiと した時, セルiからセンサjへの放射線量を x_{ii} と し,センサjで観測される光子数データyiとする. また放射線量 x_{ij} は,ポアソン観測過程に従う ものとし、各セルに割り当てられた推定パラメ $- \varphi \lambda_i \geq j$ 番目のセンサから見えるセルの面 積 cij によって支配されていることを仮定する. すなわち,推定すべきパラメータλが実画像表 現となる.一方,このような定式化のもとで最 尤推定を行おうとすると、放射線量 xii が非観 測な不完全データとなるため, 期待値最大化 (Expectation Maximization: EM) アルゴリズムな どを適用する必要が出てくる.この最尤推定原 理に EM アルゴリズムを組み合わせた手法を ML-EM 法と呼ぶ. 導出の詳細は付録に記すが 推定パラメータの更新式としては

$$\lambda_i = \frac{1}{\sum_j c_{ij}} \sum_j \frac{y_j c_{ij} \lambda_i^t}{\sum_l c_{jl} \lambda_l^t},\tag{9}$$

が得られる.ただし、 λ_i^t は一回前に推定したパ ラメータで、次の繰り返しでは新たに求まった $\lambda_i \varepsilon \lambda_i^t$ として推定を行う.以上のように求めた 更新式を用いてパラメータ λ_i の推定を行う.

ML-EM 法には推定を収束させるために膨大 な繰り返し回数と計算時間を要してしまう.こ の問題を解決する為に開発された手法が OS-EM 法である. OS-EM 法では,観測データをい くつかのサブセットに分割し,サブセット毎に パラメータ¹を更新する.そして,全てのサブ セットでパラメータ¹の更新を行った時点で, 1回の繰り返しとしている.これにより1回の 繰り返しでパラメータ¹を更新する回数が多く なり,結果として収束が早くなる.

2-2. TV-EM 法

ML-EM 法に対して正則化項を導入して解の
向上やノイズ除去を行う手法も存在する.特に 正則化項込付きの尤度関数の最大化は MAP (Maximum A Posteriori) 法に対応するため MAP-EM 法と呼ばれる [6]. MAP-EM 法は正 則化項を適切に設定することにより,低 S/N 比 のデータからでも鮮明な画像を再構成するこ とが出来る. MAP-EM 法における λ_i の更新式も, ML-EM 法と同様に導出でき,次式のようにか ける:

$$\lambda_{i} = \frac{1}{\sum_{j} c_{ij} + \alpha \frac{\partial}{\partial \lambda_{i}} U(\boldsymbol{\lambda}^{t})} \sum_{j} \frac{y_{j} c_{ij} \lambda_{i}^{t}}{\sum_{l} c_{jl} \lambda_{l}^{t}} \quad (10)$$

ここで, *U*(·)は正則化項, *α* は, 正則化項をど の程度の強さで入れるかを表す制御パラメー タである. この正則化項として式(11)で表され る TV ノルムを用いた手法が TV-EM 法である [7].

$$U(\lambda) = TV(\lambda) = \sum_{m,n} |(\nabla \lambda)_{m,n}|$$
$$= \sum_{m,n} \sqrt{(\lambda_{m,n} - \lambda_{m+1,n})^2 + (\lambda_{m,n} - \lambda_{m,n+1})^2} \quad (11)$$

ここで, *m*,*n* は画像値のインデックスを表して いる. TV ノルムによる正則化は, 隣接画像の変 化を画像全体で少なくすることにより, エッジ や細かな造形を保存しつつノイズを滑らかに する効果がある. そのため, TV ノルムによる正 則化を導入した TV-EM 法では, ノイズ除去を すると同時に, エッジを保存した画像再構成が 行われることが期待できる.

2-3. 辞書学習を用いたノイズ除去手法

本研究では、実画像表現におけるノイズ除去 だけでなく、サイノグラム表現においてもノイ ズ除去を適用している.サイノグラム表現にお けるノイズ除去方式としては辞書学習と呼ば れる手法を用いた.サイノグラム表現において は、実画像表現における TV ノルムのような正 則化指標が有効であるかどうかは不明なため、 データ駆動型のノイズ除去手段を導入した.辞 書学習は、スパースモデリングの一種で、出来 るだけ少数の基底の線形和で入力を表そうと した際の基底をサンプルデータから推定する 手法である.ここではサイノグラム表現に対し て K-SVD 法[8]を用いて辞書を構築している. ここで、サイノグラムは列方向に角度 θ 、行方向 にセンサが捉えたデータsとする行列として考 える. 任意の角度 θ *におけるデータsをひと つのデータとして捉え、このデータがひくつか の基底(アトム)とその係数の線型和で表され るものとする. ここで、i番目の角度 θ_i のデータ の集合を $S = s_i$ として、アトムの集合は1つ1 つがデータ s_i と同じ大きさで、K個からなる集 合 $D = d_k$ と考える. このアトムの集合Dを辞書 と呼ぶ. さらに、i番目のデータに対するk番目 のアトムの結合係数を $X = x_{ik}$ とすると、i番目 のデータ s_i の線型結合は次式で与えられる.

$$\boldsymbol{s}_i = \sum_k \boldsymbol{x}_{ik} \boldsymbol{d}_k \tag{12}$$

以上の関係を表した概念図を図2に示す.式(12) は、S=DX と表されるが、データとして持って いる量は S のみであり、D とXとは一般的に は求めることができない.そこで、係数行列X に対してスパース制約を導入する.辞書学習に おけるスパース性とは、可能な限り少ないアト ム数で入力を表現することを意味する.ここで は辞書を入力データから獲得することを考え るため、Xのi番目の結合係数のベクトルをxiと 置くと、K-SVD 法における最適化関数は次式の ように与えられる.

$\min_{\mathbf{D},\mathbf{v}} \|\mathbf{S} - \mathbf{D}\mathbf{X}\|_F^2 \text{ subject to } \forall_i, \|\mathbf{x}_i\|_0 \le T_0 \quad (13)$

ただし, ||·||₀はL₀ノルムであり, ベクトル中の非 0 要素の個数を表わしている.また, ||·||²はフロ ベニウスノルムであり, 各要素の2 乗和により 入力と辞書による復元結果の差を表している. この差を小さくするような辞書**D**と係数**X**を各

図2 サイノグラム表現辞書の概念図

係数ベクトル**x**_iの非 0 要素が T₀ 個以下になる ように更新を行う.

K-SVD 法は,辞書を固定し,使用する基底と その係数を求める STEP1と,係数を固定し,入 力との誤差を小さくするようアトムを更新す る STEP2を繰り返すことで学習する.提案手法 では STEP1として,OMP (Orthogonal Matching Pursuit) [9]を用いた.OMPでは,観測信号 *S* をアトムとサポート(非0の係数集合)との線 型結合で近似した時の残差が最小になるよう な基底をサポート集合に逐次的に追加してい くことで,使用するアトムと係数を求めている.

次に STEP2 を考えてみよう. K-SVD 法では, 1回につき 1 つのアトムを更新するため,まず 更新するk番目のアトム d_k とその係数ベクトル x_k^T に着目し,式(13)の最適化関数を次式のよう に書き変える.

$$\|\boldsymbol{S} - \boldsymbol{D}\boldsymbol{X}\|_{F}^{2} = \left\|\boldsymbol{S} - \sum_{j=1}^{K} \boldsymbol{d}_{j} \boldsymbol{x}_{j}^{T}\right\|_{F}^{2}$$
(14)

$$= \left\| (\boldsymbol{S} - \sum_{j \neq k} \boldsymbol{d}_j \boldsymbol{x}_j^T) \boldsymbol{d}_k \boldsymbol{x}_k^T \right\|_F \quad (15)$$

$$= \|\boldsymbol{E}_k - \boldsymbol{d}_k \boldsymbol{x}_k^T\|_F^2 \tag{16}$$

 E_k は入力とアトム d_k 以外のアトムと係数に より復元した結果との残差を表している.すな わち、k番目のアトムはこの残差成分を効率良 く表すことが求められている.式(16)を最小化 する最適な $d_k \ge x_k^T$ は E_k を SVD (Singular Value Decomposition)により第一特異値に付随する特 異ベクトルで近似することで求めることが出 来る.ただし、SVDによって得られる係数ベク トルは密なベクトルとなるため、非0要素を増 やしてしまう.この問題を解決するために x_k^T の 非0要素のインデックスを表すような ω_k を以下 のように定義する.

 $\omega_{k} = \{i | 1 \leq i \leq N, x_{k}^{T}(i) \neq 0\}$ (17) さらに, $(\omega_{k}(i), i)$ の位置の要素のみが1であ るような大きさ $N \times |\omega_{k}|$ 配列 Ω_{k} を考える.これ を x_{k}^{T} に掛けることにより以下のような非0要素 のみで構成されるベクトル x_{k}^{R} に変換すること ができる. $\boldsymbol{x}_{k}^{R} = \boldsymbol{x}_{k}^{T}\boldsymbol{\Omega}_{k} \tag{18}$

また E_k も同様に, Ω_k を掛けたものを E_k^R と置く. これらを用いて式(16)を以下のように書き換え ることができる.

 $\|E_k\Omega_k - d_k x_k^T \Omega_k\|_F^2 = \|E_k^R - d_k x_k^R\|_F^2$ (19) これにより $E_k^R \&$ SVD によりランク1近似し た解を直接使用することができ、アトムと係数 のベクトルを同時に更新することが可能とな る.

以上のような STEP1 と STEP2 を繰り返し行 い,サイノグラム表現に対する辞書を構築する. 学習後,構築した辞書 **D**を用いて,入力のサイ ノグラムに対する係数を OMP により求める. このとき学習データに現れないノイズ成分等 は係数値が小さいアトムで表現されることが 期待できる.このため前述の T₀ 個以下のアト ムしか使わないというスパース制約条件を用 いるとノイズ成分を除去することが可能にな る.

3. シミュレーション実験

本章では,前章で説明した提案手法を用いた画 像再構成手法を,辞書学習によるノイズ除去手 法のみを用いてノイズ除去を行い OS-EM 法に より画像再構成する手法と TV-EM 法による画 像再構成の2つの従来手法との性能比較をした. 実験設定,定量評価手法,実験結果については 各節で説明をする.

3-1. 画像データ

評価実験に用いる画像データは東京都長寿 医療センター研究所から提供された2種類のデ ータを用いた.1つ目は,HOFFMAN3D脳ファ ントム画像である[10].Hoffmanファントムの 画像例を図3に示す.これは通常の脳中のラジ オアイソトープ分布を解剖学的に正確に3次元 で観察することができるプラスチックモデル であり,放射線同位体を含む液体を注入し,フ ァントム内での液体の摂取比4:1:0(赤色:水色: 青色)でシミュレートできる.Hoffmanファン トムの観測データは高さ方向に20分割した画 像枚数は脳を20分割した20枚である.サイノ グラムと再構成画像の例を図4に示す.サイノ

図4 HOFFMAN 3D 脳ファントム画像の画像例

(a) サイノグラム(b) 再構成画像図 3 サイノグラムと再構成画像の例

グラムの枚数は,1回の観測で63スライス撮像 を行う観測を一定時間間隔で40回行ったため, 63×40枚である.提案手法,従来手法による再 構成はこのサイノグラムを用いて行った.この 2 種類の画像のサイズは共に 90×90pixel であ る.

3-2. PET データの概要

実機での観測は、1回の観測で3分間スキャンを行い、全観測が終了するまでに120分を要した.観測に使われた放射性同位体は¹¹Cであり、半減期は20.39分である.観測時の放射線量の減衰の推移を図5に示す.このように時間が経過するに連れて徐々に放射線量が減少していることがわかる.本実験では、観測から90分以上、すなわち30回目以降の観測データは放射線量の減少により極端にノイズが多くなるため、再構成を行わないものとする.

3-3. 画像再構成

本実験では,提案手法,辞書学習による画像 再構成手法,TV-EM 法により画像再構成を行っ た.提案手法ではいくつかのパラメータを決定 する必要があるが,本研究では以下の値で実験 を行った.ただし辞書学習においては辞書を構

成するための学習データが必要であるため、こ れらは、ILSVRC2012[11]で用いられた自然画像 データセットをラドン変換したものを用いて いる.

①辞書のアトムの数:256

②再構成する際に用いるアトムの数L:20

③ K-SVD の繰り返し回数iter: 200

④辞書の学習に用いるデータセット: 128×
128pixelの自然画像 400 枚をサイノグラムに 変換したデータ 400×128=51200 枚. 画像例 を図 6 に示す.

⑤ OS-EM 法のサブセット数:8

観測回 1,15,30,スライス 19,投影角度数 64, 8, EM 法の繰り返し回数 1,5,10の画像再構成結果を図 7,図 8,図9に示す.この再構成結果の定性評価を行う.投影角度数 64 の場合,観測回数 1回では十分に観測信号が強いためどの 手法でも元の脳構造を再現できていると評価できる.しかし,観測回数 1回以降からは徐々 にノイズが増加していき,観測回数 30 回にな

図 6 学習データの画像例

図 9 EM 法の繰り返し回数 10 回の再構成画像

ると従来手法ではノイズにより脳構造が消え, 提案手法でも微かに元の脳構造がわかる程度 になっていることがわかる.

投影角度数8の場合,観測回数1回からEM-

TV 法の再構成画像はノイズにより細かな脳構 造が消えており、観測回数 30 回まで脳構造を 保持出来ているのは僅差ではあるが提案手法 のみであることがわかる.

3-4. 定量評価

視覚的な定性評価は PET ではあまり意味を 持たず,ある領域における放射線量がどれだけ あり、どの程度変化したかが重要である[12]. そこで、図 10 のようにファントム内の放射線 量が一様な分布である領域から Region of Interest (ROI) と呼ばれる局所領域を抽出し、こ の ROI 内の画素値の時間経過による推移に着 目し定量評価を行った.具体的には、各観測回 数において ROI 内の画素値の総和を計算し,総 和の分散を箱ひげ図を用いて比較した. 定量評 価結果を図 11,図 12,図 13 に示す.この定量 評価では, ROI 中の分散が小さければ小さほど ROI 中の変化が少なく、放射線量の減衰に左右 されない、適切に観測が表現できている手法だ と考える. 定量評価結果を確認すると, 各 EM 法の繰り返し回数において提案手法が他の2つ の手法より分散を小さく出来ていることから, サイノグラム表現と実画像表現の両方でのノ イズ除去が従来手法と比較して有効であるこ とがわかった.また,各EM法の繰り返し回数 での提案手法同士の比較も行った.この結果を 図 14 に示す. 投影角度数が十分にある場合, 各 繰り返し数で最も分散が小さかったのは1回の 時であり,投影角度数が少ない場合,各繰り返 し数で最も分散が小さかったのは 10 回の時で あった.この結果から,投影角度数が十分にあ る場合に最適な EM 法の繰り返し回数は1回で あり,投影角度数が少ない場合に最適な EM 法 の繰り返し回数は10回であることがわかった.

4. まとめ

本研究では、PET スキャンにより得られたサ

イノグラムに対し,辞書学習を用いたノイズ除 去手法と EM-TV 法を組み合わせた手法を提案 し、これを用いて画像再構成を行うことでノイ ズ除去することを提案した.提案手法と従来手 法との比較実験では、再構成画像に対して ROI を用いた定量評価を行い結果を比較した.結果、 サイノグラム表現と実画像表現の両方でのノ イズ除去が従来手法と比較して有効であるこ と、提案手法の EM 法の繰り返し回数は投影角 度数が十分にある場合1回,投影角度数が少な い場合10回の時が最も良く観測を表現できる ことがわかった.今後の展望として、現在辞書 学習を用いて学習しているサイノグラム表現 の辞書を深層学習により学習することで、更な る性能改善することを考えている.

謝辞

本研究の PET スキャンデータを提供頂いた と共に, 医学的観点より多くのご助言を頂きま した, 東京長寿医療センター研究所の坂田氏に 深く感謝申し上げると共に本稿の結びとさせ ていただきます.本研究は科学研究費 基盤(C) 16K00328 の支援を受けて実施された.

利益相反の有無

なし

付録

A. ML-EM 法の導出

図1の関係から次のような確率モデルを考える ことができる.

$$p(y_i|x_{ij}) = \delta\left(y_j - \sum_i x_{ij}\right) \tag{1}$$

$$p(y|x) = \prod_{j} p(y_{i}|x_{ij})$$
(2)

ここで $\delta(\cdot)$ はクロネッカーのデルタ関数である.各セルから発生する信号 x_{ij} は母数 λ_i に基づくポアソン分布に従うものと仮定する.この母数 λ_i はセルiからの放射線に関係するパラメータであり、再構成画像の画素値として扱う.

あるセルに対して,センサの幾何学的な位置 によって放射線量が変動するため,i番目のセル から放射された放射線がどの程度i番目のセン サに観測されるかを示すパラメータ*c_{ij}を考え*る.*c_{ij}は、センサの有効範囲付近に放射される*放射線の割合で決定できる.すなわち、図1の 青い枠のような領域を考え、この中でセンサが 観測する放射線を観測可能であるとする.この 時、重なる領域とセルの面積との比により*c_{ij}を*求める.

こうした条件のもとで x_{ij} の確率分布を以下のように表現できる.

$$p(x_{ij}|\lambda_i;c_{ij}) = \frac{(c_{ij}\lambda_i)^{x_{ij}}}{x_{ij}!} \exp(-c_{ij}\lambda_i)$$
(3)

以上のモデルを用いて、観測データ列 $\{y_j\}$ から パラメータ λ_i を推定することで再構成画像が得 られる.本研究で取り扱う Shepp & Logan の観 測モデルの場合、観測データ列 $\{y_j\}$ 、未知のパラ メータ列 $\{\lambda_i\}$ 、i番目のセルから、j番目のセンサ に観測される信号 x_{ij} を考える必要がある.この とき y_j は式2より、複数のセルからの放射線 x_{ij} の和となる.しかし、 x_{ij} は実際には観測されて おらず、最尤推定の際に隠れ変数 x_{ij} を含むこと となる.この時、 $\{y_j\}$ のみで構成される観測デー タを不完全データ、 $\{y_j, x_{ij}\}$ で構成される観測デ ータを完全データと呼ぶ.

Shepp & Logan の観測モデルでは,不完全デ ータからの推定問題と捉えることができるた め,対数尤度関数は以下のように考えることが できる.

$$L(\{\lambda_i\}) = \log p(\{y_j\}, \{x_{ij}\}; \{\lambda_j\})$$
(4)

この対数尤度関数を解くには,隠れ変数{*x_{ij}*}を 含む最尤推定を行う必要があるが,尤度関数が 複雑化し閉じた解を与えることができない.そ のためより効率的な推定法として EM 法 (Expectation Maximization)[5]を用いて解を導 くことを考える.EM 法は隠れ変数を持つモデル のパラメータの最尤推定値を求めるための推 定法である.この手法は,Q関数と呼ばれる完全 データの対数尤度の条件付き期待値を求める E-step と,Q関数が最大となるパラメータを求 める M-step を交互に繰り返すアルゴリズムで ある.

ここで、断層画像に ML-EM 法を適用するこ

とを考える.まず E-step で,求めるQ関数を Q_{ML} として,完全データの条件付き対数尤度の期待 値を求める.

 $Q_{ML}(\lambda|\lambda^t) = E_{x;\lambda^{(t)}}[logp(y, x; \lambda)]$ (5) この時,平均をとる確率分布を得るには λ を決 定しておく必要がある.そのため,ここでは適 当な値 λ^t を用いる.最終的にQ関数は次式のよ うに求まる.

$$Q_{ML}(\boldsymbol{\lambda}|\boldsymbol{\lambda}^{t}) = \sum_{j} \sum_{i} \log \lambda_{i} \frac{y_{j} c_{ij} \lambda_{i}^{t}}{\sum_{l} c_{jl} \lambda_{l}^{t}} - \sum_{j} \sum_{i} c_{ij} \lambda_{i} + \text{const}$$
(6)

ここで, const は λ に関わらない定数項である. 次に M-step で, Q関数の最大化を考える.これ は, λ に関してQ関数を微分し,値が0になる場 合を求めることで与えられる.

$$\frac{\partial Q_{ML}(\boldsymbol{\lambda}|\boldsymbol{\lambda}^{t})}{\partial \lambda_{i}} = \frac{1}{\lambda_{i}} \sum_{j} \frac{y_{j} c_{ij} \lambda_{i}^{t}}{\sum_{l} c_{jl} \lambda_{l}^{t}} - \sum_{j} c_{ij} \qquad (7)$$

最大値であるための十分条件は

$$\frac{\partial Q_{ML}(\boldsymbol{\lambda}|\boldsymbol{\lambda}^{t})}{\partial \lambda_{i}} = 0 \tag{8}$$

であればよいので, *λi*の更新式は式(9)のように 求まる.

文 献

- L.A.Shepp, Y.Vardi: Maximum Likelihood Reconstruction for Emission Tomography.
 IEEE Transactions on Medical Imaging 1: 113-122, 1982
- [2] Hudson HM: Accelerated image reconstruction using ordered subsets of projection data. IEEE Transactions on Medical Imaging 13: 601-609, 1994
- [3] M.Ahron, M.Elad: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing 15: 3736-3745, 2006

- [4] L.A.Shepp, B.F.Logan: The Fourier reconstruction of a head section. IEEE Transactions on Image Processing 21: 21-43, 1974
- [5] A.P.Dempster, N.M.Laird D.B.Rubin: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B 39: 1-38, 1977
- [6] 山本翔, 庄野逸: ベイズアプローチに基 づいた断層画像の再構成,MPS 2009 76-36: 1-6, 2009
- [7] V.Y. Panin, G.L. Zeng, G.T. Gullberg: Total variation regulated EM algorithm. IEEE Transactions on Nuclear Science 46: 2202-2210,1999
- [8] M.Aharon, M.Elad: K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Transactions on Signal Processing 53: 4311-4322, 2006
- [9] Y.C.Pati, R.Rezaiifar P.S.Krishnaprasad: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. Proceedings of 27th Asilomar Conference on Signals, Systems and Computers : 40-44, 1993
- [10] E.J.Hoffman: 3-D phantom to simulate cerebral blood flow and metabolic images for PET. IEEE Transactions on Nuclear Science 37: 616-620, 1990
- [11] Olga Russakovsky, Jia Deng, Hao Su, et al.: ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision 115:211-252,2015
- [12] Nodoka Iida, Hayaru Shouno: Quantitative Evaluation of Reconstructed Image with Filtered Back Projection Bayes Method.
 PDPTA 2015 1: 324-329, 2015

Ordered Subsets EM algorithm for PET Image Reconstruction by use of Dictionary Learning and TV regularization

Naohiro Okumura*1, Hayaru Shouno*1

*1 The University of Electro-Communications

Nowadays, Positron Emission Tomography (PET) scan is focused in the field of pathological diagnosis. In order to obtain a clear image in the PET scan, it is necessary to increase the S/N ratio, which leads to an increase in exposure dose at the time of observation. For this reason, it is desired to increase the S/N ratio of the image while suppressing the exposure dose. In this research, we applied a method combining two noise reduction methods to this problem. First, we used a noise reduction method using dictionary learning for the sinogram representation. The second used a noise reduction method for the real image representation based on the regularization approach. As a result, it was found that an approach combining two noise reduction methods is more effective than the conventional method.

Key words: PET image reconstruction, Sparse modeling, Dictionary learning, K-SVD

著者紹介

奥村 直裕 (おくむら なおひろ) 2018 年津山工業高等専門学校専攻科・ 電子・情報システム工学専攻卒.現在, 電気通信大学博士課程前期課程.これ までに自己組織化マップの深層化,PET 画像のノイズ除去などに関する研究に 従事.

庄野 逸 (しょうの はやる) 1992 年大阪大・基礎工学部・生物工学 科卒. 1994 年同大大学院博士前期課程 修了.現在,電気通信大学 情報理工学 研究科・教授.工博. 画像処理などを 応用先とした機械学習,ニューラルネ ットワークに関する研究に従事. IEEE,電子情報通信学会,情報処理学 会,物理学会,神経回路学会,各会 員. テンプレート(全ての原稿の種類に共通) Ver. 2.1 (2019.3.28 改訂)

拡散尖度撮像法のパラメタ推定のための生成型Q空間学習

における最適雑音量の自動決定に向けて

内濱 良介*1 河野 智奈美*1 佐々木 公*1,*2 増谷 佳孝*1

要旨

我々は、深層ニューラルネットワークの学習に合成データのみを用いる生成型 Q 空間学習による拡散 MRI パラメタ推定の研究を行っている.これまでに学習用の合成データと推定対象のデータの雑音量が同等の 場合、最も頑健な推定が可能であることが実験により示唆されているが、実画像の雑音量を測定すること は容易ではない.そこで本研究では、拡散尖度撮像法(DKI)のパラメタ推定を例として、与えられた実画像 に対して最適な雑音量の学習データを決定するための方法を検討したので報告する.

キーワード: Q 空間学習, 拡散尖度, 深層学習, 雑音量

1. はじめに

生体内水分子の拡散を定量化する拡散 MRI では、様々な信号値モデルに含まれるパラメタ の推定によって、対象部位の局所の構造、性質 等の情報が得られる.本研究では、拡散の非ガ ウス性を定量評価できるモデルである拡散尖 度撮像法(Diffusional Kurtosis Imaging: DKI)を対 象とする.DKI はパラメタとして拡散係数 D お よび拡散の非ガウス性特徴である拡散尖度 Kを 持つ.パラメタ推定は最小二乗法によるフィッ ティング(Least squares fitting: LSF)が主流である が、機械学習でパラメタを推定する Q 空間学習 が提案されている[1].また、学習を合成データ のみで行う生成型 Q 空間学習がある[2].我々

> *1 広島市立大学大学院情報科学研究科 医用情報科学専攻〔〒731-3166 広島市安 佐南区大塚東 3-4-1〕

> e-mail: <u>uchihama@medimg.info.hiroshima-</u> <u>cu.ac.jp</u>

> *2 広島平和クリニック〔〒730-0856 広 島県広島市中区川原町 1-31〕

は、生成型 Q 空間学習によるパラメタ推定のた めの深層ニューラルネットワーク(Deep Neural Network: DNN)の研究を行ってきた.これまで に学習用の合成データと推定対象の実画像の 雑音量が同等の場合、最も頑健な推定が可能で あることが実験により示唆されている[2].し かし、実画像の雑音量を測定することは容易で はない.そこで本研究では、DKIのパラメタ推 定を例として、与えられた実画像に対して最適 な雑音量の学習データを決定するための方法 を検討したので報告する.具体的には、生体領 域と空気領域の信号値の統計、推定値分布の LSF との比較である.

2. 方法

1) 使用した DKI データ

推定対象の実画像として、3 名の正常ボラン ティアの脳 DKI 画像を広島平和クリニックに て撮影した(倫理委員会承認済).撮像条件は、 ボクセルサイズが 2mm×2mm×2mm、マトリッ クスサイズ 256×256×70, MPG の印加方向が (0,1,0), b値が 0, 311, 1244, 2800(s/mm²),信 号加算回数 (nex) 1~4 の 4 種である. 2) 生成型 Q 空間学習

以下の範囲で学習データを生成した.

基準信号值 S ₀ :	500~ 8000
拡散係数 D:	$0.2{\sim}6.0 \times 10^{-3} (mm^2/s)$
拡散尖度 K:	0.0~2.0
拘束条件 D・ K:	$\leq 2.0 \times 10^{-3}$

これらに基づき,実画像データと同じ *b*=311, 1244,2800 (*s/mm*²)での信号値の組を信号値モ デルの式に基づき10⁵サンプル発生させ,各信 号値にライス分布雑音を付加した.雑音の標準 偏差の*S*₀に対する割合を学習ノイズ比とし,0.0, 0.1,0.2,0.3,0.4,0.5の6種類とした.学習は異 なる初期値で10回行った.

3) 空気領域と生体領域の信号比

大津の閾値処理法[3]を複数回適用して生体 領域と空気領域の分離を行った.この閾値処理 により分離した生体領域と空気領域の平均信 号値の比:*R*を各データに対して得た.

4) 推定値の分布および推定エラー

LSF および 6 種の学習ノイズ比の DNN によりDとKの推定を行い,分布のピークを観察した. また,推定値が負となったボクセル数の脳領域 全体に対する割合をエラー率として求めた.

3. 結果

大津の閾値処理法を4回適用した結果が生体 領域と空気領域の分離に適していた. *R* は nex の増加とともに増加する傾向が見られた.

推定値の分布のピークを比較すると、学習ノ イズ比の上昇に伴い拡散係数D では LSF より 高い値に、拡散尖度Kでは低い値にシフトした. また、図1および2に被験者1のエラー率の結 果を示す. DNN によるDの推定のエラー率は LSFより低く、ノイズ比 0.0 で最も低かった. また、KでもLSFよりエラー率が低く、ノイズ 比 0.5 において最もエラー率が低かった.

4. まとめ

MRI 画像に含まれるノイズ量の直接の測定は 困難であるが、本研究で求めた空気領域と生体 領域の信号値比および最小二乗法との推定値 分布のピーク差が,最適な学習ノイズ量を決定 に寄与することが示唆された.

謝辞:データの取得にご協力頂いた広島平和ク リニックの皆様に感謝致します.

利益相反の有無:なし

図2 拡散尖度 K におけるエラー率 (縦軸:%)

文 献

- [1] V. Golkov, et al. q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI Scans, IEEE Trans. Med. Img., vol.35, no.5, pp1344-1350 (2016)
- Y. Masutani, Noise Level Matching Improves Robustness of Diffusion MRI Parameter Inference by Synthetic Q-Space Learning, proc. ISBI 2019, April. (2019)
- [3] N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans.
 Sys. Man. Cyber, vol.9, no.1, pp.62–66 (1979)

Toward Automatic Determination of Optimal Noise Level

in Synthetic Q-Space Learning for DKI Parameter Inference

RYOUSUKE UCHIHAMA^{*1}, CHIINAMI KAWANO^{*1}, KOU SASAKI^{*1, *2}, YOSHITAKA MASUTANI^{*1}

*1 Hiroshima City University

*2 Hiroshima Heiwa Clinic

We have been studying on synthetic Q-space learning for diffusion MRI parameter inference. So far, it was revealed that noise level matching between training data and test data brings most robust inference results. However, it is not simple to estimate noise level in clinical MRI data. In this study, we examined several methods for determination of the optimal noise level for DKI parameter inference by Q-space learning.

Key words: Q-space learning, diffusional kurtosis, deep learning, noise level

著者紹介

内濱 良介 (うちはま りょうすけ) 2019 年広島市立大学情報科学部医用情報 科学科卒.同大学院博士前期課程在学. 日本医用画像工学会学生会員.

河野 千奈美 (かわの ちなみ) 2019 年広島市立大学情報科学部医用情報 科学科卒.

佐々木 公 (ささき こう) 2018 年広島市立大学大学院情報科学研究 科博士前期課程修了. 同後期課程在学. 広島平和クリニックにて診療放射線技師 として勤務.

増谷 佳孝 (ますたに よしたか) 1991 年東大・工・精密機械工学科卒. 1994 年同大大学院・工学系・精密機械工 学専攻修士課程, 1997 年同博士課程了. ハンブルク大医用数学・情報処理研究 所,シカゴ大病院放射線科,東大病院放 射線科などを経て 2018 年現在,広島市立 大学大学院医用情報科学専攻・教授. 2003 年日本医用画像工学会論文賞および 奨励賞受賞.博士(工学)・博士(医 学).拡散 MRI を中心とした多次元の医 用画像解析の研究に従事.医用画像工学 会,電子情報通信学会,磁気共鳴医学 会,IEEE など,各会員.

カラー腹腔鏡画像診断のためのコントラスト強調と SRCNN 超解像処理の最適条件に関する考察

河畑 則文*1 中口 俊哉*2

要旨

医用画像診断におけるコントラスト処理は、各部位の領域を強調させ、異常が無いかを分類・認識することを目的としている.これらの処理の多くは、コントラスト強調に加えて、超解像処理を用いて画像解像 度を上げてから分類・認識することで精度が上がるとされる.一方で、医用画像分野における深層学習の 普及により、超解像処理においても精度が上がってきたが、多種多様なパラメータが存在し、それらの調 整によっては十分な性能が発揮されるとは限らないことがある.そのため、どのパラメータをどのように 調整すればよいかを実験により検証し、実用化する必要がある.そこで、本研究では、カラー腹腔鏡画像 のコントラスト強調と超解像処理の関係について、超解像に特化した深層畳み込みニューラルネットワー クである SRCNN に基づいた waifu2x-caffe (UpResNet10)で実験を行い、最終的に PSNR を測定し、どの程 度、精度よく画像が生成できているのかを検証した.

キーワード:腹腔鏡画像, コントラスト強調, 超解像, waifu2x-caffe, Super-Resolution Convolution Neural Network (SRCNN)

1. まえがき

医用画像工学分野において,従来から,各部 位の領域を強調させるコントラスト強調は画 像診断技術における重要な要素の一つである. 画像のコントラストを強調することで,病変部 位の画像分類や異常がないかどうかといった 画像認識に関する処理能力や精度向上を目的 としている.一方で,近年の急速なコンピュー タシステムの演算処理技術の向上により,医用 画像工学研究においても積極的に深層学習が 導入可能になっている.このような背景から, 本研究では,医用画像におけるコントラスト強 調について考える.

我々は今までに,腹腔鏡画像における符号化 欠損情報の自動検出を想定した医用画像診断 の検討として,客観評価法である PSNR (Peak

*1 東京理科大学理工学部情報科学科		
〔〒278-8510 千葉県野田市山崎 2641〕		
e-mail: norifumi@rs.tus.ac.jp		
*2 千葉大学フロンティア医工学センター		
〔〒263-8522 千葉県千葉市稲毛区弥生町 1-33〕		
e-mail: nakaguchi@faculty.chiba-u.jp		
投稿受付:2019 年 5 月 22 日		

Signal to Noise Ratio) [1]-[5], サポートベクター マシン (Support Vector Machine: SVM)[1]-[4]に よる分類, S-CIELAB 色空間を用いて, 輝度値, 色差値を測定することで, 色情報解析を行い, 相互に医用画像診断に応用可能かどうかを検 討してきた [1]. 確かに,色情報(輝度や色差) に関しては一定の知見が得られたが、色情報と 関係のあるコントラスト強調と超解像に関す る議論まではしていなかった. コントラスト強 調の処理を行うにあたっては、色情報は勿論の こと、画面解像度も関係してくるし、それによ り, 強調後の画像の内容も変わってくることが 多く, 今まで明らかでなかった知見が得られる ことも多い.また、我々が利用している腹腔鏡 画像を処理する際に, 深層学習を導入していな かった.確かに、非医用画像に対しては、著者 の先行研究で検証したことがあるが [5], 医用 画像でも同じ傾向が出るとは限らないし、どの 程度, 深層学習が有効であるかについて, 本研 究では検証したいと考える.

本研究では、カラー腹腔鏡画像において、コ ントラスト強調と超解像処理の関係について、 SRCNN に基づいた waifu2x-caffe (UpResNet10) [6] を用いることで、最終的に PSNR を測定し、 画質とコントラスト、超解像処理、深層学習の

(g) Q=51 (1 frame)

図 1: 本研究で使用した腹腔鏡カラー画像 (コントラスト強調前)

観点から客観的な実験を行い、画像診断に応用 できるかどうか考察を行った.

2. 関連研究

関連研究として,以下の3点に着目できる.

- (a). 適応ヒストグラム均等法によるコントラ スト強調に関する研究 [7]-[12]
- (b). 医用画像におけるコントラスト強調に関 する研究 [13]-[14]
- (c). 画質の観点からのコントラスト強調また は超解像処理に関する研究 [15]-[20]

(a)では、本研究で扱う Adaptive Histogram Equalization (AHE) に関するアルゴリズムや手 法に着目して研究がなされている.

(b)では、医用画像に関するコントラスト強 調の研究がされており, 主に, 顕微鏡画像検査 や熱音響断層撮影の例が挙げられている.

(c)では、人間視覚システムを考慮したコン トラストの測定や画質評価に関する研究が多 い. 超解像処理を扱うものでは、超解像処理手 図 2: 本研究で使用した腹腔鏡カラー画像 (コントラスト強調後, AHE=1 の場合)

法を提案して,従来手法と比較して,その後, 画質評価や画質改善を行うものが多い.画像処 理分野から深層学習分野へのアプローチもあ るが、深層学習分野から画像処理分野へのアプ ローチも増えてきている.

本研究では、関連研究とは異なり、(a)-(c)の 全ての内容を網羅しているため、その点におい て新規性があり、コントラスト強調、超解像, 深層学習の関係に関して,研究及び検証する価 値があると考えた.

3. コントラスト強調と超解像処理

3.1. 本研究で使用した医用画像

本研究で使用した医用画像は,図1に示すよ うに, 内視鏡により取得した, 肝臓と胃の周辺 を撮影した腹腔鏡下手術動画像 (約 15 秒間)を フレーム画像として切り出したものである. 図 2は、次節で説明する適応ヒストグラム均等法 (Adaptive Histogram Equalization: AHE)を用いて コントラスト強調を行った例である.使用した 動画像は特定の治療行為は行っていない.

図 3: 医用画像の入力から出力までのフローチャート

3.2. 実験手順

実験手順を図3に示す.以下に、本研究の実 験手順を(a)-(f)の順に説明していく.

- (a). まず,腹腔鏡下手術動画像(以下,腹腔鏡 静止画像または動画像)をフレーム静止画 像として切り出し処理を行う.本研究では, 全部で426枚を切り出した.
- (b). 次に、フレーム静止画像として切り出した 426 枚の腹腔鏡画像に対して、約71 枚間隔 で7枚のフレーム静止画像を選択する.
- (c). 7枚のフレーム画像に対して,画像全体に, H.265/HEVC 符号化を行う [21]. 量子化パ ラメータ (Quantization Parameter: Q = ref,20,25,30,35,40,51) を7通り設定して 符号化処理を行う.
- (d). HEVC 符号化画像に対して、コントラスト 強調を行う.本研究では、適応ヒストグラ ム均等法 (Adaptive Histogram Equalization (AHE))というコントラスト強調手法を用 いて、L = ref, 0.25, 0.5, 1, 2, 4 の6段階に設 定して強調処理を行う.
- (e). コントラスト強調後,超解像処理を行う. 動画像からフレーム静止画像として切り 出した画像は 1280×720 (pixels)であるが,

本実験では、1920×1080 (pixels)に超解像処 理を行う. 超解像手法としては、機械学習 を用いて人工知能で予測、復元させる画像 拡大ツール waifu2x-caffe を用いる. 特に、 ツールの中で UpResNet10 (Up Residual Network 10: 残差ネットワーク, Residual Learning とも呼ぶ) と呼ばれる深層学習手 法を用いて拡大処理を行う. 拡大処理の時 間であるが、我々の実行環境 (Windows 10 Pro, Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, NVIDIA GeForce GT 635)では、全 パターン (294 通り) を処理するのに、約 2 時間かかった.

(f). カラー腹腔鏡フレーム静止画像の原画像 と評価画像に対して, PSNR (Peak Signal to Noise Ratio)を用いることにより,符号化画 質を客観的に評定する. 評価方法としては, 客観評価指標 PSNR (Peak Signal to Noise Ratio)を用いた. PSNR はあるデータが元デ ータからその程度劣化したかを表す指標 である. 値が大きいほど劣化は小さく,値 が小さいほど激しい劣化になる. 元画像 *Iorig*,評価画像 *Icode* とするとき,2つの画 像の PSNR は次の式 (1) (Mean Squared Error: MSE), (2) (PSNR)のように表される.

$$MSE = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} (I_{orig}[i,j] - I_{code}[i,j])^{2} \quad (1)$$
$$PSNR = 10 \log_{10} \left(\frac{MAX^{2}}{MSE}\right) \quad (2)$$

3.3. 実験方法と評価方法

実験方法としては、本研究では、コンピュー タによる客観評価を主としているため、ヒトに よる主観評価実験は考慮していない.実験の主 な仕様としては、コンピュータの動作環境 (Windows 10 Pro, MATLAB R2016a)、画像の画面 解像度 (1280×720 (動画像から切り出した基準 の 画 像), 1920 × 1080 (waifu2x-caffe (UpResNet10)を用いて超解像した画像)である. 評価方法としては、原画像と符号化画像に対し、 PSNR を計算し、287 通りについて分析した.

4. 実験結果

カラー腹腔鏡フレーム静止画像をコントラ スト強調した画像の PSNR を表した棒グラフを 図 4~9 に示す.また,コントラスト強調した画 像に waifu2x-caffe による超解像処理をした画像 の PSNR を表した棒グラフを図 10~15 に示す. ここで,図 4~15 の縦軸は PSNR,横軸は AHE における L (Luminosity)とフレーム番号である. また,図 16,17 は各々コントラスト強調後と超 解像処理後の全体の PSNR を示している.そし て,図 18~23 はコントラスト強調後の画像の PSNR と超解像処理後の画像の PSNR の差分(絶 対値)を表している.

4.1. コントラスト強調後の腹腔鏡画像

図 4~9 の結果から, AHE の値が(1) ref, (2) 0.25, 0.5, (3) 0.1, 0.2, 0.4 とで PSNR の変動に違 いが見られた.フレーム間においては, AHE が ref の場合ではほぼ差は見られないが, ref 以外 の場合ではフレーム間で特徴が見られた.

4.2. waifu2x-caffe 超解像処理後の腹腔鏡画像

図 10~15 の結果から, 超解像処理後の PSNR は処理前と比較して, PSNR の値がやや下がる ものの, 誤差に近い程度に抑えられており, waifu2x-caffe (UpResNet10)による超解像処理は 有効であると考えられる.

5. 考察

実験結果から、コントラスト強調の場合、Q のパラメータ変動のみが PSNR に影響している わけではないことがわかる.これは、画像強調 を行うことにより、輝度の増減が発生し、強調 前には明らかでなかった部位の表示が可能に なった、あるいは、明らかであった部位の表示 が明らかでなくなったことで、通常、Q が低く なれば、PSNR が高い傾向にあるが、そうとは 限らなくなったのではないかと考えられる.

6. まとめ

本研究では,カラー腹腔鏡画像診断のための 腹腔鏡画像のコントラスト強調と超解像処理 の関係について,深層学習を導入することによ り,実験を行い,考察を行った.

本研究の結果から、コントラスト強調のパラ メータLが(1) ref, (2) 0.25, 0.5, (3) 1, 2, 4 とで PSNR の値の傾向の違いが見られた. Waifu2xcaffe による超解像処理に関しては、処理前と比 べて PSNR は誤差に近い程度であり、拡大処理 が問題無く実行されていることが確認できた. 図 24 から、コントラスト強調処理画像では、 L=0.5, 1 の時に、超解像処理前後の差が見られ たので、コントラスト強調と超解像に関する関 係が見られた.

今後の展望としては,画像を高品質に提示す るために,画質改善手法や深層学習のパラメー タを工夫することにより医用画像における最 適な画像提示方法について考慮していく.

謝辞

本研究は、千葉大学フロンティア医工学セン ターの協力の下で実施されたので、感謝する.

利益相反の有無

本研究における利益相反は無い.

文 献

- [1].河畑則文,中口俊哉:"画像領域別のテクス チャ解析に基づく腹腔鏡画像の領域分割
 に関する基礎検討",映情学技報,vol.43, no.5, ME2019-37, pp.125--130, 2019 年 2 月.
- [2].河畑則文,中口俊哉:"画像領域別のテクス チャ解析に基づく腹腔鏡画像の医用画像 診断への応用",日本コンピュータ外科学 会誌,vol.20, no.4, pp.366--367, 2018年11月.
- [3].河畑則文,中口俊哉:"符号化欠損領域の自動検出を想定した腹腔鏡画像の色情報解析と医用画像診断における改善と効率的な分類器パラメータの適用",信学技報,vol.118, no.286, MI2018-42, pp.21--26, 2018年11月.
- [4]. N. Kawabata: "Image Diagnosis for Coded Defect Detection on Multi-view 3D Images," Proc. of The Ninth International Workshop on Image Media Quality and its Applications (IMQA2018), PS-10, pp.110--119, September 2018.
- [5]. N. Kawabata: "HEVC Image Quality Assessment of the Multi-view and Superresolution Images Based on CNN," Proc. of 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE 2018), POS1A-3, pp.38--39, October 2018.
- [6]. waifu2x-caffe: https://github.com/lltcggie/waifu2xcaffe/releases, accessed May 22, 2019.
- [7]. G. Park, H. Chuo, and M. Choi: "A Contrast Enhancement Method using Dynamic Range Separate Histogram Equalization," *IEEE Trans. on Consumer Electronics*, Vol.54, No.4, November 2008.
- [8]. T. Kim and J. Paik: "Adaptive Contrast Enhancement Using Gain-Controllable Clipped Histogram Equalization," *IEEE Trans.* on Consumer Electronics, Vol.54, No.4, pp.1803--1810, November 2008.

- [9]. K. Gu, X. Yang, and W. Zhang et al.: "Automatic Contrast Enhancement Technology With Saliency Preservation," *IEEE Trans. on Circuits and Systems for Video Technology*, Vol.25, No.9, pp.1480--1494, September 2015.
- [10]. W. Ke, C. Chen, and C. Chiu: "BiTA/SWCE: Image Enhancement with Bilateral Tone Adjustment and Saliency Weighted Contrast Enhancement," *IEEE Trans. on Circuits and Systems for Video Technology*, Vol.21, No.3, March 2011.
- [11].C. Sun, S. Ruan, M. Shie et al.: "Dynamic Contrast Enhancement based on Histogram Specification," *IEEE Trans. on Consumer Electronics*, Vol.51, No.4, pp.1300--1305, November 2005.
- [12]. J. Shin and R. Park: "Histogram-Based Locality-Preserving Contrast Enhancement," *IEEE Signal Processing Letters*, vol.22, no.9, pp.1293--1296, September 2015.
- [13]. J. Song, Z. Zhao, J. Wang et al.: "Evaluation of Contrast Enhancement by Carbon Nanotubes for Microwave-Induced Thermoacoustic Tomography," *IEEE Trans. on Biomedical Engineering*, vol.62, no.3, pp.930--938, March 2015.
- [14]. S. Cakir, D. C. Kahraman, R. Centin-Atalay et al.: "Contrast Enhancement of Microscopy Images Using Image Phase Information," *IEEE Access*, vol.6, pp.3839--3850, January 2018.
- [15].K. A. Panetta, E. J. Wharton, and S. S. Agaian: "Human Visual System-Based Image Enhancement and Logarithmic Contrast Measure," *IEEE Trans. on Systems, Man, and Cybernetics—Part B: Cybernetics*, vol.38, no.1, pp.174--188, February 2008.
- [16]. W. Kao, J. Ye, and M. Chu et al.: "Image Quality Improvement for Electrophoretic Displays by Combining Contrast Enhancement and Halftoning Techniques," *IEEE Trans. on Consumer Electronics*, Vol.55, No.1, February 2009.

図 4: AHE=ref (1280x720, Original)

図 5: AHE=0.25 (1280x720, Original)

図 6: AHE=0.5 (1280x720, Original)

図 7: AHE=1 (1280x720, Original)

AHE=2 (1280x720, Original)

13

12 Q=ref PSNR (dB) **Q**=20 Q=25 11 Q=30 Q=35 Q=40 Q=51 10 72 285 356 426 1 143 214 L=2 L & Frame

図 8: AHE=2 (1280x720, Original)

図 9: AHE=4 (1280x720, Original)

AHE=4 (1280x720, Original)

図 10: AHE=ref (1920x1080, UpResNet10)

図 11: AHE=0.25 (1920x1080, UpResNet10)

図 12: AHE=0.5 (1920x1080, UpResNet10)

図 13:AHE=1 (1920x1080, UpResNet10)

AHE=2 (1920x1080, UpResNet10)

13

図 14:AHE=2 (1920x1080, UpResNet10)

図 15: AHE=4 (1920x1080, UpResNet10)

592

AHE=4 (1920x1080, UpResNet10)

🗵 16: All (1280x720, Original)

図 17: All (1920x1080, UpResNet10)

図 18: AHE=ref (|SR-Orig|)

図 19: AHE=0.25 (|SR-Orig|)

AHE=0.5 (|Super-resolution - Original|)

0.08 0.07 PSNR Difference (dB) 0.06 Q=ref Q=20 0.05 Q=25 0.04 Q=30 Q=35 0.03 Q=40 Q=51 0.02 285 356 426 1 72 143 214 L=0.5 L & Frame

図 20: AHE=0.5 (|SR-Orig|)

図 21: AHE=1 (|SR-Orig|)

図 22: AHE=2 (|SR-Orig|)

図 23: AHE=4 (|SR-Orig|)

図 24: All (|SR-Orig|)

- [17]. M. Abdoli, F. Nasiri, and P. Brault et al.: "Quality assessment tool for performance measurement of image contrast enhancement methods," *IET Image Process.*, Vol. 13, Iss. 5, pp.833--842, 2019.
- [18].T. Celik: "Spatial Entropy-based Global and Local Image Contrast Enhancement," *IEEE Trans. on Image Process.*, vol.23, no.12, pp.5298--5308, December 2014.
- [19]. K. Gu, G. Zhai, and W. Lin et al.: "The Analysis of Image Contrast: From Quality Assessment to Automatic Enhancement," *IEEE Trans. on Cybernetics*, vol.46, no.1, pp.284--297, January 2016.
- [20]. W. Shi, J. Caballero, and F. Huszár et al.: "Real-Time Single Image and Video Superresolution Using an Efficient Sub-Pixel Convolutional Neural Network," *Proc. of CVPR2016*, pp.1874--1883, 2016.
- [21]. F. Bossen, D. Flynn, and K. Sühring, "HM Software Manual,"

https://hevc.hhi.fraunhofer.de/svn/svn_HEVC Software/, accessed May 22, 2019.

A Discussion on Optimum Condition between Contrast Enhancement and SRCNN Super-resolution Processing to Diagnose Color Laparoscopic Image

Norifumi KAWABATA^{*1}, Toshiya NAKAGUCHI^{*2}

*1 Department of Information Sciences, Tokyo University of Science*2 Center for Frontier Medical Engineering, Chiba University

The contrast image processing in the medical image diagnosis is purposed to classify and recognize whether there is fault or not by enhancing each body region. To improve precision, most of these image processing is classified and recognized after image resolution improvement by processing of super-resolution in addition to contrast enhancement. On the other hand, appearing of deep learning in medical imaging technology field, the precision of super-resolution processing is improved, however, there are many types of parameter in this processing, and it may not be enough to perform whether there is adjustment of them or not. Therefore, we need to practice by verifying in experiments how to adjust parameter. In this study, we carried out experiments by using waifu2x-caffe (UpResNet10) based on Super-Resolution Convolutional Neural Network (SRCNN) specialized to super-resolution processing for the relation between contrast enhancement (Adaptive Histogram Equalization: AHE) and super-resolution processing with the color laparoscopic medical images, and then, we measured Peak Signal to Noise Ratio (PSNR). Finally, we discussed whether these methods can be generated how well images accurately or not.

Key words: Laparoscopic Image, Contrast Enhancement, Super-resolution, waifu2x-caffe, Super-Resolution Convolution Neural Network (SRCNN) テンプレート(全ての原稿の種類に共通) Ver. 2.1 (2019.3.28 改訂)

動作計測による顔の粘弾性シミュレーション

黒田 嘉宏^{*1} 加藤 弘樹^{*1} 谷川 千尋^{*2,3} 吉元 俊輔^{*1}

大城 理^{*1} 高田 健治^{*2,4}

要旨

顔の動きは感情を身体的に表出することから、コミュニケーションにおいて重要な役割を担う.生体組織のもつ粘弾性的な性質は年齢や傷によって変化し、動きに大きく影響する.しかし、従来は顔の動きの表現に着目した医療支援システムは少ない.本研究では、加齢や手術による顔の運動様態の変化を表現することを目的として、顔の粘弾性特性の計測を行うとともに粘弾性モデルに基づく顔の変形シミュレーションを再現するシステムを構築した.実際に計測した運動を元に、顔の運動する様子を計算して表現することを可能とする.発表では、本研究における粘弾性モデルおよびシミュレーション結果について報告する.

キーワード:粘弾性シミュレーション, 顔変形,特徴追跡,有限要素法,術後予測

1. はじめに

人が他者とコミュニケーションを行うとき, 言語以外の情報として顔の表情なども重要な 役割を果たす. 顔の表情のうち, 顔の動きは代 表的な感情の身体的表出の一つである. 顔の動 きの CG 生成や本人の顔の動きを取り込んだ 3D アバター生成など様々な研究開発がなされ ている.

医療分野においては外科手術後の顔形態の 予測は重要な意味をもち,顔の変形を対象とし た物理シミュレーションや物理パラメータの 計測が行われてきた. Flynn らは筋による皮膚 変形を連続体に基づく有限要素法を用いてシ

*1 大阪大学大学院基礎工学研究科 [〒560-8531 豊中市待兼山町 1-3] e-mail: ykuroda@bpe.es.osaka-u.ac.jp *2 大阪大学国際医工情報センター *3 大阪大学大学院歯学研究科 *4 シンガポール国立大学 投稿受付: 2019 年 5 月 15 日 ミュレーションしている[1].また,医学分野で は皮膚の粘弾性の計測が盛んに行われている. 皮膚にせん断変形を行った場合や吸引した際 の皮膚の応答を観測し,瞬時弾性と呼ばれる急 峻な皮膚変形とその後の粘性の強い緩やかな 皮膚変形が生じることを前提に皮膚の力学的 応答を定量化して,年齢や皮膚疾患の有無によ る違いが調査されている[2].バネ要素とダンパ 要素から構成される Zener モデルは弾性と粘性 による複合的な軟組織の変形を表現する基本 的なモデルである.しかし,上記の実測結果と 一致しないという問題が残る.

本研究では、有限要素法に基づいた顔形状の 運動シミュレーションを目的として、複合的な 粘弾性パラメータにより顔表面の皮膚変形を 表現し、さらにその複合的なパラメータを近似 する手法を提案する.

2. 有限要素法による複合粘弾性表現のため の粘弾性パラメータの動的切り替え手法

並列した一つずつのばねとダンパから構成 される粘弾性モデルに対して、一定の外力f_cの ステップ入力を与えたときの変位*u*の応答は, 以下の式で表される.

$$u = \frac{f_{\rm c}}{k} \left(1 - \exp\left(-\frac{t}{\tau}\right) \right) , \ \tau = \frac{\eta}{k} \tag{1}$$

ただし、tは時間、 k,η はそれぞれ弾性係数、粘 性係数であり、 τ は時定数を表す. さらに、同モ デルを直列に多層接続した場合の応答は、以下 の式で表される.

$$u = f_c \sum_{i=1}^{N} \frac{1}{k_i} \left(1 - \exp\left(-\frac{t}{\tau_i}\right) \right) , \ \tau_i = \frac{\eta_i}{k_i}$$
(2)

本研究では、複数の粘弾性パラメータを時間的 に切り替えることによって式(2)を近似し、顔形 状を表現する3次元メッシュの各要素に成り立 つ運動方程式を有限要素法によって離散化し て顔の運動をシミュレーションする.例えば、 2層の場合は、以下のように切り替えることと する.切り替える時間は時定数等から決定する.

$$k = \begin{cases} k_1 & (t \le t_1) \\ k_2 & (t > t_1) \end{cases}, \ \eta = \begin{cases} \eta_1 & (t \le t_1) \\ \eta_2 & (t > t_1) \end{cases}$$
(3)

3. 粘弾性の計測とフィッティング

顔表面の粘弾性を計測するために,吸引圧 50 kPa, プローブ測定開口部 2 mm の条件のもと, 吸引 3 s とそれに続く開放(無吸引) 3 s を 1 セットとして,被験者 41 名に対して頬,鼻下, 咬筋,上唇,下唇の 5 部位を 3 セットずつ計測 した.データについては,大阪大学国際医工情 報センター研究倫理委員会の承認(001)を得て 取得された.図1は,1層と2層のモデルで計 測変位にフィッティングした場合,そして粘弾 性パラメータをある時刻に切り替えた場合の フィッティング結果を示す.本実験では,切り 替える時間として,医学分野で瞬時弾性の時間 として一般的に想定されている 0.1 s とした[2]. また,最小化問題の解法としてはシンプレック ス探索法を用いた.

三次元メッシュの一部の点を駆動し,有限要素法を用いて粘弾性シミュレーションした結果の例を図2に示す.駆動する際には,デプスカメラ Kinect v2 を用いて顔の変位の計測を行い,対応点に対して与える変位を境界条件として,残りの点の変位を算出した.

図1フィッティング結果の例.計測データに対して 1層モデルは大きく異なるのに対して、2層モデ ルおよび動的切り替え手法は概ね一致した.

図2 有限要素法を用いて顔を変形した結果の例.

3. まとめ

本研究では,有限要素法により表現可能な動 的切り替えに基づく複合粘弾性表現手法を提 案した.

利益相反の有無

なし

文 献

- [1] Flynn C, Stavness I, Lloyd J, et al: A finite element model of the face including an orthotropic skin model under in vivo tension. Computer Methods in Biomechanics and Biomedical Engineering, 18(6): 571–582, 2013.
- [2] Barel O, Lambrecht R, Clarys P: Mechanical Function of the Skin: State of the Art. Skin Bioengineering, 26: 69–83, 1998.

Viscoelastic Facial Simulation based on Motion Measurement

Yoshihiro KURODA ^{*1}, Hiroki KATO^{*1}, Chihiro TANIKAWA ^{*2,3}, Shunsuke YOSHIMOTO^{*1}, Osamu OSHIRO^{*1}, Kenji TAKADA ^{*2,4}

- *1 Graduate School of Engineering Science, Osaka University
- *2 Global Center for Medical Engineering and Informatics, Osaka University
- *3 Graduate School of Dentistry, Osaka University
- *4 National University of Singapore

Facial motion plays an important role in communication as it represents emotion physically. Viscoelastic characteristics change by age and wound, and effect on facial motion. However, a few conventional studies of medical support system focused on representation of facial motion. The aim of this study is to represent changes of behavior of facial motion depending on age and plastic surgery. We developed a system representing facial deformation by viscoelastic model in addition to measurement of facial viscoelastic properties. Based on the measured motion, the system enabled to represent facial motion by simulation. In this presentation, we report the viscoelastic model and the simulation results.

Key words: Viscoelastic simulation, Facial deformation, Feature tracking, Finite element method, Postoperative prediction

3次元点群の位置合わせによる顔の対称面検出

細木 大祐^{*1} 陸 慧敏^{*1} 金 亨燮^{*1}

木村 菜美子*2 大河内 孝子*2 野添 悦郎*2 中村 典史*2

要旨

ロ唇裂とは、胎児の顔面が癒合する過程において唇が完全に形成されない場合に生じる先天異常で、日本 においては約500人に1人の割合で発生する.左右対称な口唇と外鼻を形成することを目的として治療が 行われているが、医師の主観に依存した判断基準に基づいているため、手術部位の対称度合を定量的に判 断する必要がある.本論文では、手術部位の対称性を解析するための顔の対称基準となる面を検出する手 法を提案する.提案法では被験者の顔を撮影した3次元点群データに対し、顔器官を点として検出したの ち、口唇裂による形状変化の影響が顕著とされる上唇から鼻尖点までの領域を除外した鏡像反転点群との 位置合わせを行う.次に、元の点群内の1点と鏡像反転像内の対応点の間を垂直2等分する平面を求める ことにより対称基準面を設定する.提案法を実3次元点群データに適用した結果、良好な精度で対象基準 面を検出することができた.

キーワード: 口唇裂, 対称性解析, 3次元点群, ICP法

1. 序論

ロ唇裂は世界で最も頻度の高い先天異常の1 つとされており, 胎児の顔面が癒合する過程 において唇が完全に形成されない場合に生じ る先天異常である[1,2].手術は複数回に渡って 行われ,生後3カ月頃に機能的な問題を解決す るための一次手術を行い,それ以降は左右対称 な外鼻および上唇を形成するための手術を行 う.しかし,術部の非対称性を示す定量的な評 価法がないため,判断基準が医師の主観に依存 することから,患者や家族らには定性的な評価 しか提示できないのが現状である.そこで,術 部の非対称性を表す指標を与えるにあたって,

〔〒804-8550 福岡県北九州市戸畑区仙 水町 1-1〕 顔に潜在的に存在する対称基準を検出する必 要がある.

顔の対称性解析手法の一般的な方法として2 次元顔写真の画像解析が挙げられる[3]. 画像解 析は幅広い分野で応用されており、ロ唇裂解析 において有用であると思われる.しかし,2次 元顔写真を利用した顔の対称性解析において, 顔の凹凸形状まで考慮できないことから, 立体 的な情報が不足しているといえる.よって,3次 元データ解析を用いた顔の潜在的な対称面を 検出し、それに基づいた手術部位の非対称度を 立体的に評価し, 口唇裂による形態的な影響を 踏まえた定量的指標を提示することは, 医用画 像解析による新しい指標提供の面で有用であ り、その開発が求められている、本論文では、 手術部位の対称性解析を可能とするため、口唇 裂患者の顔の3次元点群データからの対称面の 検出手法を提案し,実データによる有効性を検 証する.

^{*1} 九州工業大学工学部工学専攻

e-mail: kimhs@cntl.kyutech.ac.jp

^{*2} 鹿児島大学大学院医歯学総合研究科

2. 手法

本論文では、口唇裂手術前後における口唇外 鼻形態の定量的解析を可能とすべく、口唇裂患 者の顔面の対称基準面を自動で設定するため の画像処理手法を提案する.顔面の対称性を解 析するにあたって、カメラで患者の顔を撮影し た2次元の画像解析が有効であると考えられる. しかし、手術部位の口唇外鼻形態を精密に解析 するためには、2次元顔写真では表面の凹凸形 状の情報が欠落しているといえる.そこで立体 的、すなわち3次元的な形状を把握して解析す るため、本論文では非接触型3次元形状測定装 置を用いて得た顔の3次元点群データに対し、 その対称基準を自動的に設定する手法を提案 する.手法全体の流れを図1に示す.

2.1. 顏器官検出

まず,2次元画像上で顔器官を検出するため, 3次元点群(図2左)をxy平面に投影する.作 成する画像の大きさを512×512[pixel]とし,点 群の重心が中心となるように平行移動させ,全 体が画像内に収まるように点群のサイズを 100 分の1にリサイズする.その後,xy平面上で点 群内の各点を近傍のピクセルに割り当て,割り 当てられた点の色の平均値をそのピクセルの 画素値とする.このとき,割り当てられた点の z座標の平均値を奥行き情報としてそのピクセ

図1 処理全体のフローチャート

ルに保持する.これは顔器官検出の最後の処理 で検出された,2次元画像上の点を3次元点群 上に復元するために用いる.

次に, 顔器官を検出する領域を画像内で決定 するため, HOG 特徴量[4]を用いた物体検出手 法により顔領域を決定する. HOG 特徴量の計算 はまず,各ピクセルの輝度値からその勾配強度 と勾配方向を求め、勾配方向で量子化を行う. セルと呼ばれる領域ごとに勾配方向で量子化 された勾配強度のヒストグラムを作成する. 複 数のセルを持つ、ブロックと呼ばれる領域ごと にヒストグラムの正規化を行うことにより,特 徴量が抽出できる. 顔領域の検出には検出窓内 のHOG特徴量を入力とした線形SVM[5]を用い る. 重なり合ったブロックを敷き詰めた検出窓 を、すべての位置・スケールで設定し、各ブロ ック内において HOG 特徴量を計算する. 検出 窓内の特徴量を SVM に入力し、顔の有無を検 出窓ごとに決定する[4].

検出された顔領域に対し, Kazemi らの手法[6] により顔器官のランドマーク位置を決定する. これは,回帰を繰り返すことによって顔の推定 形状を求めるものである.顔のすべてのランド マークの位置を1つの形状**S**でベクトル表現す ると,次式によってランドマークの推定が繰り 返し行われる.

 $\hat{S}^{(t+1)} = \hat{S}^{(t)} + r_t(I, \hat{S}^{(t)})$ (1) 最後に、2次元画像上で決定した顔器官のラン ドマーク点を3次元点群上に再投影する.これ は、点群を画像上に投影した際に各ピクセルに 保持させた奥行き情報を用いる.まず、ランド マーク点の存在するピクセルの座標から、*xyz* 座標空間上の*xy*座標を決定する.次に、そのピ

図2 顔器官検出

クセルの奥行き情報で大まかに点群上の位置 (z座標)へ移動し、その位置の最近傍に存在す る点を3次元点群上のランドマーク点の位置と する.本手法で用いるランドマーク点は、右目 の外眼角・鼻尖・口角を示すもののみを用いる. 以上の処理により得られた点群データを図2右 示す.

2.2. 領域分割

次処理において左右非対称な領域, すなわち ロ唇裂によるロ唇外鼻の形態変化が顕著に現 れる領域を含んだままであると, 鏡像反転像と の位置合わせを精度よく行うことが困難であ る.そこで本処理では, ロ唇外鼻の形態変化が 影響を及ぼす領域(非対称領域)とそうでない 領域(対称領域)とに分割する.

ロ唇裂は上唇に裂が生じ鼻孔周辺にまで至 るものもある.よって,この領域を非対称領域 として取り除くため,顔器官検出で得られたラ ンドマーク点のうち,左右の口角を示す2点と 鼻尖点を示す1点を用いて非対称領域を設定す る.左右の口角2点を結ぶ線分を底辺として持 ち,鼻尖点からその線分までの距離を高さとす る長方形を作成し,これを非対称領域とする. その領域内を法線方向に平行移動した空間に ある点をすべて取り除くことにより,点群内の 非対称な部分を除去し,対称領域のみを残す. 以上より得られる非対称領域の除去例を図3に 示す.

図3 非対称領域除去例

2.3. 対称面検出

まず,Global Registration により,2つの点群 を大まかに重ね合わせたのち,Local Registration で精密な位置合わせを行う.位置合わせを行っ たのち,元の点群から一点を選択し,その点を 反転した点を鏡像反転した点群内から選択す る.これら2点の位置関係から潜在的対称軸と なる平面を生成する.以下に概要を示す.

(A) Global Registration

Global Registration の流れを図4に示す.まず, 対応付けを行う点を選択するため,点群の各点 において Harris 3D 特徴量[7]を計算する.

これは、2次元画像における Harris 特徴量[8] が輝度勾配を用いている代わりに、3次元座標 空間における各点の法線を用いて記述される. Harris 3D 特徴量を計算することにより、点群内 の凹凸が顕著な点が検出できるため、その点に おいて FPFH(Fast Point Feature Histogram)特徴量 [9]を計算する.FPFH 特徴量は点の局所的な幾 何学的性質を記述する.そのため、潜在的軸対 称である顔において、顔の右側と鏡像反転した 顔の左側が類似した形状であるように、ある一

図 4 Global Registration のフローチャート

点と反転像内におけるその点の近傍点で計算 された特徴量は類似したものが得られると考 えられる.そして,元点群と反転点群との特徴 量間距離が最近傍となる点同士を対応付ける. しかし,これらの対応の中には誤対応(Outlier) が含まれるため,RANSAC(Random Sample Consensus)によりそれらを取り除く[10].最後に, 残った対応からSVD(Singular Value Decomposition)[11]により,反転点群を元点群に 位置合わせする剛体変換ベクトルを推定する. 以上の計算で求められた剛体変換ベクトルを 適用した例を図5に示す.同図では,反転点群 (灰色)を元点群(緑色)へ位置合わせ(赤色) している.

(B) Local Registration

局所位置合わせの手法として,点と点との距離を最小化すべき目的関数として用いる pointto-point ICP[12]を適用する. Point-to-point ICP の 流れは、2点群間における各点を最近傍点と対 応付けたのち、剛体変換を推定する.剛体変換 推定では、変換後の点群と位置合わせ先の点群 間で対応付けられた点間の距離の2乗誤差、

$$D = \sum \|\boldsymbol{y}_i - (\boldsymbol{R}\boldsymbol{x}_i + \boldsymbol{t})\|^2$$
(2)

を最小化する回転行列Rと並進ベクトルtを求 める(ただし, y_i は元の点群, x_i は鏡像反転した 点群の各点の座標を示す).

(C) 平面計算

2 点群の位置合わせが完了したのち, 元の点

図 5 Global Registration 適用例

群の任意の点**K**_pと鏡像反転した点群内の対応 点**K**_mを結ぶ線分のベクトル**n**を次式で計算す る(図 6).

$$\boldsymbol{n} = \frac{\boldsymbol{K}_m - \boldsymbol{K}_p}{\|\boldsymbol{K}_m - \boldsymbol{K}_p\|}$$

$$= (\boldsymbol{x}_n, \boldsymbol{y}_n, \boldsymbol{z}_n)$$
(3)

本手法においては,任意の点K_pを顔器官検出で 得られたランドマーク点のうち,右目の外眼角 点を用いる.これは,点群の重心点をK_pとした 場合,K_pは点群の中央付近に位置するため,重 ね合わせによりK_pとK_m間の距離が短くなると 考えられ,位置合わせで残った誤差により,平 面が大きく回転してしまう恐れがある.ここで K_pを点群の中央から離れている点を用いるこ とにより,位置ずれ精度の影響を低減すること ができる.そこで,点群の中央から離れており, かつ確実にその点を選択できるため,顔器官検 出で得られる外眼角点を選択し,これを点K_pと する.次に,対応点K_pとK_m間の中点cを次式に より求める.

$$c = \frac{K_m + K_p}{2} = \left(\frac{x_{km} + x_{kp}}{2}, \frac{y_{km} + y_{kp}}{2}, \frac{z_{km} + z_{kp}}{2}\right) (4) = (x_c, y_c, z_c)$$

以上より,法線nを持ち,点cを通る平面を次式 $x_n(x - x_c) + y_n(y - y_c) + z_n(z - z_c) = 0$ (5) で求める.

図6 平面計算の概念図

3. 実験結果

本 論 文 で は Canfield Scientific 社 製 の VECTRA® H1 で撮影された口唇裂患者の顔面 の 3 次元点群データ 23 症例を用いた. 用いる PC は CPU3.4[GHz]メモリ 16.0[GB]であった.

検出した平面の精度評価は, 医師の指導の下 で作成した対称平面を Ground Truth とし,提案 法により得られた基準面との比較により行っ た.3次元空間上で比較を行うため、精度評価 に用いるパラメータとしてx軸方向の平行移動 距離, y, z軸方向の回転角度の計 3 つを用い, 結果と Ground Truth との差を誤差として計算し た. 図7に示すように,任意の2平面は, x軸方 向の平行移動, y, z軸方向の回転によって平面 同士を重ね合わせることができる.つまり,2平 面の位置・角度差はこれら3つのパラメータで 表現できるため、精度評価として用いた.まず、 本手法を用いて得られた対称基準面の確から さを検証するため,完全な左右対称モデル(図 8) を対象に実験を行った.1 データ当たり用い た点群は約1万点であり、計算時間は1分程度 であった.その結果を表1に示す.次に,完全 に左右対称でない人の顔に対する有効性を確 認するため、口唇裂患者の顔データ 23 例に対 して実験を行った.図9は本手法を適用した結 果の一例である.その結果を表2に示す.

図72平面の重ね合わせ

図82完全左右対称モデル

表1 実験結果(完全な左右対称モデル)

X 軸回転誤差	Y 軸回転誤差	Z軸回転誤差
[mm]	[deg]	[deg]
0.1900×10^{-6}	0	0.4000×10^{-6}

表2 実験結果(口唇裂患者データ)

X 軸回転誤差	Y 軸回転誤差	Z軸回転誤差
[mm]	[deg]	[deg]
0.6871	0.8342	1.3633

図9 実験結果例

4. 結論

本論文では、ロ唇裂患者の顔を撮影して得た 3 次元点群データから、手術部位の左右対称性 を定量評価するために必要となる、顔の対称基 準を検出する手法を提案した。

本手法により完全な左右対称モデルの対称 基準を検出でき,患者 23 名のデータに対して は,全体としてx軸方向の並進誤差,y軸,z軸方 向の角度誤差はそれぞれ,0.687[mm], 0.834[deg],1.363[deg]となり,顔の対称性解 析の基準として提示できる精度であった.

今後の課題は、本手法により検出した顔の対称基準をもとに、手術結果の対称性解析手法の 提案やさらなる高速画像位置合わせ法の開発 などである.

謝辞

本研究の一部は,文部科学省科学研究費補助 金(19K10271)の補助を受けている.

利益相反の有無

なし

文 献

- [1] 高橋 他, "口唇裂・口蓋裂の基礎と臨 床,"日本歯科評論社, pp.1-29, 1996.
- [2] 森口 他,"口唇裂口蓋裂の総合治療 成長に応じた諸問題の解決,"克誠堂出 版株式会社,2006.
- [3] Kimura N, Kim HS, Okawachi T, Fuchigami T, Tezuka M, Kibe T, Yamada S, Amir MS, Ishihata K, Nozoe E, Nakamura N, "Pilot study of visual and quantitative image analysis of facial surface asymmetry in unilateral complete cleft lip and palate," Cleft Palate-Craniofacial J, E-published ahead of print, 2018.
- [4] Dalal et al., "Histograms of oriented gradients for human detection," Computer Vision and Pattern Recognition, 2005.
 CVPR 2005. IEEE Computer Society Conference on, vol. 1, pp.886-893, 2005.
- [5] Vapnik *et al.*, "Pattern recognition using generalized portrait method," Automation

and remote control, vol. 24, pp.774-780, 1963.

- [6] Kazemi *et al.*, "One millisecond face alignment with an ensemble of regression trees,"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.1867-1874, 2014.
- [7] Sipiran, Ivan *et al.*, "Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes," The Visual Computer, vol. 27, no. 11, pp.963-976, 2011.
- [8] Harris *et al.*, "A combined corner and edge detector," Alvey vision conference, vol.15, no.50, 1988.
- [9] Rusu et al., "Fast point feature histograms (FPFH) for 3D registration," Robotics and Automation, ICRA'09. IEEE International Conference on. IEEE, pp.3212-3217, 2009.
- [10] Fischler *et al.*, "Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography", Communications of the ACM, vol.24, no.6, pp.381-395, 1981.
- [11] Arun et al., "Least-squares fitting of two 3-D point sets," IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.5, pp.698-700, 1987.
- Besl et al., "Method for registration of 3-D shapes," Sensor Fusion IV: Control Paradigms and Data Structures, vol.1611, International Society for Optics and Photonics, pp.586-607, 1992.

Detection of Facial Symmetric Plane

Based on Registration of 3D Point Cloud

Daisuke HOSOKI^{*1}, Huimin LU^{*1}, Hyonseop KIM^{*1} Namiko KIMURA^{*2}, Takako OKAWACHI^{*2}, Etsuro NOZOE^{*2}, Norifumi NAKAMURA^{*2}

*1 Kyushu Institute of Technology

*2 Kagoshima University.

Cleft lip is a birth defect that occurs when the lips are not completely formed during healing of the face of the fetus. In Japan, it occurs in about 1 in 500 people. Although treatment is performed to form a symmetrical outer nose, it is necessary to evaluate the degree of symmetry of the surgical site quantitatively because it is based on the judgment criteria that depend on the doctor's subjectivity. In this paper, we propose a method to detect the plane which is the symmetry basis of the face to analyze the symmetry of the operation site. In the proposed method, the face organ is detected as points from 3D point cloud of the face. Then, the mirror image inversion excluding the area affected by shape change due to cleft lip is aligned with the original point cloud. Next, a symmetric plane is set by finding a plane that bisects vertically between one point in the original point cloud and the corresponding point in the mirror image. As a result of applying the proposed method to real 3D point cloud, we could detect the symmetric plane with good accuracy.

Key words: Cleft Lip, Symmetric, Analysis, Point Cloud, Iterative Closest Point

放射光 CT を用いた

肺3次元ミクロ血管解析

島谷崚平*1 斉藤くるみ*1 泓田彰汰*1 河田佳樹*2 仁木登*2

梅谷啓二*3 阪井宏彰*4 中野恭幸*5 岡本俊宏*6 伊藤春海*7

要旨

肺の正常形態と極早期の疾患形態のミクロレベルでの画像化とその定量的な形態解析は,次世代の胸部画 像診断への貢献が期待できる.しかし,3次元のミクロ構造と細血管は十分に解析されていないという現 状がある.本研究は,高輝度放射光 CT で撮影した肺3次元画像血管系を可視化して定量的に解析する.

キーワード: 放射光 CT, 肺, SPring-8, 血管解析

1. はじめに

肺の正常形態と極早期の疾患形態のミクロ レベルでの画像化とその定量的な形態解析は, 次世代の胸部画像診断に貢献することが期待 できる.高輝度な放射光 CT を利用すること は,微小焦点のX線管を用いたマイクロ CT と比較して,高い信号雑音比で数 µm オーダ の空間分解能を有する高精細な CT 画像の収 集が期待される.ビームハードニング効果の 影響を受けずに微細構造の高コントラストな 画像を得ることにより,ミクロ形態の定量的 な計測への応用にも期待される.しかし,3 次元の細血管は十分に解析されていないとい う現状がある.本研究では肺標本を高輝度放

*1 徳島大学大学院先端技術科学教育部
[〒770-0856 徳島市南常三島町 2-1]
e-mail: 501938020@tokushima-u.ac.jp
*2 徳島大学大学院社会産業理工学研究
*3(公財)高輝度光化学研究センター
*4 兵庫県立尼崎総合医療センター
*5 滋賀医科大学
*6 Cleveland Clinic Heart
*7 福井大学

射光 CT で撮影し,その画像から血管系の微 細構造を3次元的に可視化して定量的に解析 する.

2. 放射光 CT の撮影条件と肺標本

撮影対象の伸縮固定肺標本は直径 3.6 cm で あり,Heitzman 法に準じて作成された.二次 小葉の細血管を観察するためにナノ粒子造影 剤としてバリウムを使用した.撮影した肺標 本は米国人肺標本である.撮影装置には大型 放射光施設 SPring-8 の BL20B2 ビームライン を使用した.

3. 肺胞房領域の解析

肺胞房は呼吸細気管支から先の肺胞管と肺 胞嚢をまとめた領域である.肺胞房はFig.1の 手順に従って肺胞房領域の血管系を解析する [1].まず,閾値処理により壁構造を抽出し, 膨張・収縮処理を行うことで肺動静脈を抽出 して,太い箇所をマニュアルで補正する.次 に,肺細動静脈を抽出する.肺細動静脈は造 影剤が充填しており CT 値が高いと考えられ る(Fig.2)ので閾値処理により抽出する.毛細 血管は,径が 10μm以下といわれている.本 研究で使用している再構成画像は1 pixel =3 μ mであるため,毛細血管は1 から 3 pixel であ る.よって目視で抽出することは困難である. そのため 4 次元曲率やヘシアンフィルタな どの各種フィルタを用い抽出する.抽出結果 より,血管系を定量的に解析する.

■壁ラベル

■肺動脈

■肺動脈

WL -500

WW 1500

 $100 \ \mu m$

(a)壁構造の抽出

(b)肺動静脈の抽出

(c) 造影剤領域である肺細動静脈の抽出

(d)Exposure Render での毛細血管の抽出FIg.1 血管系の解析手順

4. 抽出結果

肺胞房領域における血管系の抽出結果を Fig.5 に示す. Fig.5 は肺細動静脈まで抽出し たものである.

1,000 µm

■肺動脈 ■肺静脈 Fig.5 血管系の抽出結果

4. まとめ

肺標本の放射光 CT 画像から,肺胞房領域 の肺細動静脈を抽出できた.今後は,血管系 の自動抽出アルゴリズムを構築する.

利益相反の有無

なし

文献

 K.Saito, S.Ohnishi, Y kawata et al: Pulmonary blood vessels extraction from dual-energy CT images using a synchrotoron radiation micro-CT, Proc.SPIE Medical Imaging,2019

Analysis of 3D microstructure of the lung using synchrotron radiation micro-CT image.

Ryohei SHIMATANI^{*1},Kurumi SAITO^{*1}, Shota FUKETA^{*1},Yoshiki KAWATA^{*2},Noboru NIKI^{*2} Keiji UMETANI^{*3},Hiroaki SAKAI^{*4},Yasutaka NAKANO^{*5},Toshihiro OKAMOTO^{*6},Harumi ITO^{*7}

> *1 Tokushima University Graduate School of Advanced Technology and Science *2Tokushima University Graduate School of Technology,Industrial and Social and Science *3Japan Synchrotron Radiation Research Institute *4 Hyogo Prefectural Amagasaki General Medical Center *5 Shiga University of Medical Science *6Cleveland Clinic Heart and Vascular Institute *7 University of Fukui Biomedical Imaging Research Center

Microscopic imaging of the normal form of the lung and the disease form at the very early stage and its quantitative morphological analysis can be expected to contribute to the next generation chest imaging. However, three-dimensional microstructures and microvessels are not fully analyzed. This study visualizes and quantitatively analyzes the lung three-dimensional imaging vasculature taken by high-intensity radiation CT.

Key words: :synchrotron radiationmicro-CT(SRµCT), lung, SPring-8, blood vessel analysis

Ver. 2.1 (2019.3.28 改訂)

CT 画像と顎運動情報を用いた VR 咬合器の開発

伊藤崇弘^{*1}, 重本修伺^{*1}, 伊藤光彦^{*1}, 木原琢也^{*1}, 井川知子^{*1}, 重田優子^{*1}, 小川 匠^{*1}

要旨: 我々は, 歯科臨床において患者個々の形態と機能をより正確に再現できる VR 咬合器 (Virtural Reality Articulator)の開発を進めている. VR 咬合器は CT 画像による顎頭蓋形態情報, 歯列模型による口腔内形態 情報, 顎運動測定による顎運動情報を同一座標系で統合することで得られ, 患者の実際の顎口腔系の形態と 機能を仮想空間上で再現することができる. 今回, 顎変形性関節症症例の術前, 術中の顎位の妥当性や機 能評価に VR 咬合器を応用し, 高い有用性が認められたので報告する.

キーワード: CT,顎運動, VR 咬合器

1. 緒言

歯科臨床においては、咬合および顎口腔系の機 能を正しく検査、診断することは非常に重要であ る.従来は、顎口腔系の一部の形態と機能を単純化 して再現する咬合器(図1-a)を用いて評価される ことが一般的である.しかし従来型の咬合器は患 者の形態や、顎運動を直線近似的に再現するもの で、全ての患者情報を表現するものではない.そこ で我々は、患者個々の形態と機能をより正確に再 現するとともに顎機能評価が可能な VR 咬合器

(Virtural Reality Articulator)の開発を進めている (図 1-b). VR 咬合器は CT 画像から得られる形態 情報と, 顎運動測定により得られる機能情報を同 一座標系にて統合することで、従来型の咬合器で は観察できなかった機能運動時(咀嚼時など)の咬

*1 鶴見大学歯学部クラウンブリッジ 補綴学講座〔〒230-8501 神奈川県横浜市 鶴見区鶴見 2-1-3〕 e-mail: ito-t@tsurumi-u.ac.jp 合接触状態や関節窩に対する下顎頭の位置を仮想 空間上で可視化することができる(図1).

今回, 顎関節の変形性関節症症例に対して患者 情報を用いて VR 咬合器を構築し術前・術中の治療 顎位の妥当性や機能評価に応用した結果, 高い有 用性が認められたので報告する.

図1 従来型とVR 咬合器

2. 方法

1) VR 咬合器の構築(図2)

CT 撮影:本学附属病院設置の高速らせん型 X 線 CT 画像装置 RADIX-Prima(日立メディコ)を用い て行った(撮像マトリックス:512×512,スライス 厚:0.625mm, FOV:210mm).得られた DICOM デ ータは3次元画像処理ソフト Amira (Visage Imaging) にて顎顔面頭蓋骨の関心領域についてセ グメンテーション処理後,頭蓋骨および下顎骨の 三次元モデルをCT座標系 (Σ_{CT})で製作した.

歯列形態計測:患者の口腔内の型取りから得た 歯列石膏模型を,パターン投影法を原理とした三 次元形状計測装置 D900 (3Shape)を用いて計測し, 歯列形態の三次元モデルをスキャナー座標系 (Σ_{SC}) で製作した.

顎運動測定:独自に開発した磁気ベクトル空間 方式顎運動測定器 MMJ3 を用いて顎運動測定を行 った.被験運動は咬頭嵌合位から始まる矢状面内 限界運動とし、サンプリング周波数 100H z で 3 回 測定した.顎運動座標系(Σ_{MM})は図2に示す上顎 歯列上の3標点(切歯点 IN,左右第一大臼歯中心 窩 L6,R6)をとおる上顎咬合平面座標系で前方,左 方,上方を正とする右手座標系である.

座標系の統一: CT 座標系 (Σ_{CT}), スキャナー座 標系 (Σ_{SC}) と顎運動座標系 (Σ_{MM}) を Σ_{MM} に座標 系を統一した. Σ_{SC} は, 上顎歯列上の3標点 (IN、 L6、R6) のそれぞれの座標系における座標値から 座標変換行列 T_{SC-MM}を求め Σ_{MM} に変換した. Σ_{CT} は, まず Σ_{SC} に変換するために特徴点の座標値から 変換行列 T_{CT-SC}を求めた. その後, T_{SC-MM}を用いて Σ_{MM} に変換した. 座標系の統一, 可視化および解 析は, 三次元データ処理ソフトウェア Leios (EGS srl) と Visual C++ (Microsoft) を用いた自作のアプ リケーションを使用した.

2) 症例概要および治療経過

患者 64 歳女性.上下前歯部の咬耗,下顎臼歯 部欠損および咬合時左側顎関節疼痛を認めた(図 3).パノラマエックス線所見では左側下顎頭に変 形を認めた.パノラマ顎関節 4 分割パノラマエッ クス線所見では下顎頭位は,左側が後上方位,右側 が後下位に変位していた.また左側下顎頭の並進 運動の制限を認めた(図4).

図2 VR 咬合器の構築

MR 所見では, 左側顎関節の関節円板前方転位を認 めた(図5).上記所見より低位咬合を伴う左側顎 関節の変形性関節症と診断した.咬合高径の挙上 を伴う下顎位の修正が必要であることを患者に説 明し,同意が得られたため術前の顎運動検査, CT 撮影と歯列模型の計測を行った.治療顎位の決定 後,上下顎プライマリプロビジョナルレストレー ションを製作,口腔内に装着した.プロビジョナル 装着5ヶ月後(術中)(図5)の顎運動測定をと歯 列模型の計測を行った。術前、術中の VR 咬合器を 構築し,設定した治療下顎位の妥当性と機能評価 を行った.

図3 術前口腔内写真

図4 パノラマおよび四分画 X 線写真 上段矢印:左側下顎頭の後上方位を認める 下段矢印:開口時の並進運動の制限を認める

図 5 MR 画像 矢印:関節円板の前方転位を認める

図6 術中口腔内写真

3) 治療顎位と顎機能の評価

上顎骨に対する下顎骨の治療顎位と顎機能の評 価には全運動軸(Kinematic Axis:KA)[1]および最 小運動軸(Least Motion Axis:LMA)[2]を用いた. KAは、矢状面における運動範囲は下顎頭付近で最 も収斂した軸として表される.KAは顎機能異常者 では求められない場合がある.LMAは矢状面にお ける運動範囲が最小になる軸であり、顎機能異常 の有無を問わず軸として算出される.顎機能健常 者においてKAに対して前方約5mm,下方約30mm の位置に算出される(図7).KAおよびLMAは shigemotoの方法[3]に準じて自動で算出した.KA, LMAの直線性,各軸点の運動軌跡および両軸の位 置関係より機能を評価した.

図7 顎機能健常者の KA および LMA In:切歯点, L6, R6: 左側, 右側第一大臼歯中心窩

3. 結果, 考察

形態情報と顎運動情報を統合することで,機能 運動時(咀嚼時など)の上顎骨に対する下顎の空間 的な位置を仮想空間上で直感的に理解することが 可能となった.しかし,下顎位や顎関節の運動範囲 を客観的に評価するためには,基準となる解析点, 軸,平面などを定義する必要がある.今回は,形態 情報と顎運動情報上に加えて顎歯列上の3標点 (In,L6,R6)とこれらを通る上顎咬合平面および下 顎骨の立体運動を表現する運動軸KAとLMAを可 視化できる VR 咬合器を構築した. 治療顎位: 術前の上顎骨を基準として VR 咬合 器を用いて評価すると治療顎位では,下顎骨が右 側に偏位して開口しているのが視覚的に理解でき た.術中の咬頭嵌合位は左側全運動軸点で平均 0.95mm 前下方,右側で平均 1.5mm 下方にあった. 切歯点は,術前に対して後方に平均 1.39mm,右側 に平均 0.81mm,下方に平均 4.90mm 移動していた (図 8).

顎機能評価: VR 咬合器を用いて評価すると図9 に赤丸で示すように,術前では,患側である左側に おいて全運動軸点(KAP)が適切な位置に算出され ない場合があった(図9).最小運動軸点(LMAP) は全ての計測で直線状に分布していた.術中では, 3回全ての計測において KAP および LMAP が直 線上に算出され,KA に対して LMA は平均約 5.5mm前方,21.6mm下方に位置していた(図10). 治療により KAP が直線状に算出でき KA と LMA の関係に健常者と同様の傾向が認められたことか ら顎機能が改善したことが示されたと考えられる.

次に,個々のKAPとLMAPの運動軌跡について 検討した.術前では,健側である右側においてKAP は図5に示す顎機能健常者と同様に下に凸の弓状 の顆路を移動するが,患側である左側に向かうに 従い運動範囲は小さく,顆路は直線的になり,KAP が直線上に算出されなかった(図9).下顎位を修 正した術中では,KAP は患側である左側において も健側に近い形態の顆路上を移動していた.LMAP は術前,術中ともに直線上に分布していたが,個々 の運動範囲を観ると患側の左側ほど運動範囲が小 さくなっている.これは左側下顎頭の並進運動が 制限され主として回転運動で開口量を担保してい たと考えられる.

術中は術前に対し左側での LMAP の運動範囲が 広がっていることから下顎位を修正することで, 左側下顎頭が並進運動できるように改善したと考 えられる. CT 画像より得られた三次元モデルは,

図8 治療顎位の評価 術前の下顎骨をグレーで示す

図9 術前時のKAとLMA(KA 非算出例)

図10 術中のKAとLMA

術前,術中の上顎に対する下顎の位置の変化を仮 想空間上で可視化できる.

また三次元モデルに運動情報を統合することで, 治療顎位の妥当性や顎口腔系の機能に改善状態を 客観的に評価することができた.これにより最終 的な治療開始次期を客観的に決定できることから, VR 咬合器が日常歯科臨床において有用であるこ とが示された.

利益相反の有無

なし

文 献

[1] 河野正司:下顎の矢状面内運動に対応する顆 頭運動の研究 第二報マルチフラッシュ装置によ る矢状面運動軸の解析. 補綴誌 1968; 12, 350-380.

- [2] Hirai S, et al: relationship between the mandiblular movements and deformation of the Coronoid process and the Condyle. J Jpn Assoc Oral Rehabil 2016; 29: 35-46.
- [3] Shigemoto S, et al. :Effect of an exclusion range of jaw movement data from the intercuspal position on the estimation of the kinematic axis point. Medical Engineering and Physics 2014; 36(9): 1162-1167.

Development of virtural articulator utilizing

CT data and jaw kinematic data

Takahiro ITO*¹, Shuji SHIGEMOTO*¹, Mitsuhiko ITO*¹, Takuya KIHARA*¹, Tomoko IKAWA*¹, Yuko SHIGETA*¹, Takumi OGAWA*¹

*1 Department of Fixed Prosthodontics, Tsurumi University School of Dental Medicine

We developed a virtual reality (VR) articulator technique that can reproduce exact structure and function of masticatory system for individual patients and be used easily in a dental clinical setting. The cranium and mandible models are created from CT scan data, and the upper and lower dental surface models are created using a noncontact 3D laser scanner. Jaw movements are measured using an electromagnetic jaw tracking device. This technique requires accurate methods combining three-dimensional (3D) imaging and jaw movement data. By transforming these imaging and jaw tracking data into one coordinate system, structure and function of masticatory system of individual patients can be visualized in computer graphics. In this study, we evaluated the treatment planning and status of masticatory function in osteoarthritis of the temporomandibular joint by applying VR articulator technique, and then found its high usability in dental practice.

Key words: computed tomography, jaw movement, virtural reality articulator

グラフ畳み込みニューラルネットワークを用いた

腹部動脈血管名自動命名の初期検討

日比 裕太*1 林 雄一郎*1 北坂 孝幸*2 伊東 隼人*1

小田 昌宏*1 三澤 一成*3 森 健策*1,4,5

要旨

本稿では、3 次元腹部 CT 像から抽出された腹部動脈領域に対してグラフ畳み込みニューラルネットワーク を用いた血管名自動命名についての検討を行ったので報告する.血管は構造が複雑で個人差が大きく、そ の構造の把握は困難である.血管名を自動命名することにより医師が外科手術の際に患者の血管構造を把 握する助けとなり、医師の負担を軽減することができる.そのため、これまで腹部動脈領域に対して機械 学習を用いた血管名自動命名を行う手法がいくつか提案されてきた.また、近年ではグラフ構造に対する 機械学習が盛んに行われており、その有用性が示されている.そこで本稿では、血管構造をグラフ構造と 捉え、血管が持つ太さや長さ、腹部臓器との位置関係などを特徴量としてグラフ畳み込みニューラルネッ トワークを用いた機械学習による血管名自動命名を行った.100 症例の CT 像に対して血管名自動命名を行 った結果、平均精度は 85.2%であった.

キーワード:血管,グラフ畳み込みニューラルネットワーク,3次元 CT 像,解剖学的名称認識,血管構造 解析

1. はじめに

外科手術を行う際には、患者の正確な血管構 造を術前に得られる 3 次元腹部 CT 像から 把 握することが重要である.これまでにも腹部動 脈領域に対して自動命名を行う手法がいくつ か提案されてきた.鉄村らは血管に対する解剖 学的名称自動命名を、木構造として表現された 血管領域全体にわたる各血管枝の血管ラベル 推定問題として捉え、条件付確立場を用いた機 械学習により自動命名を行った[1].また、近 年盛んに研究されているグラフ構造における

- *1 名古屋大学大学院情報学研究科
- 〔〒464-8601 名古屋市千種区不老町〕
- e-mail: yhibi@mori.m.is.nagoya-u.ac.jp
- *2 愛知工業大学情報科学部
- *3 愛知県がんセンター
- *4 名古屋大学情報基盤センター
- *5 国立情報学研究所 医療ビッグデー タ研究センター

機械学習は、ソーシャルネットワーク解析・創 薬・材料科学などの多岐にわたる分野でその有 用性を示している.そこで、本稿では血管木構 造をグラフと捉え、グラフ畳み込みニューラル ネットワークを用いた血管名自動命名手法に ついて検討する.

2. 手法

本手法は従来手法[1]と同様に,3次元腹部 CT 像から腹部動脈領域の木構造の構築,およ び各血管枝が持つ特徴量を抽出する.特徴量に は、血管の長さや直径、血管を除く7つの臓器 (肝臓、脾臓、右腎、左腎、胃、胆嚢、膵臓) とのユークリッド距離および方向ベクトルな どを使用する.

学習と推定にはグラフ畳み込みニューラル ネットワークである MoNet[2]を用いる. グラフ 畳み込みとは, グラフ上の注目ノードとその隣 接ノードの特徴量を集約し, フィルタをかける ことで次の層のノードの特徴量とするもので ある.本手法では,血管木構造を重みなし無向 グラフと捉え MoNet[2]を適用する.このグラフ では、各血管枝をノード、血管枝が持つ特徴量 をノードの特徴量、血管枝の接続関係をノード 間の接続関係に対応させる.入力には、ノード の接続関係と各ノードの特徴量及び学習用の 正解ラベルデータを使用する.ネットワークは 2回のグラフ畳み込みの後に softmax 関数によ るクラス分類を行い、各ノードについてその推 定ラベルを出力する.

3. 実験と結果

本稿では、腹腔鏡下手術を行う際に重要となる 22 種類の腹部動脈を主な自動対応付けの対象とする.また、ラベルの推定には前述の 22 種類の血管とそれ以外の血管を含め、全 45 種類を対象とする.この学習と推定には MoNet[2]を使用し、初期学習率は 0.01、結果は 3000epoch 学習後のものとする.実験には 3 次元腹部 CT 像から半自動で抽出した血管領域画像 100 症例に対して 10 分割交差検定法を用い、自動命名をおこなった.精度の評価には F 値を使用した. 血管名自動命名精度は平均 85.2%であり、従来手法[1]の平均精度 95.7%には及ばなかった.また、提案手法による自動命名結果を表 1 に、自動命名結果の例を図 1 に示す.

4. 考察

表1のように自動命名精度が平均 85.2%であったことは、グラフ畳み込みニューラルネット ワークを用いた血管名自動命名手法の初期検 討としては十分な成果であり、本手法の有用性 を示すことができたといえる.しかし、図1か らわかるように、推定結果に出現しない血管が ある.これは血管によってノード数に偏りがあ り、数が少ない血管については精度が低いと考 えられる.精度向上にはこの問題について考慮 した学習データの調整が必要であるといえる.

5. むすび

本稿では、グラフ畳み込みニューラルネット ワークを用いて 3 次元腹部 CT 像から抽出した 動脈領域に対する自動命名手法の検討を行い, その有用性を確認した.今後は精度の向上を図 るとともに,血管の全自動抽出結果への手法の 適用も検討し,半自動抽出結果に適用したもの と同程度の精度となる手法の構築を目指す.

謝辞

日頃から熱心に御討論頂く名古屋大学森研 究室の諸氏に感謝する.本研究の一部は科研費 17H00867,17K20099,26560255,26108006, AMED 19lk1010036h0001,堀科学芸術振興財団, JSPS 二国間交流事業によった.

利益相反の有無

なし.

文 献

- [1] 鉄村悠介,林雄一郎,小田昌宏他:機
 械学習を用いた腹部動脈血管名自動命
 名におけるデータ拡張法の適用に関す
 る検討.信学技報 118:191-196,2019
- [2] Monti F, Boscaini D, Masci J, et al.: Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs. CVPR: 5115-5124, 2017

図1血管名自動命名例(同じ色は同じラベル. (a)で存在する RGEA, RGA, LGEA が(b)では 出現しない.)

表1 提案手法による各データセットの自動命名精度

データ セット	1	2	3	4	5	6	7	8	9	10	平均
F值(%)	82.9	80.9	85.5	86.5	84.2	86.6	83.4	87.3	85.6	86.9	85.2

Study on Automated Anatomical Labeling of Abdominal Arteries Using

Graph Convolutional Neural Network

Yuta HIBI^{*1}, Yuichiro HAYASHI^{*1}, Takayuki KITASAKA^{*2}, Hayato ITOH^{*1}, Masahiro ODA^{*1}, Kazunari MISAWA^{*3} and Kensaku MORI^{*1,4,5}

*1 Graduate School of Informatics, Nagoya University

*2 Faculty of Information Science, Aichi Institute of Technology

*3 Aichi Cancer Center Hospital

*4 Information Technology Center, Nagoya University

*5 Research Center for Medical Bigdata, National Institute of Informatics

In this paper, we report an automated anatomical labeling using graph convolution neural networks for abdominal artery regions extracted from 3D abdominal CT images. Because the structure of the blood vessels is complex and individual differences are large, understanding it is difficult. The automated anatomical labeling of the blood vessels can help surgeons to understand the patient's blood vessel structure in surgery, thus reducing the burden on surgeons. Therefore, several automated blood vessel labeling techniques have been proposed using machine learning for the abdominal artery region. In recent years, machine learning for graph structures has been actively studied, and its usefulness has been shown. In this paper, we considered blood vessel structure as graph structure, and examined blood vessel automated anatomical labeling by machine learning using graph convolution neural networks that utilize feature values including the thickness and length of blood vessels and positional relationships of them to abdominal organs. As a result of automated anatomical labeling for CT volumes of 100 cases, the average accuracy was 85.2%.

Key words: Blood vessel, Graph convolutional neural network, CT volume, Anatomical names recognition, Blood vessel structures analysis

FCN を用いた骨シンチグラムにおける骨格認識処理の改良 星野 ゆり*1 斉藤 篤*1 大崎 洋充*2 吉田 敦史*3 東山 滋

明*3 河邊 讓治*3 清水 昭伸*1

要旨

本報告では、前後面のラベルを同時に入力可能な butterfly 型の fully convolutional network (FCN)を用いた 骨シンチグラム上の骨格認識処理の改良について報告する.提案手法では、従来の手法により認識された 前後面の骨格ラベルと確率マップの画像、および、骨格の正解ラベルを用いて FCN の学習を行う.この学 習済みネットワークに未知症例に対する従来の前後面の骨格認識ラベルを入力することで、ラベルに含ま れる誤りを訂正する.本稿では、提案手法を実際の 246 症例に対する従来手法による骨格認識ラベルに適 用した結果について示し、提案手法の有効性や限界について議論する.

キーワード:骨シンチグラム,骨格認識, butterfly型ネットワーク,全畳み込みネットワーク

1. はじめに

骨シンチグラム上の骨転移による異常集積 の検出は容易ではなく[1],コンピュータによる 検出支援が求められている.本研究室で開発し たシステムは,骨格認識と異常集積検出の2つ の処理からなり[2][3],医師による病変の検出を 支援する.従来の骨格認識処理[2]では,高濃度 の異常集積の存在や骨の向きや形状の違いが 原因で認識に失敗することがあった.

本稿では, butterfly 型の fully convolutional network(FCN)[4]を用いた改良法について提案 する. また,提案法を実際の症例 246 症例を用 いて性能評価した結果についても報告する.

2. butterfly 型の FCN を用いた誤りの訂正

提案法は、従来の骨格認識処理の出力ラベル (128×576 pixel)を入力とし、図1に示すネッ トワークによりラベルに含まれる誤りを訂正 する.前後面のラベル画像を同時に処理するた めに、butterfly 型をしており、U-Net と同様に encoder 側から decoder 側に向けてリンクを張っ

*1 東京農工大学大学院工学研究院

〔〒184-8588 東京都小金井市中町 2-24-16〕

e-mail: s191637v@st.go.tuat.ac.jp

*2 群馬県立県民健康科学大学大学院診療放 射線学研究科

*3 大阪市立大学医学部附属病院核医学科

た. encoder では, convolution と max-pooling を 3 回繰り返した後,前後面の特徴マップを結合 し, さらに convolution と max-pooling を 2 回行 う. decoder では, encoder 側と同じ回数の convolution と up sampling (deconvolution) を繰 り返し,入力画像と同サイズの画像を,対象の 骨格数に1 (背景)を加えた数だけ出力する. なお,全ての convolution と deconvolution では batch normalization と ReLU 関数を使用した. ネ ットワーク構造を図 1 に示す.

図1 butterfly 型の FCN

ネットワークの学習の損失関数にはソフト マックスクロスエントロピーを用いた(式(1)).

$$Loss = -\frac{1}{N} \sum_{i=1}^{N} t_i \log(\frac{e^{y_i}}{\sum_{i=1}^{N} e^{y_i}})$$
(1)

ここで、Nは総クラス数、iは各クラスを表す変数であり、 t_i は正解ラベル、 y_i は出力である.

提案手法では、学習データ数を補うために、

従来の認識結果のラベルだけでなく、ラベルに する前の確率の画像も利用し、また、ラベルや 確率画像の反転を行った. さらに、汎化性を高 めるために、encoder 側と decoder 側を結ぶリン クに対して dropout[5]を行った.

3. 実験条件と実験結果

3.1 実験条件

試料画像には、骨シンチグラム 246 症例 492 枚 (512*1024[pixel], 2.8[mm/pixel])を用い、入 力は従来の処理による骨格認識ラベル(大腿骨 と上腕骨)とした.評価値は、3-fold CV 法でテ スト症例に対して計算した dice score(DS)、連結 成分数(8 連結)と穴の数(4 連結)の、正解との差 分値#(Δ connected component (Δ CC))、#(Δ hole)と した.学習時のミニバッチ数は 16、optimizer に は adam[6]を使用し、パラメータは α =0.001、 β _1=0.9、 β _2=0.999 とした.

3.2 実験結果·考察

提案手法を全例に適用した結果を表1に示す. また,平均#(ΔCC)が減少した例を図2に示す.

表1 全症例適用結果						
毛注	亚均 DS	平均	平均			
于亿	±43 D3	$\#(\Delta CC)$	#(Δhole)			
従来[2]	0.8685	0.1688	0.08025			
提案	0.8682	0.0742	0.03455			

図 2 骨格認識改良結果例

表1より,平均 DS は先行研究よりも低下しているが,平均#(ΔCC)と平均#(Δhole)は減少している事が分かる.また,図2より,改良前は #(ΔCC)は3個であった(図2(b)赤丸)が,提案 法により1個(図2(c)赤丸)に減少した事が分かる.しかし、黄丸で示すように、拾いすぎにより不自然な結果が得られるなどの問題も確認された.

4. まとめ

本稿では,butterfly 型のネットワークによる 骨格認識処理の改良を提案した.また,本手法 により,平均#(ACC),平均#(Ahole)を削減するこ とができたが,解剖学的に不自然な形状に再構 成してしまう症例も存在した.今後は,不自然 な形状になるのを防ぎつつ平均 DS の向上およ び平均#(ACC),平均#(Ahole)を零に近づけるた めに,損失関数や入力画像を工夫することによ り,さらなる改良精度向上を行う予定である.

文 献

- [1] 小野慈:骨シンチによる骨転移診断.南江堂, 東京, 2002, pp1-30
- [2] 金森巧:"骨シンチグラムからの解剖学的骨
 格認識処理の改良".東京農工大学修士論文,
 2019
- H. Wakabayashi, A. Saito, S. Higashiyama,
 J. Kawabe, S. Shiomi, A. Shimizu, "Detection of bone metastasis in a scintigram using U-Net," Proc. of Computer Assisted Radiology and Surgery(CARS 2018), Berlin, Germany, S260 June 2018.
- [4] A. Sekuboyina, M. Rempfler, J. Kukačka, G. Tetteh, A. Valentinitsch, J. S. Kirschke, B. H. Menze, "Btrfly Net: Vertebrae Labelling with Energy-based Adversarial Learning of Local Spine Prior", arXiv: 1804. 01307, 2018
- [5] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov" Dropout: A Simple Way to Prevent Neural Networks from Overfitting", Journal of Machine Learning Research 15, 2014
- [6] D. P. Kingma, J. Ba, "Adam: A Method for Stochastic Optimization", 3rd International Conference for Learning Representations, San Diego, 2015

Improvement of skeleton recognition from a bone scintigram using a

FCN

Yuri HOSHINO^{*1}, Atsushi SAITO^{*1}, Hiromitsu DAISAKI^{*2}, Atsushi YOSHIDA^{*3}, Shigeaki HIGASHIYAMA^{*3}, Joji KAWABE^{*3}, Akinobu SHIMIZU^{*1}

*1 Tokyo University of Agriculture and Technology

*2 Gunma Prefectural College of Health Sciences

*3 Osaka City University Hospital

Abstract:

This paper reports an improvement of skeletal recognition process using a butterfly type fully convolutional network (FCN) which allows simultaneous input of both anterior and posterior skeleton labels. The proposed network is trained using anterior and posterior skeleton labels and their probability maps recognized by the previously proposed approach as well as true labels of skeletons. The errors in anterior and posterior skeleton labels by the previously proposed approach will be corrected by the trained network. This paper presents the results of applying the proposed network to the skeleton labels of 246 cases and discuss the effectiveness and limitation of the proposed method.

Key words: bone scintigram, skeleton recognition, butterfly type network, fully convolutional network

Mask R-CNN を用いた小児胸部 X 線画像における

肺領域の自動抽出

魚住	春日*1	松原	尚輝*1	寺本	篤司*1	日木	あゆみ*2
本元		河野	達夫*3	齋藤	邦明*1	藤田	広志*4

要旨

小児には肺炎の高い感染,重症化のリスクが存在するため,正確な診断や治療が早急に求められる.そこで本論文では、小児肺炎などの胸部疾患を対象としたコンピュータ支援診断システムの開発を目的に、解析領域である肺野の抽出手法を提案する.肺野の抽出には Deep learning の一種で、物体検出と領域抽出を同時に行う Mask R-CNN を用いた. Mask R-CNN の学習には ChestX-ray8 データベースより選択した小児200 枚,成人 800 枚の合計 1000 枚の胸部 X 線画像を用いた. 肺炎と診断された小児の胸部 X 線画像を用いて検証したところ、Jaccard index の平均値は 93.1%、Dice index の平均値は 96.4%となり、高い肺野抽出精度が確認された.

キーワード:人工知能,コンピュータ支援診断, 胸部 X 線画像, 肺野抽出, 小児

1. はじめに

免疫力が低く,集団生活の中にいることが多 い小児は,肺炎への感染や重症化のリスクが高 い.そして WHO の調査によると 5 歳未満の小 児の死因の16%を肺炎が占めている[1]. 肺炎が 疑われると胸部 X 線検査が行われるが,小児は ポジショニングが難しいうえに,成長に伴い肺 野が大きく変化するため再現性の低い画像と なる.そのため医師は症状だけでなく,年齢な ど様々な条件を考慮したうえで診断を下して おり,その負担は大きい.また,小児にみられ る疾病は種類が多い一方で発生数が少ないた め,1 つの疾病に対する医師の経験が不足しや すい[2].

現在までに肺炎をはじめとする胸部疾患を 対象としたコンピュータ支援診断技術(以下 CAD)が複数報告されているが,小児を対象と したものはない.

小児を対象とした胸部 X 線画像による CAD システムの実現に向けた最大の課題は, 肺野の 位置, 大きさ, FOV など多様な像が存在するこ とである. そのため, 解析領域を肺野に限定す るために肺野の抽出が必要となる.

肺野の抽出は肺野内の病変検出において必要不可欠な処理であり、様々な胸部 CAD で用いられている.これまでにヒストグラムを用いた閾値処理による手法[3]や、解剖学的特徴に基づいて特異点を設置し、その特異点における関数を利用した手法[4,5]、パターン認識や特徴量解析に基づいて肺野の境界を決定する手法[6]

*1 藤田医科大学大学院保健学研究科

〔〒470-1192 愛知県豊明市沓掛町田楽ケ 窪1番地98〕

e-mail: teramoto@fujita-hu.ac.jp(寺本篤司) *2 茨城県立こども病院 〔〒311-4145 茨城県水戸市双葉台3丁目3-3番地1〕 *3 東京都立小児総合医療センター 〔〒 183-8561 東京都府中市武蔵台2丁目 8-29〕

*4 岐阜大学 工学部 電気電子・情報工学 科 〔〒501-1112 岐阜県岐阜市柳戸 1-1〕

などが報告され,病変検出精度に大きく貢献し ている.しかし、いずれも肺野の境界に関する 一般的な仮定や統計的な特徴に基づいた手法 であるため、前述したように多様な像が存在す る小児胸部 X 線画像には適した方法でない.ま た近年,高い物体認識力をもつ Deep learning を 用いた手法が報告されている. Deep learning に おける Semantic segmentation 技術には FCN(Fully Convolutional Networks)[7], U-net[8], Segnet[9]などがある. Rabia Rashid らは FCN を 用いた肺野抽出手法を報告した[10].247枚の胸 部 X 線画像を含む Japanese Society of Radiological Technology(JSRT)データセットと Montgomery County データセットと独自で作成 したデータセットの3つを用い、各データセッ トを FCN の学習用とテスト用に 3:2 に分け 10 分割交差検証を行った.その結果,それぞれ 97.1%, 97.7%, 94.2%の肺野抽出精度が得られ た. Alexey A. Novikov らは U-net をベースに、パ ラメータによる最適化を試みた[11]. JSRT デー タセットを用いて3分割交差検証を行った結果, U-net に Dropout を適用した場合が最も高精度 で、Jaccard index は 94.8%となった. また、Wei DaiらはFCNによって生成されたマスクとGold standard を敵対させ、精度を高めるネットワー クを構築し、FCN を単独で用いた場合よりも物 体検出精度の指標である Intersection over Union(IoU)が 4.3%向上したことを報告してい る[12]. Jyoti Islam らは、学習させる 758 枚の胸 部 X 線画像を拡大、トリミング、反転などの処 理を加え Data augmentation を行ったのち U-net の学習を行い、98.6%の肺野抽出精度が得られ た[13].

Youbao Tang らは, Multimodal Unsupervised Image-to-image Translation (MUNIT) を用いた Data augmentation と Semantic segmentation 技術 の一つである Criss-Cross Network (CCNet)[14]に よる肺野抽出手法を発表し, U-net を用いた場合 よりも正確に肺野が抽出された[15]. 上記のよ うに様々な手法が考案されているがいずれも 小児を対象としたものではない.

そこで本研究では, Deep learning 手法のひと つであり, Object detection と Instance segmentation を同時に行う Mask R-CNN[16]を用 いて小児胸部 X 線画像における肺野の自動抽 出を試みた.

2. 方法

2-1. Mask R-CNN のモデル

本研究で使用した Mask R-CNN の構造を図 1 に示す. Backbone は ResNet101 で構成され,入 力画像に対する特徴マップを出力する. その後 RPN にて,この特徴マップを用いながら Bounding box を決定する. Backbone は非常に深 いネットワークであるため入力画像が荒くな ってしまう. そこで FPN[17]にて,入力画像を アップサンプリングすることで解像度を回復 する. Roi align layer では Bounding box の pixel レベルでの位置ずれを補正し, Head にて Bounding box 内の Segmentation を行う. なお Head は畳み込み層 7 層の FCN で構成されてい る.

2-2. Mask R-CNN の学習

Mask R-CNN の学習には NIH が公開している ChestX-ray8 データベース[18]を使用した.この データベースから肺野を明確に定義すること ができる成人の胸部 X 線画像 800 枚,小児の画 像を 200 枚の合計 1000 枚をランダムに選択し, 抽出対象である肺野領域のみを一定のラベル 値で塗りつぶしたラベル画像を作成し,原画像 とのペアを学習データとした.初期重みには, Microsoft COCO(MS COCO)[19]により学習され た重みを用い,独自に作成した学習データによ ってネットワーク全体を再度学習することで, 重みを更新した.学習環境を表1に示す.

学習	使用機器	CPU : Core i7 7700k				
環境		GPU : NVIDIA GeForce				
210 21		GTX 1080Ti				
		メインメモリ:16GB				
		OS : Ubuntu 16.04 LTS				
	使用ソフト	Keras				
		TensorFlow				
パラ	学習回数	150 回				
メー	画像サイズ	512×512				
タ	学習係数	0.001				
	最適化手法	SGD				

表1 学習環境とパラメータ

3. 検証

本手法による肺野抽出には ChestX-ray8 デー タベースに保存されている肺炎と診断された 0 ~15 歳までの胸部 X 線画像 17 症例を用いた. Mask R-CNN における肺野抽出精度を評価する ため,正解画像と出力画像の類似度を評価した. 定量評価には2つの集合の類似度を表す Jaccard index[20]と Dice index を用いた[21].

> Jaccard index = $\frac{|A \cap B|}{|A \cup B|}$ (1) Dice index = $\frac{2|A \cap B|}{|A|+|B|}$ (2)

4. 結果と考察

本手法による肺野抽出結果の一例を図2に 示す.Jaccard indexの平均値は93.1%,Dice indexの平均値は96.4%となり,肺野の大部分 が正確に抽出された.炎症の程度や肺野の大 きさに依存することのない良好な結果が得ら れたが,肺野の境界部分の検出が不十分であ る傾向が確認された.これは肺野抽出技術に おいて共通の課題であるが,肺尖,肺底部, 縦郭との境界部のコントラストが不鮮明であ ることが原因である.しかし,この課題はス ムージング処理やダイレーション処理を行う ことで容易に改善できる課題であると考えら れる.

(a)入力画像(b)正解画像(c)出力画像図2 Mask R-CNN による肺野抽出結果

3. まとめ

小児胸部 X 線画像における肺野抽出を Mask R-CNN を用いて行った. その結果,炎症の程度 や肺野の大きさに影響されることなく,良好な 検出結果が得られた.

利益相反の有無

なし

文 献

- World Health Organization: WHO: Pneumonia.
 2015 <u>https://www.who.int/en/news-room/fact-sheets/detail/pneumonia</u>
- [2] 相田典子:小児科領域における医療技術を 考える.映像情報メディカル 47/13 2015年
 12月号:1138-1142,2015
- [3] Samuel G.Armato, Maryellen L.Giger, Heber MacMahon: Automated lung segmentation in digitized posteroanterior chest radiographs Author links open overlay pane. Academic Radiology 5: 245-255, 1998
- [4] Matthew S.Brown, Laurence S.Wilson, Bruce D.Doust, Robert W.Gill, et al.: Knowledgebased method for segmentation and analysis of lung boundaries in chest X-ray images. Computerized Medical Imaging and Graphics22: 463-477, 1998

- [5] Á. Horváth, G. Horvath: Segmentation of Chest X-ray Radiographs, a New Robust Solution.
 IFMBE Proceedings37: 655-658, 2011
- [6] L Li, Y Zheng, M Kallergi, et al.: Improved method for automatic identification of lung regions on chest radiographs. Academic Radiology8: 629-638, 2001
- [7] Long, Jonathan, Evan Shelhamer, Trevor Darrell: Fully Convolutional Networks for Semantic Segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition: 3431-3440, 2015
- [8] Ronneberger, Olaf, Philipp Fischer, Thomas Brox: U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention9351: 234-241, 2015
- [9] Badrinarayanan, Vijay, Alex Kendall, Roberto Cipolla: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE transactions on pattern analysis and machine intelligence39: 2481-2495, 2017
- [10] R. Rashid, M. U. Akram, T. Hassan: Fully Convolutional Neural Network for Lungs Segmentation from Chest X-Rays. Image Analysis and Recognition10882: 71-80, 2018
- [11] Alexey A. Novikov, Dimitrios Lenis, David Major, et al.: Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE transactions on medical imaging37: 1865-1876, 2018
- [12] Wei Dai, Joseph Doyle, Xiaodan Liang, et al.: SCAN: Structure Correcting Adversarial Network for Organ Segmentation in Chest Xrays. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support**11045**: 263-273, 2017
- [13] Jyoti Islam, Yanqing Zhang: Towards Robust Lung Segmentation in Chest Radiographs with

Deep Learning. arXiv preprint arXiv:1811.12638: 2018

- [14] Zilong Huang, Xinggang Wang, Lichao Huang, et al.: Ccnet: Criss-cross attention for semantic segmentation. arXiv preprint arXiv:1811.11721: 2018.
- [15] You-Bao Tang, Yu-Xing Tang, Jing Xiao, et al.: XLSor: A Robust and Accurate Lung Segmentor on Chest X-Rays Using Criss-Cross Attention and Customized Radiorealistic Abnormalities Generation. MIDL 2019 Conference Full Submission: 1-11, 2019
- [16] Kaiming He, Georgia Gkioxari, Piotr Dollar, et al.: Mask R-CNN. Proceedings of the IEEE international conference on computer vision: 2961-2969, 2017
- [17] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, et al.: Feature pyramid networks for object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 2117-2125, 2017
- [18] Xiaosong Wang, Yifan Peng, Le Lu, et al.: Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weaklysupervised classification and localization of common thorax diseases. Proceedings of the IEEE conference on computer vision and pattern recognition: 2097-2106, 2017
- [19] Tsung-Yi Lin, Michael Maire, Serge Belongie, et al.: Microsoft coco: Common objects in context. European conference on computer vision8693: 740-755, 2014
- [20] P. Jaccard: Distribution comparée de la flore alpine dans quelques régions des Alpes occidentales et orientales. Bulletin de la Soci et e Vaudoise des Sciences Naturelles37: 81-32, 1902
- [21] Dice, Lee R.: Measures of the amount of ecologic association between species. Ecology26: 297-302, 1945

Lung Region Segmentation on Pediatric Chest X-rays using Mask R-CNN

Haruka UOZUMI^{*1}, Naoki MATSUBARA^{*1}, Atsushi TERAMOTO^{*1}, Ayumi NIKI^{*2}, Tsuyoshi HONMOTO^{*2}, Tatsuo KONO^{*3}, Kuniaki SAITO^{*1}, Hiroshi FUJITA^{*4}

*1 Graduate School of Health Sciences, Fujita Health University

*2 Ibaraki Prefectural Children's Hospital

*3 Department of Radiology, Tokyo Metropolitan Child Medical Center

*4 Department of Electrical, Electronic & Computer Engineering, Gifu University

Children have a high risk of pneumonia infection due to low immunity and collective life living in a group, so accurate diagnosis and early treatment are required. The purpose is to develop the decision support system for thoracic diseases using chest X-ray images in this paper. And as a pilot study, we propose extraction of the lung region using Mask R-CNN. Mask R-CNN is a kind of deep learning and perform object detection and segmentation at the same time. 1000 images including 200 child images and 800 adult images were used to train Mask R-CNN. High accuracy of lung field extraction has been confirmed even if various chest X-ray images of children such as lung field size exist, average of Jaccard index was 93.1% and Dice index was 96.4%.

Key words: Artificial intelligence, CAD, Chest X-ray image, Lung segmentation, Pediatrics

深層学習を用いた非造影 CT 画像からの

複数臓器領域の抽出に関する検討

林 雄一郎^{*1} 申 忱^{*1} Holger R. Roth^{*1} 小田 昌宏^{*1}

三澤 一成^{*2} 森 健策^{*1,3,4}

要旨

本稿では深層学習を用いた非造影 CT 画像からの複数臓器領域の抽出について述べる. 医用画像解析において医用画像から人体の解剖学的構造を自動認識することは重要な処理である. 我々はこれまで深層学習を用いて造影 CT 画像から複数の臓器領域を自動抽出する研究を行ってきた. 医療現場では,非造影の CT 画像も数多く使用されているため,非造影の CT 画像からも複数臓器領域を自動抽出することができれば非常に有用である.本研究では,従来研究と同様に 3D U-net を用いて非造影 CT 画像から複数臓器領域を自動抽出する. 学習の際に,従来研究において造影 CT 画像を用いて学習したモデルを初期値とし,非造影 CT 画像を用いてファインチューニングを行う. 実験の結果,ファインチューニングした 3D U-net により非造影 CT 画像から複数臓器領域を抽出できることを確認した.

キーワード:セグメンテーション,ディープラーニング,U-net,ファインチューニング,CT画像

1. はじめに

コンピュータ支援診断(Computer Aided Diagnosis; CAD)システムやコンピュータ支援外科(Computer Aided Surgery; CAS)システムにおいて様々な機能を実現するためには, 医用画像中の人体の解剖学的構造を自動認識することは重要である.そのため,これまでに医用画像から様々な解剖学的構造を自動抽出する研究が行われてきた.腹部領域におい

*1名古屋大学大学院情報学研究科
〔〒464-8601名古屋市千種区不老町〕
e-mail: yhayashi@mori.m.is.nagoya-u.ac.jp
*2愛知県がんセンター消化器外科
*3名古屋大学情報基盤センター
*4国立情報学研究所医療ビッグデータ
研究センター

ても、CT 画像から複数の臓器領域を自動抽 出する手法が複数の研究グループから報告さ れている [1-5]. 我々の研究グループにおい ても、深層学習を利用した複数臓器領域の自 動抽出手法を提案してきた [4,5]. この手法 では門脈相の造影 CT 画像を対象としていた が、医療の現場では造影された CT 画像に加 えて非造影の CT 画像も数多く撮影されてい るため、非造影の CT 画像からも臓器領域を 自動抽出することができれば非常に有用であ る. そこで本稿では、これまで我々の研究グ ループで開発してきた 3D U-net を用いた複数 臓器領域の自動抽出手法を用いて非造影 CT 画像からの複数臓器領域の自動抽出を検討し たので報告する.

2. 提案手法

提案手法では、3D U-net を用いた造影 CT

画像からの複数臓器領域の抽出手法 [4,5] を基にして,非造影 CT 画像から動脈, 門脈, 肝臓,脾臓,胃(内部),胆嚢,膵臓の7つの 臓器領域を抽出する.従来研究では340画像 と多数の造影 CT 画像を用いて学習を行って いたため、得られた学習済みモデルは、非造 影 CT 画像からの臓器抽出においても有用で あると考えられる. そこで提案手法において も 3D U-net を用いて非造影 CT 画像から複数 臓器領域の抽出を行う.学習では、従来研究 で得られた学習済みのモデルを初期値とし, 非造影 CT 画像を用いてファインチューニン グする.また、学習の際には学習データを増 加させるために,入力画像に平行移動,回転, B スプラインを用いた非剛体変形を適用して データ拡張を行う.

3. 結果ならびに考察

44 症例の非造影 CT 画像を,30 症例の学習 用画像と 14 症例の評価用画像に分割して実 験を行った. CT 画像の仕様は,画像サイズ 512pixel×512pixel,画素サイズ 0.625mm~ 0.812mm,スライス枚数 488 枚~663 枚,ス ライス厚 1.0mm,再構成間隔 0.8mm である. 実験ではディープラーニングのフレームワー クとして Keras [6] を用いた.また,非造影 CT 画像から血管領域を抽出することは困難 であることが多いため,同一症例の動脈相と 門脈相の造影 CT 画像と非造影 CT 画像との 非剛体レジストレーションを行い,位置合わ せされた複数時相の CT 画像を用いて臓器の 正解ラベル画像を作成した.

抽出結果のボリュームレンダリング表示を 図1に示す.ここでは、2症例のファインチ ューニング前後のモデルによる抽出結果を、 胃領域を除いて示している.また、Dice 係数 を用いて抽出結果を評価したところ、ファイ ンチューニング前の平均 Dice 係数は 0.69、フ ァインチューニング後の平均 Dice 係数は 0.79 であった.表1に各臓器領域の平均 Dice 係数を示す. 図や表から非造影 CT 画像を用 いて,造影 CT 画像で学習済のモデルをファ インチューニングすることで抽出精度が向上 したことが確認できる.特に,血管領域は抽 出精度の向上が大きいことが確認できる.ま た,造影 CT 画像を用いて学習したモデルで も肝臓や脾臓などの比較的大きな臓器は良好 に抽出できていることが確認できる.

4. むすび

本稿では,深層学習を用いた非造影 CT 画 像からの複数臓器領域の自動抽出について述 べた.造影 CT 画像を用いて学習された 3D U-netを非造影 CT 画像によりファインチュー ニングすることで,非造影 CT 画像からの臓 器領域の抽出精度が向上することが確認でき た. 今後の課題としては,より多くの症例で の評価,抽出精度の向上などが挙げられる.

謝辞

日頃ご討論いただく名古屋大学森研究室諸 氏に感謝する.本研究の一部は JSPS 科研費 26108006,17H00867,17K20099,JSPS 二国 間 交 流 事 業, AMED の 課 題 番 号 18lk1010028s0401,19lk1010036h0001,堀科学 芸術振興財団によった.

利益相反の有無

なし

文 献

- Shimizu A, Ohno R, Ikegami T, et al.: Segmentation of multiple organs in non-contrast 3D abdominal CT images. Int J Comput Assist Radiol Surg 2: 135-142, 2007
- [2] Okada T, Linguraru MG, Hori M, et al.: Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors. Med Image Anal 26: 1-18, 2017
- [3] Zhou X, Takayama R, Wang S, et al.: Deep learning of the sectional

表1 抽出された各臓器領域の Dice 係数

	動脈	門脈	肝臓	脾臓	胃	胆囊	膵臓
ファインチューニング前	0.67	0.24	0.92	0.91	0.98	0.50	0.62
ファインチューニング後	0.77	0.57	0.96	0.94	0.97	0.60	0.69

appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Med Phys **44**: 5221-5233, 2017

- [4] Roth HR, Oda H, Zhou X, et al.: An application of cascaded 3D fully convolutional networks for medical image segmentation. Computerized Medical Imaging and Graphics 66: 90-99, 2018
- [5] Shen C, Roth HR, Oda H, et al.: Evaluation of 3D fully convolutional networks for multi-class organ segmentation in contrast-enhanced CT. International Journal of Computer Assisted Radiology and Surgery 13: s21-s22, 2018
- [6] Chollet F and others: Keras, https://keras.io, 2015

A study on segmentation of multiple organs

using deep learning from non-contrast CT volume

Yuichiro HAYASHI^{*1}, Chen SHEN^{*1}, Holger R. ROTH^{*1}, Masahiro ODA^{*1}, Kazunari MISAWA^{*2}, Kensaku MORI^{*1, 3, 4}

*1 Graduate School of Informatics, Nagoya University

*2 Department of Gastroenterological Surgery, Aichi Cancer Center Hospital

*3 Information Technology Center, Nagoya University

*4 Research Center for Medical Bigdata, National Institute of Informatics

This paper reports segmentation of multiple organs from non-contrast CT volume using deep learning. In medical image analysis, it is important to recognize patient specific anatomical structures in medical images such as CT volumes. We have studied on multiple organs segmentation method from contrast-enhanced CT volume. Since non-contrast CT volumes are also usually used in the medical field, segmentation of multiple organs from non-contrast CT volume is useful. In this study, we extract multiple organs from non-contrast CT volume using 3D U-net proposed in our previous studies. We perform fine-tuning from pre-trained model using non-contrast CT volumes. The experimental results showed that the fine-tuned 3D U-net model could extract multiple organs from non-contrast CT volume.

Key words: Segmentation, Deep learning, U-net, fine tuning, CT volume

顎口腔領域の CT 画像における金属アーチファクト低減を

用いた筋骨格セグメンテーション

-金属アーチファクトのシミュレーションによる精度検証-

森谷 友香^{*1} Abdolali Fatemeh^{*1} 阪本 充輝^{*1} 大竹 義人^{*1}

重田 優子*2 井川 知子*2 三島 章*2 小川 匠*2 佐藤 嘉伸*1

要旨

顎口腔領域における病気の診断・治療計画では,筋骨格構造の解析が重要であり,この観測には一般的に CT が用いられる.しかしながら,金属製の歯科充填物等がある場合,CT 画像上には金属アーチファクト が生じ,筋骨格構造の認識が困難である.我々は,金属アーチファクトのある CT 画像において,筋骨格セ グメンテーションの精度を向上させる研究を進めてきた.しかし,これまではアーチファクト低減後の画 像から作成した正解データを用いて精度評価を行っており,真に正確な評価ができていないことが問題で あった.また,金属部分が既知でないとき,NMAR に失敗する場合があった.そこで本研究では,金属ア ーチファクト低減において NMAR に処理を一部追加・変更した手法を提案し,金属アーチファクトをシミ ュレーションして得られた CT 画像によって自動セグメンテーショの精度検証実験を行ったため,その結 果を報告する.

キーワード: CT 画像, 金属アーチファクト低減, 金属アーチファクトのシミュレーション, 3D U-Net

1. はじめに

顎口腔領域の筋骨格構造解析は、顎変形症や 顎関節症といった顎口腔機能異常の診断,手術 計画,術後評価に有用であり,対象の筋骨格を 自動抽出し解析することが求められている.し かし, CT 撮影範囲内に金属製の歯科充填物等 がある場合, CT 画像上には金属アーチファク トが生じ,この場合, CT 画像からの筋骨格セグ メンテーションは困難である.

我々はこれまで, CT 画像における金属アーチ

*1 奈良先端科学技術大学院大学先端科 学技術研究科

〔〒630-0192 奈良県生駒市高山町 8916-5〕

e-mail: moritani.yuka.mt0@is.naist.jp *2 鶴見大学歯学部

ファクトを Normalized Metal Artifact Reduction (NMAR) [1] を用いて低減し、低減後の画像か ら畳み込みニューラルネットワークを用いる ことにより,患者固有の筋骨格の自動セグメン テーション精度を向上させる研究を進めてき た[2][3]. しかし, 顎口腔領域において, こ れまでは金属アーチファクト低減後の画像か ら作成した正解データを用いて精度評価を行 っており,真に正確な評価ができていないこと が問題であった、また、金属アーチファクトの ある CT 実画像に対して NMAR を適用する場 合, 撮影対象者の口腔内に存在する金属製の歯 科充填物等の位置や形状の情報が既知でない ため、これまではしきい値により金属と考えら れる部分の抽出を行い、これを用いて NMAR を 適用していたが,症例によっては図1に示すよ うに NMAR に失敗してしまう場合があった. そこで、本稿では、金属アーチファクトをシ

図1 NMAR 成功例と失敗例. (a):金属アーチファクトあり CT 実画像 (NMAR 前), (b):prior,
 (c):NMAR 後. NMAR 失敗例では,しきい値により抽出した金属部分 ((b)中の黄色部分)の一部 が prior の空気領域に重なり (赤の矢印で示す部分),このため NMAR に失敗する.

ミュレーションして得られた CT 画像を用い, NMAR や NMAR に処理を一部追加・変更した 提案手法を用い,精度検証を行うことを目的と する.

2. 手法

まず,金属アーチファクトのない CT 実画像 に対し,画像上の歯の一部分に金属部分を仮定 して,シミュレーション[4]によって金属アーチ ファクトのある CT 画像を得る.次に,シミュ レーションにより得られた CT 画像に対し, NMAR を用いて金属アーチファクト低減を行 う.最後に,金属アーチファクト低減後の CT 画 像に対し 3D U-Net [5] を用いて筋骨格の自動 セグメンテーションを行う.

2.1. NMAR

本研究では次の3種類のNMARを適用し, それぞれ検証実験を行った.1つめは,金属部 分の位置や形状が既知でないと仮定し,しきい 値により金属部分を推定してNMARを適用す る手法である.2つめは,シミュレーションに 際して作成した金属部分の位置や形状の情報 を用いてNMARを適用する手法である.3つ めは,NMARにおいて金属部分をしきい値によ り抽出し,処理を一部追加・変更した手法である.本稿ではこれらを順に NMAR1, NMAR2, NMAR3 とする.

NMAR3 についてさらに説明する. そもそも NMAR によって図 1 に示したような問題が生 じる原因として, NMAR で uncollected sinogram を prior sinogram で除算した際に 0 に近い値で 除算してしまい, normalized sinogram の金属領 域の線形補間に影響があるためであると考え られる. このため, NMAR では normalized sinogram において, 投影された金属領域の両端 の線形補間を行っているのに対し, NMAR3 で は,図1のような問題が生じるとき, normalized sinogram の線形補間を行う範囲を変更する処理 を追加する. 具体的には,以下のとおりである.

- normalized sinogram 上の値が3より大きいか どうかを判定する.
- 上記 1. で 3 より大きい場合, normalized sinogram の線形補間において, 通常の NMAR での線形補間領域の両端のうち, どちらか一 方の値が 2 より大きいかどうかを判定する.
- 上記 2. で 2 より大きい場合,その位置に最 も近い局所的最小値の位置を金属領域内で 新たに算出し,その位置と金属領域のもう一 方の端の線形補間に変更する.

金属アーチファクトの程度	Mild artifact	Severe artifact
金属の密度	6.0, 8.0, 11.6 g/cr	m^3 5.0, 6.0, 8.0, 11.6, 13.0 g/cm ³
金属の種類	チタン 鉄	パラジウム合金
ポワソンノイズの程度	$10^{10}, 10^{11}$ $10^9, 10^{10},$, 10^{11} 10^9 , 10^{10} , 10^{11}
金属の位置のパターン		2 種類
パラメータの組み合わせの合計	30	30

表1 シミュレーションにて仮定したパラメータとそのときの金属アーチファクトの程度

図 2 シミュレーションにて仮定したパラメータとそのとき生成された CT 画像の例.本研究では, 緑線で囲んでいるものを Mild artifact,赤線で囲んでいるものを Severe artifact とした.

なお, 上記手順 1. にて normalized sinogram 上 の値が 3 以下である場合は通常の NMAR と同 様の処理を行うこととした.

3. 実験

3.1. 使用データ

本実験では,顎口腔領域を対象とした CT 実 画像を使用した.金属アーチファクトのシミュ レーションに 1 症例, 3D U-Net における学習 用・検証用およびテスト用データとして 35 症 例,計 36 症例の CT 実画像を用いた.これらの CT 画像は鶴見大学歯学部にて撮影され,36 症 例すべての CT 画像において金属アーチファク トは含まれていない.画像サイズは 512×512× 77~100,1 voxel あたりのサイズは 0.41mm× 0.41mm×1.00mm となるようリサイズやクロッ プを行った.

3.2. シミュレーションにて考慮するパラメータ

金属アーチファクトのシミュレーションに おいて,金属の種類をチタン,鉄,パラジウム 合金の3種類,金属の密度5種類およびCT画 像上に生じるポワソンノイズの程度3種類を仮 定し,様々なCT画像撮影条件を想定したシミ ュレーションを行った.その中で金属アーチフ ァクトの程度を目視で確認し,表1および図2 のように,Mild artifact と Severe artifact の2グ ループに分けた.

3.3. 生成画像の画質精度評価

生成画像の画質精度の評価には, PSNR およ び相互情報量(MI)を用いる. なお, PSNR の算出 に用いる画像は CT 画像を WW=500, WL=100 で正規化したものであり,また, MI の算出には, CT 画像を-1000HU から 4000HU の範囲でビン 数 255 の度数分布にしたものを用いる.

3.4. セグメンテーションの精度評価

本稿の自動セグメンテーション結果の精度 評価では、金属アーチファクトのない CT 実画 像から作成したマニュアルセグメンテーショ ンを ground truth とする.評価指標は平均表面

図 3 Mild artifact の場合の低減結果の一例. (a):金属アーチファクトなし CT 画像, (b):NMAR 前, (c):NMAR1 後, (d):NMAR2 後, (e):NMAR3 後.

r CT image						- 300 - 200 - 100 - 0 100 [HU] - 250
Absolute erro						- 200 - 150 - 100 - 50 - 0 [HU]
PSNR [dB]	_	10.13	5.01	11.86	12.78	
MI	3.846	1.377	0.058	1.474	1.494	
	(a)	(b)	(c)	(d)	(e)	

図 4 Severe artifac の場合の低減結果の一例. (a):金属アーチファクトなし CT 画像, (b):NMAR 前, (c):NMAR1 後, (d):NMAR2 後, (e):NMAR3 後.

間距離誤差(Average Symmetric Surface Distance: ASD) を用いた.

4. 実験結果

4.1. NMAR 結果

金属アーチファクトのない CT 実画像に金属 部分を追加しシミュレーションおよび金属ア ーチファクト低減を行った結果の一例を図3お よび4に示す.図3は密度6.0 g/cm³のチタン, 図4は密度6.0 g/cm³のパラジウム合金を仮定 し, どちらもノイズの大きさは想定した3種の うち中程度ものを仮定した際の結果である. PSNR および MI は, いずれも金属アーチファ クトなし CT 画像と各生成画像により算出した ものである.

図 3 より, Mild artifact の場合, NMAR1, 2, 3 いずれを使用した場合も NMAR 前より PSNR の値が高くなり, MI は同程度であった.また, 3 種の NMAR 間の差は大きくないことが読み 取れる.

図 5 セグメンテーション結果の一例. (a):金属アーチファクトなし CT 画像, (b):NMAR 前, (c):NMAR1 後, (d):NMAR2 後, (e):NMAR3 後.

図 6 NMAR 前後の画像を用いたセグメンテー ション結果の ASD. 有意差は**:0.01, *:0.05 で あり,青色で示した有意差は対応のある t 検定 の結果,灰色で示した有意差は Wilcoxon の符号 順位検定の結果である. なお, NMAR 前後の有 意差の算出は行っていない.

図4より, Severe artifact の場合, NMAR2, 3 を適用した場合に NMAR 前より PSNR と MI の 値が高くなった.図4に示しているスライスで は、NMAR1を適用した場合に図1と同様の問 題が生じ、NMAR に失敗している.ただし、 Severe artifact の場合のすべてのスライスにおい て NMAR1 適用時に NMAR に失敗しているわ けではなく、また、この問題が生じている場合、 スライスによっては NMAR3を適用した際にも NMAR に失敗する場合があった。

4.2. セグメンテーション結果

NMAR 前後の画像を用いた場合の下顎骨・咬筋のセグメンテーション結果の一例を図5に、 下顎骨・咬筋・内側翼突筋のセグメンテーション結果のASDのグラフを図6に示す.図5の赤の矢印で示した部分において、NMAR前後で セグメンテーション結果が異なり、NMAR 前後で セグメンテーション結果が異なり、NMAR 後の 方が NMAR 前と比較して ASD が小さくなって いることが読み取れる.また、図6より、まず NMAR 前後で比較すると、金属アーチファクト の程度に関わらず、下顎骨・咬筋・内側翼突筋 すべてにおいて NMAR 後の方が ASD が小さく、 セグメンテーション精度の向上が見られる.

さらに図 6 より, Mild artifact の場合, NMAR の種類による ASD の違いは小さく, Severe artifact の場合, NMAR の種類による ASD の違 いが顕著であることが読み取れる. 特に下顎骨 のセグメンテーションにおいて, 対応のある t 検定より, NMAR3 後の ASD と NMAR1 後の

図7 大規模データベースでのセグメンテーション結果(一部抜粋).

ASD, および NMAR3 後の ASD と NMAR2 後 の ASD それぞれで有意差ありとなっており, NMAR2, 3, 1 の順に ASD が小さく, セグメン テーション精度の向上がみられるといえる. 一 方,咬筋および内側翼突筋のセグメンテーショ ンにおいては, NMAR2 を適用したときの ASD がそれぞれ最も小さく, NMAR1 後と NMAR3 後に精度の差は見られなかった.

4.3. 大規模データベースでの結果

以上の結果をふまえ,金属アーチファクトの ある CT 実画像 395 症例に対して NMAR3 を用 いて金属アーチファクト低減を行ったのち 3D U-Net により筋骨格の自動セグメンテーション を行った.結果の一覧を図7に示す.この結果 より,下顎骨,咬筋の形状は患者間で様々であ ることがわかる.

5. 考察

Severe artifact の場合,3種の NMAR 間で ASD の値が異なった理由を次のように考察する.

本実験で NMAR1 適用時に NMAR に失敗し てしまった 81スライスについて, NMAR2 適 用時には, どのスライスにおいても NMAR の 失敗は見られなかった.これが,下顎骨・咬筋・ 内側翼突筋すべてにおいて NMAR1 後の ASD と NMAR2 後の ASD に有意な差が表れた理由 であると考えられる.一方, NMAR3 適用時に NMAR に失敗したのは 64 スライスであり, NMAR に失敗したスライス数はNMAR1 適用時 と比較して 17 減少した.しかし,この 17 スラ イスにおいて,金属アーチファクトは残存して おり,その影響により筋肉部分の目視による確 認が困難であった.

また、NMAR3 は、そもそも NMAR 失敗の判 定や normalized sinogram の線形補間領域の指定 に用いる normalized sinogram の値を実験的に決 めている.これらの値は、本研究にて金属アー チファクトのある CT 実画像に NMAR1 を適用 する際に NMAR に失敗する問題に直面し、こ れを解決する値としてあくまで実験的に定め た値であり、最適な値であるとはいえない.こ のため、NMAR3 後は NMAR1 後と比較して下 顎骨のみ ASD に有意差が表れるにとどまった と考えられる.

6. まとめ

本稿では、セグメンテーション精度について、 NMAR 前後、および 3 種の NMAR 間での比較 検証を行った. 今後、より多くの金属アーチフ ァクトなし CT 実画像を用いて金属アーチファ クトのシミュレーションを行い、手法 NMAR3 の精度検証を通じて大規模データベースでの セグメンテーションの精度向上を目指す.また、 その結果を用い、さらなる解剖学的解析を行う 予定である.

謝辞

本研究の一部は KAKENHI 26108004 の支援 による.

利益相反の有無

なし

文 献

- [1] Meyer E, Raupach R, Lell M, et al.: Normalized metal artifact reduction (NMAR) in computed tomography. Medical physics, vol.37, no.10, pp.5482-5493, 2010.
- [2] Sakamoto M, Hiasa Y, Otake Y, et al.: Automated segmentation of hip and thigh muscles in metal artifact contaminated CT using CNN. International Forum on Medical Imaging in Asia 2019. Vol. 11050.

International Society for Optics and Photonics, 2019.

- [3] 森谷 友香, Fatemeh Abdolali, 阪本 充輝, et al.: 顎口腔領域の CT 画像における金 属アーチファクト低減を用いた筋骨格 セグメンテーション, In proceedings of 医用画像研究会(MI), Okinawa, 2019
- [4] Zhang Y, Yu H: Convolutional neural network based metal artifact reduction in X-ray computed tomography. IEEE Trans Med Imag 37.6: 1370-1381, 2018
- [5] Çiçek Ö, Abdulkadir A, Lienkamp S, et al.:
 3D U-Net: learning dense volumetric segmentation from sparse annotation. International conference on medical image computing and computer-assisted intervention, pp. 424-432, 2016

Musculoskeletal Segmentation of

Metal Artifact-Reduced Maxillofacial CT Images

- Evaluation Using Metal Artifact-Simulation -

Yuka MORITANI^{*1}, Fatemeh ABDOLALI^{*1}, Mitsuki SAKAMOTO^{*1}, Yoshito OTAKE^{*1}, Yuko SHIGETA^{*2}, Tomoko IKAWA^{*2}, Akira MISHIMA^{*2}, Takumi OGAWA^{*2}, Yoshinobu SATO^{*1}

*1 Graduate School of Information Science, Nara Institute of Science and Technology*2 School of Dental Medicine, Tsurumi University

The segmentation of musculoskeletal structures, e.g. masseter muscle and mandible, in computed tomography (CT) images is important for the diagnosis and treatment planning of maxillofacial disorders. However, the presence of a metal prosthesis, such as dental fillings, leads to metal artifacts in the CT images that degrade the segmentation accuracy. In our previous study, we developed a musculoskeletal segmentation method applied to metal artifact-reduced CT images and evaluated it based on the manual trace produced from metal artifact-reduced CT images. In this research, instead, we simulated metal artifacts in the CT images and evaluated the segmentation accuracy using labels produced from CT images without metal artifact. In addition, we proposed an improvement of the conventional Normalized Metal Artifact Reduction (NMAR) method, and compared the impact of three metal artifact reduction methods on the segmentation accuracy.

Key words: CT Image, Metal Artifact Reduction, simulation of metal artifacts, 3D U-Net

Faster R-CNN による肝臓がん候補領域の抽出法

古月 夢奇*1 陸 慧敏*1 金 亨燮*1

平野 靖*2 間普 真吾*2 田辺 昌寬*3 木戸 尚治*4

要旨

近年, 肝臓がんは男女計で世界第4位の死亡者数となっている. 肝臓がんの代表的な治療法として, 手術 が挙げられる. 手術を行うには, 事前にがんの個数やその大きさの情報を知る必要がある. その際に利用 されるのがX線 CTをはじめとする画像診断である. これらの診断では,得られた CT像から肝臓の領 域やがんの領域を抽出(セグメンテーション)することにより,最終的に3次元でその形状を復元するこ とができる. 本論文では,ダイナミック CTにおけるがん領域を効率的に抽出するための画像解析法を構 築するための前段階として,画像上に大まかながんの関心領域としての矩形領域を初期領域として求める 手法を提案する. 手法としては入力画像に前処理を施した後,改良を加えたFaster R-CNNを用い,がん領 域を含む関心領域を矩形で抽出する. 本手法をダイナミック CTの動脈相11症例に適応した結果, Recall: 71.72[%], AP: 64.60[%]という結果が得られた.

キーワード:コンピュータ支援診断, 畳み込みニューラルネットワーク, 物体検出, Faster R-CNN

1. 序論

肝臓がんの診断において,X線CT,MRIなどの画像診断は極めて重要な役割を持つ.特に,造影CTにおいて,造影剤を急速静注して経時的に撮影するダイナミックCTは,がんの鑑別,描出,病期診断に非常に有用であるといわれて

*1 九州工業大学大学院工学府工学専攻

〔〒804-8550 福岡県北九州市戸畑区仙水町1-1〕

e-mail: kimhs@cntl.kyutech.ac.jp

*2 山口大学大学院創成科学研究科工学 系学域知能情報工学分野

〔〒755-8611 山口県宇部市常盤 2-16-1〕 *3 山口大学大学院医学系研究科 放射 線医学講座

〔〒755-8505 山口県宇部市南小串 1-1-1〕 *4 大阪大学大学院医学系研究科 人工 知能画像診断学共同研究講座

〔〒565-0871 大阪府吹田市山田丘 2-2〕

いる[1]. しかしながら,ダイナミック CT は複数の時相画像の経時的変化を比較読影する必要があるため,患者一人あたりに要する読影量は通常の撮影の数倍に膨れ上がっている.さらに,CT 装置の高精度化に伴い,一度に撮影されるデータ量が激増しているため,医師の読影負担は深刻な問題になっている.そのため,医師が短時間に肝がんを見落とすことなく診断できる環境の整備が必要とされ,CAD(Computer Aided Diagnosis)システムの開発に対する要望が高まっている.

そこで本論文では、肝臓がんの診断および治 療計画立案のため、コンピュータを用いた定量 的な解析を可能にすべく、がんの候補領域を矩 形で抽出・その矩形内のがん領域の抽出(セグメ ンテーション)の 2 つを基軸とする、 CAD(Computer Aided Diagnosis)システムの開発 を最終目標とする.すなわち、がんの自動抽出 から関心領域の自動設定の後に、がんのセグメ ンテーションを行うことにより、医師への負担 軽減を行うためのシステム構築を目指す.

具体的には, CNN(Convolutional Neural Networks)を用いた物体検出手法の一つである Faster R-CNN による、がんの候補領域を矩形で 抽出した後,その矩形内でがんのセグメンテー ションを行う.従来の肝臓がんの検出に関する 研究の多くは、 肝臓領域内でそれぞれのがんに 関心領域を設定せず, がんのセグメンテーショ ンを行っている. そのため、複数のがん領域の 間隔が近い場合において, セグメンテーション 精度が低下するという問題がある[2]. その問題 を改善するため, 事前にがんの関心領域を自動 で設定し、その関心領域内で最終的ながん領域 のセグメンテーションを行うことにより, セグ メンテーション精度の低下を防ぐ.本論文では, これらの目標を達成するための第一段階とし て,がんの関心領域を,CNN を用いて自動で設 定する手法を提案する.

2. 手法

本手法の流れは, 肝臓領域の抽出とその抽出 結果の切り出しによる前処理と深層学習によ る関心領域の抽出となる.また,本手法ではダ イナミック CT における動脈相の CT 画像のみ を用い,がんの初期候補領域を矩形で抽出する.

2.1. 画像領域の抽出及び切り出し

前処理における肝臓領域の抽出とその抽出 結果の切り出しを行う.図1に動脈相における 肝臓領域を緑色で示す.その肝臓領域を切り抜 いた CT 画像を図2に示す.肝臓領域を特定す る理由は,肝臓領域内でがんの抽出を行うため である.これにより,肝臓以外の骨や他の臓器 の誤抽出を防ぐことが可能である.ただし,本 論文ではこれらの肝臓領域抽出処理はすべて 手動で行った.

2.2. 深層学習

画像解析の分野では、深層学習は文字認識や 一般物体の分類に限らず、物体検出やセグメン テーションにも広く応用されている[3].本論文 では、CNNを用いた一般物体検出アルゴリズム の一つである R-CNN(Region-based CNN)に改良 を加えた Faster R-CNN[7]を用い、がんの候補領 域を矩形で抽出する.

図1 肝臓領域

図2 肝臓領域の切り出し例

CNN における物体検出は, 画像中から対象物 体の位置とその物体が何であるかを特定する 技術であり, コンピュータビジョンの分野で重 要なトピックスの一つである.また, バウンデ ィングボックスと呼ばれる, 物体を取り囲む矩 形領域を特定することを目標とする. 代表的 な一般物体検出アルゴリズムに R-CNN 系,

YOLO(You only Look Once)系, SSD(Single Shot Detector)系の3つがある[4-6]. R-CNN系は、この3つのアルゴリズムの先駆けであるため拡張性が高いことから、本論文における処理対象であるがんの候補領域の抽出に Faster R-CNN[7]を使用した.

2.3. Faster R-CNN

Faster R-CNN は, CNN を用いた一般物体検出 アルゴリズムの一つである[7]. このネットワー クの前身には, R-CNN, SPP(Spatial Pyramid Pooling)Net, Fast R-CNN が存在する[8,9]. Faster R-CNN は, これらのネットワークの欠点を改善 したものになる. 次に, Faster R-CNN のネット ワーク構造を図 3 に示す. ただし, FC(Fully Connected)は全結合層である. Faster R-CNN の ネットワーク構造は, backbone 部, RPN(Region Proposal Network)部, head 部の 3 つに分けるこ とができる.

(A) backbone 部

backbone 部では、入力画像の特徴を抽出する 役割がある.この backbone 部では、複数の畳込 み層から構成される、既存のネットワークアー キテクチャの全結合部を除いた部分を利用す る.このネットワークアーキテクチャには、 VGG(Very Geometry Group)や ResNet(Residual Network)などがある.本論文では、事前に ImageNet で訓練された ResNet101 を採用した [10].

(B) ResNet

画像分類問題において、ネットワークの層の 深さは重要な要素であり、層が深いほど精度が 向上すると考えられているが、より深いネット ワークを学習させようとすると、勾配消失問題 などが発生して精度が悪化することが知られ ている. ResNet(Residual Network)は、このよう な深いネットワークにおいて発生する、精度劣 化問題の解決を目指して考案された. ResNet は、 勾配消失問題を防ぐため、残差を用いた学習を 行う. 複数積み重ねられた層が、直接最適な写 像となるように学習するのではなく、残差の写 像が最適となるように学習する[10].

(C) RPN

RPN(Region Proposal Network)部では、物体ら しき領域候補を抽出する役割がある[7]. RPN で は、sliding window(3x3[pixel]のボックス)を backbone 部の出力から得られた特徴マップ上 でスライドさせる.その後、sliding window に複 数のアンカーボックスを適応し、"物体とみな すか否か"と"正解とする領域からどれだけず れているか"を出力する.すなわち、アンカー ボックス内の物体及び非物体に関する確率と ボックスの中心座標及び幅と高さを出力する. また、アンカーボックスの数は基本的に 9 個(ス ケール: 128,256,512[pixel] とアスペクト比: 1:2,1:1,2:1 の組み合わせ)である.

図 3 Faster R-CNN の構造

(D) RoI Align layer

図 3 の Rol Align layer について説明する.本 来,Faster R-CNN のこの部分の層には Rol Pool layer と呼ばれる層があった[7].この部分の層の 役割は RPN から出力されたサイズが様々な領 域候補(Region Proposal)をプーリングにより,最 終的に統一されたサイズの特徴マップとして 出力することである.しかしながら,Rol Pool layer はプーリングを行う際,Region Proposal の サブピクセルサイズのずれを考慮してリサイ ズを行う.そのため,最大 0.5[pixel]のずれが発 生してしまう.これは最終的に出力される画像 において,16[pixel]のずれに相当する.

そこで本論文では, Rol Pool layer の代わりに Rol Align layer を用いる. Rol Align layer は, Mask R-CNN に利用されており, 図4のように Region Proposal の領域をそのまま等分割を行う [11]. その後, サブピクセル座標を持つグリッド 点の値を特徴マップ上の近傍の4つの画素から バイリニア補間法(Bilinear Interpolation)を用い て算出する[8]. そして,この4つのグリッド点 の値を用いてプーリングを行う.このようにし て,図4では3x3サイズの特徴マップとして出 力される.ただし,本論文でのRoI Align layer で は図4と異なり,最終的に7x7サイズの特徴マ ップで統一を行った.このRoI Align layer を用 いることにより,最終的に出力される画像にお けるRegion Proposal のずれを解消することがで きる.

(E) head 部

head 部では、RoI Align layer で得られた結果 を用い、物体の位置とその物体が何であるかを 特定する.図3より、2つのFC部はそれぞれ ユニット数1024 で全結合されている. classification、すなわち、クラス識別層では、ク ラス数と同じ数のユニットで全結合されてお り、活性化関数に softmax 関数を用い、それぞ れ領域候補においてクラスごとの確率を得る. box regression、すなわち、領域抽出層ではクラ ス数の4倍の数のユニットで全結合されおり、 領域候補に対する4つの位置情報(バウンディ ングボックスの中心座標と幅と高さ)を得る.

3. 実験と結果

本論文における実験で使用されたデータセットの画像情報を表1に示す.症例数は11である.使用する画像は、すべて動脈相のCT画像である.また、11症例すべてに、少なくとも1個以上のがんが存在する.

3.1. 評価方法

Faster R-CNN によるがん領域の抽出には, n 分割交差検証(n-fold cross validation)による性能 評価を行う.これは,全てのデータを症例ごと にランダムで n 分割し, (n-1)組を学習に用い, 残る1組をテストに用いる方法である.実験で 用いたデータセットの詳細を表2に示す.また, それぞれのデータセットにおいて左 30 度回転 を行うことによるデータ水増しを行っている. 本論文では,4分割交差検証により,各テスト データセットに対する AP(Average precision)を 求め,その平均を算出することにより,がんを 含む矩形領域の抽出精度を評価する. AP は, precision-recall curve の下部面積(AUC:Area Under Curve)から求めるため, recall(再現率)と precision(適合率)の両方を平等に評価している 指標である. recall とは,実際にがんであるもの のうち,正しくがんであると抽出されたものの 割合を意味する. precision とは,がんであると 抽出したもののうち,実際にがんであるものの 割合を意味する. recall, precision は次式で与 えられる.

$$recall = \frac{a}{a+b+c} \times 100[\%] \tag{1}$$

$$precision = \frac{a}{a+d} \times 100[\%]$$
(2)

ここで,式(1)と式(2)の *a*, *b*, *c*, *d* は, それぞ れ表3に示す混合行列に含まれる領域の数を意 味する.

3.2. 実験結果

11 症例に対し,前処理を行った CT 画像を Faster R-CNN の入力として用いた. これにより 得られたそれぞれのデータセットにおけるが んの recall と AP 及びその平均を表 4 に示す. ただし,表 4 は RoI Pool layer を用いた従来手法 [7]と RoI Align layer を用いた提案手法の比較結 果である. 続いて, 従来手法及び提案手法を使 用したときの出力画像の例をそれぞれ図5と図 6 に示す.

表1 画像情報

画像サイズ	512×512[pixel]				
症例数	11[症例]				
画像枚数	800[枚](200 枚は,がんを含む)				

表2 実験データセットの詳細

データセット	病変がある 画像枚数	病変がない 画像枚数
1	96	203
2	28	132
3	77	210
4	71	229

表	3	性能評価のための混合行列
~	~	

			病変の真の	ロラベル
			positive	negative
抽出	њњ ЦЛ	病変	а	d
	1田山	非病変	b	е
疝未	未	抽出	С	f

公 · 入 · 风 · 机 ·								
データ	RoI Po	ol layer	RoI Align layer					
セット	(従来手	(従来手法[7])		手法)				
ヒット	recall	AP	recall	AP				
1	0.9375	0.8804	0.9479	0.8894				
2	0.6522	0.5722	0.6087	0.5682				
3	0.6000	0.4488	0.6000	0.4595				
4	0.6301	0.6097	0.7123	0.6689				
平均	0.7049	0.6270	0.7172	0.6460				

表 4 実験結果

図5 従来手法を使用した場合

図6提案手法を使用した場合

4. 考察

本論文では、ダイナミック CT におけるがん 領域を効率的に抽出するための画像解析法を 構築するための前段階として、画像上に大まか ながんの関心領域としての矩形領域を初期領 域として求めるための画像解析法を提案した. Faster R-CNN に対し, RoI Pool layer (従来手法 [7]) 及び Rol Align layer (提案手法) のそれぞ れ用いて抽出を行った結果,表4より recall の 平均がそれぞれ 70.49[%]と 71.72[%]となり, AP の平均がそれぞれ 62.70[%]と 64.60[%]となった. 表 4 の結果はがんの TP(True Positive)を判断す るときの基準である IoU(Intersection over Union) の閾値を 0.6 と設定した場合の結果である. す なわち, Faster R-CNN で出力されたバウンディ ングボックスと grand truth のバウンディングボ ックスの IoU が 0.6 以上の場合, そのボックス の中の物体をがんとみなす.そのため、表4に おける recall と AP はほとんど変化のない結果 となっている.しかしながら,図7と図8に示 すように閾値である IoU の値を上げるにつれて, recall と AP のそれぞれの値が RoI Pool layer (従 来手法)及び Rol Align layer(提案手法)を用い た場合において顕著な差が発生している.ただ し、図7と図8はrecallとAPのそれぞれの差 が最も顕著だったデータセット1を使用した場 合のグラフである. 図7及び図8より, IoUの 閾値が 0.8 のときにおいて、提案手法のほうが 従来手法より recall 及び AP で大幅に高くなっ ていることがわかる.このことから提案手法は 従来手法と比べ,バウンディングボックスの位 置に関して高精度な抽出ができていることが わかる.

図7 IoUの閾値を変化させたときの recall

また,図5及び図6より,提案手法のほうが 従来手法よりバウンディングボックスの中心 にがんが位置することからも,提案手法のほう がバウンディングボックスの位置に関して高 精度な抽出ができていることがわかる.

5. まとめ

本論文では、ダイナミック CT におけるがん 領域を効率的に抽出するための画像解析法を 構築するための前段階として、画像上に大まか ながんの関心領域としての矩形領域を初期領 域として求めた.手法としては入力画像に前処 理を施した後、Faster R-CNN を用い、がん領域 を含む関心領域を矩形で抽出した. RoI Pool layer(従来手法)及び RoI Align layer(提案手法) のそれぞれ用いて抽出を行った結果、提案手法 は従来手法と比べ、バウンディングボックスの 位置に関して高精度な抽出ができた.

今後の課題としては,抽出された矩形領域内 で最終的ながん領域のセグメンテーションを 行い,従来のセグメンテーション手法との比較 検討を行う必要がある.

利益相反の有無

なし

文 献

- [1] 尾川浩一他:医用画像工学ハンドブック.日本医用画像工学会,2018,pp.567-571
- [2] Grzegorz Chlebus, Andrea Schenk, et al.:

Deep learning based automatic liver tumor segmentation in CT with shape-based postprocessing. MIDL 2018 Conference: paper 62, 2018

- [3] 岡谷貴之:深層学習.株式会社 講談社 サイエンティフィック, 2018,pp.1-54, pp.79-110
- [4] R. Girshick, J. Donahue, T. Darrell, et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR '14 Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.580-587, 2014
- [5] J. Redmon, S. Divvala, et al.: You only look once: Unified, real-time object detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.779-788, 2016
- [6] W. Liu, D. Anguelov, et al.: SSD: Single shot multibox detector. European Conference on Computer Vision (ECCV), pp.21-37, 2016
- [7] S. Ren, K. He, R. Girshick, et al.: Faster R-CNN: Towards real-time object detection with region proposal networks. NIPS, Vol.1, pp.91-99, 2015
- [8] K. He, X. Zhang, et al.: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. European Conference on Computer Vision (ECCV), pp.346-361, 2014
- [9] R. Girshick: Fast R-CNN. IEEE International Conference on Computer Vision (ICCV), pp.1440-1448, 2015
- [10] K. He, X. Zhang, et al.: Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.770-778, 2016
- [11] K. He, G. Gkioxari, et al.: Mask R-CNN. International Conference on Computer Vision (ICCV), pp. 2961-2969, 2017

A Detection Method for Liver Cancer Region Based on Faster R-CNN

Muki FURUZUKI^{*1}, Huimin LU^{*1}, Hyoungseop KIM^{*1}

Yasushi HIRANO*2, Shingo MABU*2, Masahiro TANABE*2, Shoji KIDO*3

*1 Kyushu Institute of Technology

*2 Yamaguchi University.

*3 Osaka University

In recent years, liver cancer has become the fourth-largest number of deaths in the world for men and women in total. The treatment of liver cancer mainly needs surgical removal of the cancer and surrounding liver tissue. Therefore, in order to perform surgery, it is necessary to know in advance the number and size of cancer. To analyze the liver cancer, multi-phase CT images is used. In these diagnoses, the shape can be finally restored in 3D by extracting the region of the liver and the region of cancer from the CT image. In this paper, we propose a method of obtaining a rectangular region as a rough cancerous region of interest, as a preliminary step to construct an image analysis method for efficiently extracting cancerous regions in multi-phase CT. As a method, after preprocessing the input image, using Faster R-CNN which has been improved, the region of interest including the liver cancer region is extracted as a rectangle. We applied our method to 11 cases of arterial phase of multi-phase CT, and the result of recall of 71.72 %, average precision (AP) of 64.60 % was obtained.

Key words: Computer Aided Diagnosis, Convolutional Neural Network, Object Detection, Faster R-CNN

Binary Malignancy Classification of Skin Tissue using

Reconstructed Reflectance from Macropathology Multi-Spectral

Images

Eleni ALOUPOGIANNI^{*1}, Hiroyuki SUZUKI^{*2}, Takaya ICHIMURA^{*3}, Atsushi SASAKI^{*3}, Hiroto YANAGISAWA^{*3}, Tetsuya TSUCHIDA^{*3}, Masahiro ISHIKAWA^{*4}, Naoki KOBAYASHI^{*4}, Takashi OBI^{*2}

Abstract

This study investigates whether reconstructed spectral reflectance from macropathology multi-spectral images (macroMSI) can assist binary classification of tissue malignancy to identify excised tissue margin during skin cancer diagnosis. We captured high resolution 7-channel macroMSI of 10 samples before and after formalin fixing and a pathologist labeled 115 regions of interest. We reconstructed spectral reflectance by adaptive Wiener Estimation. Subsets of reconstructed spectra were input to k-Nearest Neighbors (kNN) and Support Vector Machine (SVM) classifiers and evaluated by average area under curve of stratified 5-fold cross validation. Results revealed that unfixed spectra were a superior feature set as classifier input. SVM outperformed kNN classifier.

Keywords : macropathology, multispectral imaging, skin cancer classification, spectral reflectance

1. Introduction

Skin cancer has been an increasing health concern in Japan with crude mortality rates doubling in a span of fifteen years [1]. At present, macropathology lacks standardization [2] and is manually performed, allocating high workload to pathologists. The purpose of this study is to investigate the effectiveness of binary malignancy classification of skin cancer with traditional machine learning, using reconstructed spectral reflectance from macropathology multi-spectral images (macroMSI) in order to automate detection of malignancy margins.

2. Materials and Methods

We captured macroMSI of excised skin using a multi-spectral camera with RGB sensitivity across 7 channels in the visible spectrum resulting to the raw subimages shown in Fig. 1. After approval of experimental procedures from the council of Saitama Medical University Hospital, we collected skin specimens from 10 patients, who provided

^{*1} Department of Information and Communications Engineering, Graduate School of Engineering,

Tokyo Institute of Technology [Tokyo, Japan] e-mail: aloupogianni.e.aa@m.titech.ac.jp

^{*2} Research Institute for Innovation in Science and Technology, Tokyo Institute of Technology [Tokyo, Japan]

^{*3} Faculty of Medicine, Saitama Medical University [Saitama, Japan]

^{*4} Faculty of Health and Medical Care, Saitama Medical University [Saitama, Japan]

informed consent, at the Central Pathology Department of the hospital. A trained pathologist identified and labeled a total of 115 regions of interest (ROI) of skin tissue at 3 states: a) specimen surface prior formalin fixing (unfixed), b) specimen surface after fixing (fixed) and c) interior after cross-sectioning (cross-sectioned), as described in Table 1. We captured a macroMSI for each specimen at every tissue state. For comparison purposes, we also measured the reflectance spectrum of each ROI.

 Table 1 Breakdown of the malignancy and fixing state of the captured dataset.

Tissue State	Malignant	Benign	Total
Unfixed	21	14	35
Fixed	23	18	41
Cross-sectioned	24	16	39

Fig. 1 Example of the captured multi-spectral image

From the raw macroMSI and for known camera system parameters, we reconstruct the reflectance spectrum of each ROI by Wiener estimation, with smoothing matrix modeled as the correlation of measured spectra and spatial denoising using Bayesian inference [3]. Reconstruction results were evaluated using average Normalized Root Mean Square Error (NRMSE). Binary classification of skin cancer malignancy is tested with 5-fold stratified cross validation on two traditional machine learning classifiers: k-Nearest Neighbors (KNN) and Support Vector Machine (SVM). Performance was evaluated using balanced accuracy [4] defined as the average of specificity and sensitivity, and standalone specificity. High specificity is crucial in computer-aided diagnosis systems, due to false positive predictions creating high costs for further treatment as well as an additional burden to the patient.

3. Results

The use of MSI improved reflectance reconstruction compared to RGB images, halving NRMSE as shown in Table 2. Additionally, NRMSE was lower for unfixed dataset compared to tissue after fixing. In Fig. 2, we observe that reconstruction for benign tissue is worse than malignant tissue for all tissue datasets, especially for tissue after fixing. Comparison of classification performance in Fig. 3 showed that SVM had greater specificity compared to KNN for all tissue fixing states both for measured and reconstructed spectral as input. Although KNN classifier resulted in higher prediction accuracy, the compromise for low false positive rates makes SVM more

Table 2 NRMSE of refle	ectance spec	trum reconst	ruction for
various combinations	of image so	urce and tiss	ue state.

Source	Unfixed	Fixed	Cross- Sectioned	Total
RGB	0.1329	0.0964	0.1590	0.1084
MSI	0.0517	0.0649	0.0707	0.0542

Fig. 2 MSI-based reconstruction NRMSE per malignancy class for various tissue states.
suitable for diagnosis in the present study. SVM-based classification using measured input achieved balanced accuracy around 80% and specificity above 80%, whereas reconstructed input exceeded only 60% and 75% respectively. Such a difference in performance is expected for reconstructed input, considering the small amount of channels that estimated the entire length of the spectrum. The inclusion of unfixed data in classification showed improved accuracy for both measured and reconstructed input. While observing that fixed tissue has higher specificity for measured input, this does not hold for reconstructed input, possibly due to the high NRMSE of fixed tissue. Additionally, the high NRMSE of benign tissue reconstruction may be the cause of low specificity and low accuracy.

Fig. 3 - Classification performance using (a) measured and (b) reconstructed reflectance spectra as input to the classifiers.

4. Conclusions

We investigated reflectance reconstruction from macroMSI images for use in binary malignancy classification of skin cancer specimens during pathological diagnosis. Results revealed the superiority of SVM for practical use in terms of specificity, and the importance of including unfixed tissue in the analysis due to its low reflectance reconstruction error. Comparison of classification based on measured and reconstructed input suggests reflectance as a useful feature for binary malignancy classification of skin tissue.

Conflict of interest

In this work, the authors have no conflict of interest to declare.

Acknowledgement

We are thankful to Olympus Corporation for the provision and support of the camera equipment during capturing.

References

- J. Cancer Information Service National Cancer Center: National estimates of cancer incidence based on cancer registries in Japan (1975-2013). 2013
- [2] Romaguera R., Nassiri M. and Morales A.R: Tools to Facilitate and Standardize Grossing. Histologic, 1:17-21, 2003
- [3] Urban P., Rosen M. R. and R. S. BERNS: A Spatially Adaptive Wiener Filter for Reflectance Estimation. Color and Imaging Conference, Society for Imaging Science and Technology, 2008(1): 279-284, 2008
- [4] Brodersen K. H., Ong C. S., Stephan K. E., et al: The Balanced Accuracy and Its Posterior Distribution. Proceedings of 20th International Conference on Pattern Recognition, Istanbul, 3121-3124, Aug. 2010

FDG PET-CT の腫瘍領域教師データを半自動的に作成する

アルゴリズムの提案と性能評価

平田健司*1, 古家翔*1, 真鍋治*1, 孫田恵一*2, 小林健太郎*1,

渡邊史郎*1,豊永拓哉*3,玉木長良*4,志賀哲*1

要旨

FDG PET-CT での悪性病変のセグメンテーションは深層学習に期待される課題であるが、放射線科医に 定義された膨大な教師データを必要とする. PET では閾値処理により教師データ作成が比較的容易ではあ るが、腫瘍集積と生理的集積が隣接するとき用手的作業を要する. この作業を効率化し再現性を高めるア ルゴリズムを考案し、実装および操作者間の再現性を確認したので報告する. このアルゴリズムでは、最 初に SUV≥2.5 を満たすボクセルを自動で抽出し、操作者は確実に腫瘍内であるボクセルを指定する. 非腫 瘍部分が結合している場合には、確実に腫瘍外であるボクセルを追加で指定する. 次に 2 点を分離できる 最小閾値を探索し、これで解決できない場合は最急降下法および最近傍法を用いる. 頭頸部癌と婦人科癌 の計 23 例に対して 2 人の核医学医師が本法で教師データを作成したところ、Dice similarity coefficient が 0.98±0.03 と高い一致率が得られた. 今後の教師データの作成に有用であると考えられた.

キーワード: FDG PET-CT, 深層学習, 教師データ作成, アルゴリズム,

1. はじめに

FDG PET-CT での悪性病変のセグメンテー ションは、深層学習にとって最も期待される課 題の1つである. 深層学習に基づく効率的な AI 構築には,放射線科医によって定義された膨大 なデータベースが重要である. CT および MRI と比較して、PET では閾値法や勾配法を用いて 自動的なセグメンテーションが成功すること が多いため、PET 上の腫瘍境界決定(教師デー タ作成)は比較的容易である.しかし、生理学 的または炎症性の取り込みに隣接する腫瘍を 分離するには、通常は手動操作を要するが、時 間がかかるだけでなく再現性の低下をもたら す. そこで今回, 腫瘍と非腫瘍が隣接するとき に, 高速かつ高い再現性で腫瘍のみを分離する アルゴリズムを考案し実装した. アルゴリズム の詳細と再現性実験の結果を報告する.

2. 方法

中咽頭癌の原発巣のみを取り出す作業を例に、全体の流れを図1に示す.まず SUV≥2.5 を 満たす全てのボクセルを抽出する.次に、確実 に原発腫瘍内と考えられる空間内の点を操作 者が指定する(赤マークを配置).原発巣が他の 集積体(転移や炎症・生理的集積)の近くに位

- *1 北海道大学大学院医学研究院画像診 断学教室
- 〔〒060-8638 札幌市北区北 15 条西 7 丁 目〕
- e-mail: khirata@med.hokudai.ac.jp
- *2 北海道大学病院放射線部
- *3 米国イェール大学 PET センター
- *4 京都府立医科大学放射線医学教室

置している場合,それらの集積体も赤でマーク されるため,これを除去する作業が必要となる. これら非腫瘍性の構造物の内部に,操作者は青 マークを置く.同一領域内に赤マークと青マー クを持つため,ラベルが衝突し、一時的に緑で 表示される.両者を分離することができる最小 の閾値を探索することで,ラベル衝突を解決す る.最小閾値が見つからない場合は最近傍法を 用いる.操作者が満足するまでこの操作を繰り 返す.

再現性を評価するために、2人の操作者が独 立に、頭頸部癌(N=13)と婦人科癌(N=10)の原発 巣を分離する課題に取り組んだ.いずれの症例 も原発巣に FDG の集積亢進が認められた.結 果の評価には、以下の式で計算される Dice similarity coefficient (DSC)を用いた.

$$DSC = \frac{2|VOI_A \cap VOI_B|}{|VOI_A| + |VOI_B|}$$

ここで、 VOI_A と VOI_B は2人の操作者によっ て定義されたVOIである.DSCは0から1ま での実数をとり、大きいほど高い再現性を表す.

3. 結果

この方法は全対象患者に対して成功した. DSC は 0.98±0.03 (平均±SD)と高い再現性 が得られた. 23 人中,14 人 (頭頸部癌の 6/13 人,婦人科癌の 8/10 人)において DSC は 1.0 (完 全一致)となった. なお,対応する metabolic tumor volume (MTV)は 96±127 mL 対 97±126 mL (VOI_A対 VOI_B)であった.

4. 結論

FDG PET-CT に腫瘍領域教師データを作成す るための効率的なアルゴリズムを考案し,高い 再現性を確認した.今後の教師データの作成に 有用であると考えられた.

謝辞

本研究は JST の COI 若手連携研究ファンド の助成を受けた (採択番号 H31W09).

利益相反の有無

なし

図1 ここでは中咽頭癌の原発巣のみを分離することを目指す.操作者は原発巣に赤マーク(a)を配置すると,これと連続した領域すべてが赤に変わる(頸部リンパ節とは他スライスで連続している).次に原発巣以外の青マーク(b)を配置すると,同一領域内に赤マークと青マークを持つため緑に変化する.そこで考案したラベル衝突解決アルゴリズムが,自動的に原発巣(赤)とその他(青)に分離する.

An algorithm to generate training data semi-automatically

on FDG PET-CT

Kenji HIRATA^{*1}, Sho FURUYA^{*1}, Osamu MANABE^{*1}, Keiichi MAGOTA^{*2}, Kentaro KOBAYASHI^{*1}, Shiro WATANABE^{*1}, Takuya TOYONAGA^{*3}, Nagara TAMAKI^{*4}, Tohru SHIGA^{*1}

*1 Department of Nuclear Medicine, Hokkaido University, Sapporo, Japan

*2 Division of Medical Imaging and Technology, Hokkaido University Hospital, Sapporo, Japan

*3 PET center, Yale University, New Haven, CT, USA

*4 Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan

Segmentation of malignant lesions with FDG PET-CT is a greatly expected task for deep learning, but a large amount of training data defined by radiologists is required to train AI system. Although threshold-based segmentation is relatively easier for PET images compared to CT and MR images, manual modification of segment is needed when tumor accumulation and physiological/inflammatory accumulation are adjacent. We aimed to propose an algorithm to prepare training data efficiently and reproducibly, and to test the reproducibility between two operators. In this algorithm, first, PET image voxels that satisfy SUV \geq 2.5 are automatically extracted, and the operator specifies voxels that are definitely in the tumor. If non-tumor accumulation is connected to the tumor, the operator is requested to specify voxels that are definitely outside of the tumor. Next, the minimum threshold that can separate two points (i.e., tumor and non-tumor) is exhaustively searched. Using this method, two nuclear medicine physicians segmented the primary lesion of head-and-neck cancer and gynecological cancer (N=23). As the results, the Dice similarity coefficient was 0.98 ± 0.03 . In conclusion, the new method may be useful for training data preparation on FDG PET-CT.

Key words: FDG PET-CT, deep learning, training data, algorithm

乳腺領域の自動抽出を用いた深層ニューラルネット ワークによる乳房超音波画像における腫瘤検出

楊凱文*1 叶嘉星*2 鈴木藍雅*1,*2 坂無英徳*1,*2

要旨

乳房超音波検査における腫瘤の発見率向上のために、機械学習技術を用いた診断支援システムの実現が 期待されている。従来の手法では、画像中のノイズと乳腺以外の脂肪や筋肉の影響で、腫瘤を過検出す ることが多い。本稿ではこの問題を解消するために、乳腺領域の自動抽出と腫瘤候補領域の検出を組み 合わせた深層ニューラルネットワークによる腫瘤検出手法を提案する。提案手法では、深層学習モデル である AlexNet と U-Net を用いて腫瘤候補と乳腺領域を検出し、両者から出力される腫瘤らしさと乳腺 らしさの尤度を統合して最終的な判定を行う。実験では、実際の乳腺超音波検査にて取得されたデータ セットを用いて、従来手法と比べ検出精度が向上し、過検出が削減されることを確認した。

キーワード:乳房超音波画像、コンピューター診断支援、異常検知、深層ニューラルネットワーク、画 像セグメンテーション

1. はじめに

乳がんによる死亡者数の増加は深刻な社会 問題となっており、早期発見による良好な予後 のためには定期的な乳がん検診が重要である。 がん検診における乳房超音波検査では、医師 (検査者)が超音波プローブを操作すると同時 に、描出される乳房超音波画像を観察し、病変 部位を発見する複数の作業を要する。そのため、 乳がんの正確な発見には検査者の技量や経験 を要し、経験の浅い検査者は病変を見落とす危 険性がある。乳房超音波検査における病変の見 落とし防止のため、乳房超音波画像から病変を 自動検出するコンピューター診断支援診断支 援システムが開発されている^[1]。

近年、深層学習に代表される人工知能技術の 発展が著しく、超音波診断支援に適用した研究 も多く報告されている^{[2][3]}。山崎らの文献^[4] では、乳腺以外の部位における過検出を抑制す るため、乳腺組織を自動抽出し、乳腺以外に位 置する腫瘤候補を抑制することで検出精度の

*1 筑波大学大学院システム情報工学研究科 知能機能システム専攻 [〒305-8577 つくば市天王台 1-1-1] e-mail: <u>kevin. yang@aist.go.jp</u> 向上を図る手法が提案されている。しかし、山 崎らの手法では乳腺の周辺領域における領域 分割の精度が低く、腫瘤の検出精度が十分では なかった。

そこで本稿では、深層ニューラルネットワー クを用いた腫瘤候補の検出と乳腺領域の抽出 結果を統合し、高精度な腫瘤検出を行う手法を 提案する。

2. 乳房超音波画像

乳房超音波検査では、検査者(医師)が超音波 プローブを乳房にあて、超音波プローブを操作 しながら超音波診断装置のディスプレイに表 示される超音波画像を観察する。プローブから 組織に超音波を放射し、反射された超音波の振 幅をグレースケールの輝度値に変換すること で画像を描出する。組織の構造に応じて反射さ れる超音波の振幅が異なるため、明るさの違い としておのおのの組織の構造を観察すること ができる。乳房における超音波画像では、画像 上部から順に、皮膚や脂肪、乳腺、筋肉と肋骨 が順に描出される。乳腺組織で発生するがんが 乳がんであり、乳房超音波検査では、乳腺組織 に着目して検査を行う。

^{*2} 産業技術総合研究所

図1提案手法のフローチャート

3. 提案手法の構成

本研究で検出の対象とする乳がんは、超音波 画像診断において、皮下脂肪と筋肉の中間に位 置する乳腺組織に腫瘤像として観察される。そ のため、過検出の抑制のためには、画像中の乳 腺組織の占める位置を検出する必要がある。

提案手法の流れ図を図1に示す。提案手法に おいて、腫瘤像の検出を行う超音波画像は、異 なる2つのニューラルネットワークモデルに 入力される。腫瘤候補領域の検出(図1左)には、 事前学習済みのAlexNetを利用し、画像中の局 所領域に腫瘤が含まれるかの検出を行う。さら に検出結果による過検出を抑制するために、乳 腺領域の抽出(図1右)では、U-Net による乳腺 領域抽出を行う。最終的な腫瘤候補の呈示の際 には、U-Net による乳腺領域の抽出結果と腫瘤 検出モデルの出力を統合することで、乳腺領域 以外に生じた腫瘤像の過検出を削減する。

3.1 AlexNet による腫瘤像の検出

Krizhevsky らが提案した AlexNet^[5]は、大規 模画像認識コンペンティションである ILSVRC 2012 の画像認識タスクにおいて、最高の認識率 を達成したモデルである。AlexNet は 227×227 pxの RBG 画像(3 チャネル)カラー画像を入力に 取り、1000 個のオブジェクトカテゴリへ分類す るモデルである。腫瘤候補領域の検出において は、乳房超音波画像は既定サイズに分割された 矩形領域(パッチ)単位ごとにリサイズを行い AlexNet へと入力され、パッチ毎に乳腺らしさ の確率(0~1)が出力される。AlexNet のもつ汎 化性能を十全に引き出すために、転移学習の技 術を用いて、一般画像(ImageNet)で事前学習 済みの AlexNet モデルに乳房超音波画像におけ る腫瘤候補を検出させる。転移学習とは、医療 画像のように学習データが少量に限られるタ スクへと機械学習手法を適用する際に、データ 量の多い別のドメインのタスクについて学習 させたモデルがあるとき、関連する別ドメイン のタスクに対して学習済みのモデルを利用す る手法である^[6]。

実際の乳房超音波画像データにおいて、腫瘤 (異常)の箇所は正常箇所に対して相対的に少な く、クラス間のデータ量が著しく不均衡である。 そのため、転移学習の際にデータ数の大きいク ラスに出力が過剰に適合し、病変の見落としに 繋がる。したがって、学習の際に学習データの 不均衡に対して、その影響を削減するための対 策が必要である。

本研究では、AlexNet の学習における損失関 数に、クラス不均衡を削減する重み付きクロス エントロピー損失^[7]を用いて、上記の問題の解 消を図った。モデルの出力Yと、真のラベルTの 間の重み付きクロスエントロピー損失Lは式 (1)で与えられる:

$$\mathbf{L} = -\frac{1}{N} \sum_{n=1}^{N} \sum_{i=1}^{K} w_i T_{ni} \log(Y_{ni})$$
(1)

ここでNはデータセットのサンプル数、Kはク ラス数である。wは誤差関数のハイパーパラメ ータで各クラスごとの損失の重みを表す。wは 一般にクラスごとのデータ数の割合によって 定める。提案手法ではこの重み付きクロスエン トロピー損失関数を用いて、クラス間のコスト を均衡させ、AlexNetの転移学習を行う。

3.2U-Net による乳腺領域のセグメンテーション

セマンティックセグメンテーションは画像 の各画素を、クラスに分割する問題の総称であ る。すなわち、画像から特定の物体や領域の占

図2 U-Netの構造 [8]より引用、一部改変

める空間的情報を最も精緻に抽出する問題と も言える。

U-Net^[8]は 2015 年に発表されたピクセル単 位の画像セグメンテーションを行うためのモ デルであり、主に医用画像を対象として設計さ れている。U-Net は図 2 のような Encoder-Decoder 構造を持つモデルである。

提案手法においては乳腺組織領域を抽出す るために、U-Net を用いた。U-Net の学習の際に は、脂肪、乳腺、筋肉組織とそれ以外の背景の 4 クラスにセグメンテーションを行い、超音波 画像の各画素に対して、乳腺領域の確率を算出 する。

3.3 乳腺領域の確率による腫瘤検出

本節では、AlexNet を用いた腫瘤を含むパッ チ画像の検出結果と、U-Net による乳腺領域の 抽出結果の統合手法について述べる。まず、 AlexNet により腫瘤が検知されたパッチのうち、 出力の Softmax 層においてP_{AlexNet} = 0.9以上の 確率で腫瘤を含むと検出されたパッチ画像を 腫瘤候補として検出する。

これらの腫瘤候補は、乳腺組織の位置を考慮 しない矩形切り出しから得られているため、乳 腺領域の過検出を多く含む。そこで 3.2 節で得 られた各ピクセルに対する乳腺の確率の算出 結果を用いて、乳腺領域外から得られた腫瘤候 補のパッチ画像を除去する。いま、U-Netの出 カとして得られた各ピクセルの乳腺領域の確 率マップを $I_{ij} \in \mathbb{R}^{w \times h}$ とする。ここでw =794, h = 493はそれぞれ画像の横および縦のピ クセル数である。はじめに、画像の乳腺領域に 関する確率マップを大津の二値化法^[9]によって、 バイナリ画像に変換する。ここでピクセル値が 1 の画素が、U-Net により乳腺領域とされた領 域である。次に式(3)のように画像の各縦方向 の位置jにおける乳腺領域の確率を算出する:

$$P_{\cdot j}^{Seg} = \frac{\sum_{l=1}^{W} I_{\cdot j}}{\max_{i} \sum_{l=1}^{W} I_{\cdot j}}$$
(3)

ここで検知矩形領域の中心ほど乳腺が存在 する確率が高いという仮定の下で、矩形領域中 の腫瘤に注目するため、1次元ガウスフィルタ 一処理を行う。1つの異常候補の検知窓に対し て式(4)のように、腫瘤である確率P_{detect}を算出 する。

$P_{detect} = P_{AlexNet} \sum_{y=1}^{100} P_{\cdot y}^{Seg} \cdot \mathcal{N}_{50}(y) \quad (4)$

ここで、*M*₅₀(y)は平均 50,分散 225 のガウス分 布であり、大きさ100×100 pxの検知窓の中心 にピークを持つ。

 P_{detect} を一つの入力データセットから得られたQ個の腫瘤候補領域すべてに対して求め、腫瘤の検出確率の列[$P_{d1} P_{d2} \cdots P_{dQ}$]を得る。最終的な腫瘤の検出の際には、これらの腫瘤の検出確率の列[$P_{d1} P_{d2} \cdots P_{dQ}$]に対して、1次元のK-means^[10]を利用し、過検出と正例の2クラスタ

に分類する。これらのクラスタ中心のうち、大 きな値を持つ方を正例とし、このクラスタ中心 θ_{TP} を腫瘤検知の閾値として $P_{detect} > \theta_{TP}$ を満た す矩形領域を腫瘤として検出する。

4. 実験

4.1 AlexNet による腫瘤像の検出

4.1.1 データセット

実験では AlexNet の入力として、乳房超音波 画像から切り出した 100×100px のパッチ画像 を用いた。画像の前処理として、各パッチ画像 に対して、超音波画像に多く含まれるスペック ルノイズを低減し、腫瘤の輪郭を強調するため に、ヒストグラム均等化[11]を行った。学習デ ータにおいて、腫瘤を含むパッチ画像のサンプ ル数は、正常な画像と比較して少ないたため、 異常データに対してはデータ拡張によるサン プル数の水増しを行った。データ拡張には、腫 瘤像を中心とした上下左右5 px の位置ずらし、 及び 3、6、9°ごとの回転によるリサンプリン グを行った。これらの処理により、1つの腫瘤 像に対して 12 枚のパッチ画像を生成した。実 験に用いた異常・正常を含むパッチ画像のデー タ量を表1に示す。

			•
	正常	異常画	異常画
	画像	像拡張	像拡張
		なし	あり
学習用(12名)	90, 405	1,471	17,652
検証用(2名)	21, 454	462	
テスト用(3名)	29,805	162	

表1腫瘤像検知のデータセット

4.1.2 比較手法

実験では、四つの比較手法を用いて腫瘤の検 出精度の比較を行った。Method1とMethod2は、 ImageNet により学習済みの AlexNet のモデル であり、Method1は重み付きSoftmax層、Method2 は通常のSoftmax層を用いた。重み付きSoftmax 層におけるクラスごとの重みは正常: 0.1、異

常:0.9とした。Method3と Method4 では、転移 学習を用いずに AlexNet のモデルを利用した。 Method3 は重み付き Softmax 層を利用したモデ ル、Method4 は通常の Softmax 層を用いたモデ ルである。

4.1.3 評価方法と結果

腫瘤の検出性能を評価指標として、receiver operating characteristic (ROC)^[12]曲線を用 いた。ROC 曲線は、検知結果の過検出率(false positive fraction)と検出率(true positive fraction)をプロットした軌跡を表したグラフ である。ROC 曲線が左上に近づくほど異常検出 性能が高いといえる。更に,ROC 曲線が左上に 近づくことを定量的に表した指標が (area under the curve; AUC) 値である。AUC 値は ROC 曲線の右下領域の面積を表し、AUC 値が1に近 いほど異常検出の性能が高いことを表してい る。実験の結果得られた ROC 曲線と AUC 値を図 3 に示す。

図 3 から、Method 1 の ROC 曲線は Method2、 3、4 と比較して左上にあり、AUC 値が最も高い ことがわかる。

4.2U-Net による乳腺領域のセグメンテーション

4.2.1 データセット

U-Net の学習においては、7 名の被験者から 得られた 475 枚の 794×493px 超音波動画像を 学習データとして使用した。ラベルは手作業で 脂肪と乳腺と筋肉と背景の4種類を付けた。検 証データセットには同一の患者を含まない44 枚の乳房超音波画像を用いた。

4.2.2 評価方法と結果

画像セグメンテーションの性能を評価指標 として、最も広く用いられる Intersection over Union (IoU) を用いた。各クラスの IoU は、正し く分類されたピクセル数と、真にそのクラスに 含まれるピクセルの合計数の比率である。

$$IoU \land \exists \varUpsilon = \frac{TP}{TP + FP + FN}$$
(5)

ここで TP, FP, FN はそれぞれ真陽性、偽陽性、 および偽陰性のピクセル数を表す。

U-Net の学習においては、最適化アルゴリズ ムに慣性項付き確率的勾配降下法 (Momentum-SGD)を用いた。慣性項は $\alpha = 0.9$ 、学習率は $\eta = 0.005$ 、Weight decay における L2 正則化項 は 0.005 とし、学習曲線が十分に収束するまで 1000 エポックの学習を行った。上記のパラメー タで学習させたモデルによるセグメンテーシ ョンの結果を表 2 に示す。

表 2 U-Net による IoU の結果				
	学習	テスト		
背景	0.8022	0.6590		
脂肪	0.7859	0.6460		
乳腺	0.7050	0.6208		
筋肉	0.4706	0.2403		

4.3 乳腺領域の確率による腫瘤検出

提案手法の有効性を検証するため、腫瘤あり と判定された5名の患者(AlexNetとU-Netに 使用しないデータ)から撮影された乳房超音波 画像を用いて腫瘤検出実験を行った。

4.3.1 実験条件

実験で使用した超音波画像は 256 階調値のグ レースケール画像であり、縦 493px、横 794px、 フレームレートは 34fps の動画像である。異常 検知実験のデータでは、フレーム画像から縦横 各 100px のパッチ画像を使用した。テスト画像 からの腫瘤検出においては、動画像の各フレー ムに対して横方向 20px, 縦方向 10px の移動幅 で、100×100px の検知窓を切り出して検出を行 った。

4.3.2 評価方法と結果

提案手法の評価には学習データに含まれな い5名の患者から撮影された乳房超音波動画像 をテスト画像として用いた。提案手法による、 検知窓単位での検出結果を表3に示す。また、 テスト画像に含まれる腫瘤像の検出率を表4 に示す。

表3腫瘤検知と過検出を抑制する結果

患者	検出窓総	異常検出	提案	正
ID	数	ネット	手法	解
01	575,672	5599	811	344
02	512,272	516	32	32
03	616,248	5654	167	85
04	811,520	3415	202	51
05	1,298,432	6489	752	446
合計	3,814,816	21673	1964	959

表4腫瘤を含むフレーム数ごとの評価

患者	動画の	腫瘤を	AlexNet	提案手法
ID	フレー	含む	で検出	で検出
	ム総数			
01	227	29	29	29
02	202	6	6	6
03	243	15	15	10
04	320	8	8	8
05	512	47	47	47
合計	1504	105	105	100

表 3 から読み取れるように、AlexNet 単体に よる腫瘤の検出精度は 959/21673=4.42%である のに対して、提案手法による結果は 959/1964=48.8%と、提案手法により過検出を大

図4フレームで見落としの例

幅に抑制できることがわかった。一方で、表 4 に見るように、AlexNet 単体による腫瘤の再現 率は 100%であるのに対し、提案手法では 95.2%患者 03の腫瘤を含む 5 フレームで見落 としが生じた。これは AlexNet による腫瘤候補 領域の検出の際に Softmax 層の出力の閾値を 0.9 と高く設定したためであると考えられる。 図 4 に被験者 03 における見落としフレームの 例を示す。

提案手法により、AlexNet 単体の結果と比較 して、過検出が大幅に抑制されたものの、提案 手法で除去できない乳腺領域における過検出 は依然として多い。過検出の例を図 5 に示す。 これらの過検出を一層抑制するための、今後の 課題としては、以下が挙げられる。

- 腫瘤検出モデルと乳腺領域分割モデルそれ ぞれの性能を向上させる
- ② 超音波検査が動画像である特性を活かし、 時間方向の隣接フレーム情報も加えて、腫 瘤検出を行う
- 1
 3
 1
 1
 1
 2
 3
 2
 3
 4
 4
 5
 4
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 6
 6
 7
 6
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 8
 7
 8
 7
 8
 8
 7
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 9
 8
 9
 9
 9
 9
 9
 9
 9

5. まとめ

本論文では、乳がんの発生する乳腺以外での 腫瘤の過検出を低減するために、乳腺領域の自 動抽出と腫瘤候補領域の検出を組み合わせた、 深層ニューラルネットワークによる腫瘤検出

図5過検出の例

手法を提案した。提案手法では、画素単位の領 域分割を行う深層学習モデルであるU-Netを用 いて、乳房超音波画像から腫瘤が発生しうる乳 腺領域の抽出を行い、超音波画像中から乳腺領 域の位置を推定する。次に、事前学習済みの深 層畳み込みニューラルネットワークと重み付 き識別層を組み合わせた転移学習モデルを用 いて、超音波画像中のパッチ画像からの腫瘤検 出を行った。

実験では提案手法の有効性を検証するため、 腫瘤ありと判定された5名の患者から撮影され た、乳房超音波画像に対して提案手法を適用し た。提案手法による、腫瘤像のフレーム単位で の検出率は95.24%であり、さらに乳腺領域の 抽出結果との統合によって、異常検知のみを用 いる手法と比較し過検出を大幅に低減した。

利益相反の有無

本研究における利益相反は存在しない。

文 献

- [1] Cheng, Heng-Da, et al. "Automated breast cancer detection and classification using ultrasound images: A survey." *Pattern* recognition 43.1 (2010).299-317.
- [2] Haskins, Grant, Uwe Kruger, and Pingkun Yan. "Deep Learning in Medical Image

Registration: A Survey." arXiv preprint arXiv:1903.02026 (2019).

- [3] Razzak, Muhammad Imran, Saeeda Naz, and Ahmad Zaib. "Deep learning for medical image processing: Overview, challenges and the future." Classification in BioApps. Springer, Cham, (2018). 323-350.
- [4] 山崎優大, et al. "乳腺超音波画像からの異常検出に関する研究." 電気情報通信学会東京支部学生会研究発表会,東京13 (2012).
- [5] K Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks
 [C]//Advances in neural information processing systems. (2012). 1097-1105.
- [6] Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." IEEE Transactions on knowledge and data engineering 22.10 (2009).1345-1359.
- [7] Guiaşu, S. Weighted entropy. Reports on Mathematical Physics, 2(3), 165-179. (1971).
- [8] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, (2015).234-241.
- [9] Otsu N. A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, (1979).9(1). 62-66.
- [10] Jain, Anil K. "Data clustering: 50 years beyond K-means." Pattern recognition letters 31.8 (2010).651-666.
- [11] Singh R P, Dixit M. Histogram equalization: a strong technique for image enhancement[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, (2015). 8(8).345-352.
- [12] Hanley, James A., and Barbara J. McNeil.

"The meaning and use of the area under a receiver operating characteristic (ROC) curve." Radiology 143.1 (1982). 29-36.

Tumor Detection in Breast Ultrasound Images by Deep Neural Network with Automatic Extraction of Mammary Gland Region

Kaiwen YANG^{*1}, Jiaxing YE^{*2} Aiga SUZUKI^{*1,*2}, Hidenori SAKANASHI^{*1,*2}

*1 Graduate School of Systems and Information Engineering, University of Tsukuba

*2 National Institute of Advanced Industrial Science and Technology (AIST)

The realization of a diagnosis support system using machine learning technology is expected in order to improve the detection rate of a mass in breast ultrasonography. Conventional methods overdetect the mass due to noise in the image and the effects of fat and muscle other than the mammary gland. In this paper, in order to solve this problem, we propose a mass detection method by deep neural network combining automatic extraction of mammary gland area and detection of mass candidate area. In the proposed method, we use the deep learning model AlexNet and U-Net to detect the mass candidate and the mammary gland region, integrate the likelihood of the mass likelihood and mammary likelihood output from both, and make the final judgment. In the experiment, it was confirmed that detection accuracy was improved and overdetection was reduced compared to the conventional method, using a data set acquired by actual mammary gland ultrasonography.

Key words:Breast ultrasound images, Computer-aided detection, Anomaly detection, Deep neural network, Image segmentation

レディオミクスによる肺がんの再発リスクの予測

-レディオミクス特徴量の比例ハザード性の検証-

吉岡 拓弥*1 内山 良一*2

要旨

レディオミクス研究では、生存時間分析の代表的な手法であるコックス回帰モデルが用いられることが多い.しかし、病変から取得したレディオミクス特徴量は、比例ハザード性を満たしていない可能性がある.本研究では、肺がんの再発リスクの予測にコックス回帰モデルを適用した.患者の治療前 CT 画像の腫瘍 領域を手動でマーキングし、腫瘍領域から 367 項目のレディオミクス特徴量を取得した.367 項目から Lasso を用いて 5 項目を選択し、選択された 5 項目のレディオミクス特徴量を入力変数としてコックス回帰モデ ルを構築した.レディオミクス特徴量の比例ハザード性を Schoenfeld 残差によって検証した.実験の結果、 レディオミクス特徴量が比例ハザード性を満たす可能性は低く、比例ハザード性を仮定しないモデルを適 用すべきとの知見を得た.

キーワード:レディオミクス,再発,肺がん,コックス回帰モデル,比例ハザード性

1. 緒言

病院内に蓄積されたビッグデータを活用し, 知的情報処理技術を用いて医療の支援を行う 研究に,コンピュータ支援診断[1]とレディオミ クス[2-8]がある.コンピュータ支援診断は,病 変の存在診断や良悪性の鑑別診断の支援に応 用されてきた.一方,レディオミクスは,病変 を発見した後の医療のプロセスを支援するも ので,サブタイプ分類や予後予測に関する研究 が行われている.医療は,存在診断,鑑別診断, 治療の順番に行われるから,コンピュータ支援 診断は前半の医療を,レディオミクスは後半の 医療を支援するシステムとして分類できる.

レディオミクスによる予後予測に関する研 究では,画像の病変部から得た高次元画像特徴 量(レディオミクス特徴量)を入力変数とした コックス回帰モデルが用いられることが多い [8-10]. コックス回帰モデルを用いるときの不 可欠な仮定は、「比例ハザード性」である.もし 比例ハザード性が成り立たなければ、モデルの 線形成分が時間とともに変化することを意味 する.レディオミクス特徴量は、病変の形状や 濃度変化など病変の活動と関係した特徴量で あるため、レディオミクス特徴量の値が時間と ともに変化する可能性が高い.そこで本研究で は、肺がんの再発リスクの予測を例に、肺がん 患者の治療前 CT 画像から得たレディオミクス 特徴量が、比例ハザード性を満たすのかを検討 した.

2. 実験試料

本実験では、The Cancer Imaging Archive[11]の NSCLC-Radiogenomics を用いた. NSCLC-Radiogenomics には、非小細胞肺がん患者 211 例 が収録されている. そのうち、ステージ I に分 類された 80 例を選択し、それらの治療前 CT 画

^{*1} 熊本大学大学院保健学教育部

^{[〒862-0976} 熊本県熊本市中央区九品寺 4 丁目

²⁴番1号]

e-mail: 181w0210@st.kumamoto-u-ac.jp

^{*2} 熊本大学大学院生命科学研究部(保)

像および再発までの時間を実験に用いた.

3. 方法

本手法の概要を述べる.まず,取得した患者 の CT 画像から腫瘍領域を手動でマーキングし, マーキングした領域のレディオミクス特徴量 を一般公開されているソフトウェア MaZda[12] を用いて 367 項目取得した.次に,367 項目の レディオミクス特徴量から再発リスクの予測 に有用な特徴量を least absolute shrinkage and selection (Lasso)[13]を用いて 5 項目選択した. 選択した 5 項目のレディオミクス特徴量を入力 変数としたコックス回帰モデル用いて再発リ スクの予測を行った.コックス回帰モデルは, 比例ハザード性を仮定したモデルである.よっ て,レディオミクス特徴量が比例ハザード性を 満たすのかの検証を行った.

1) 腫瘍領域のマーキング

80 例の CT 画像に対して, 腫瘍が最も大きく 描出されているスライス画像を1枚選択して実 験に用いた. 腫瘍領域は著者の1人が手動でマ ーキングした. この際, 腫瘍の形状特徴が正確 に計算できるように, スピキュラも含めてマー キングした.

2) レディオミクス特徴量の計測と選択

マーキングした腫瘍領域のレディオミクス 特徴量は特徴量解析ソフトウェアとして一般 公開されている MaZda[12]を用いて 367 項目取 得した.レディオミクス特徴量を取得する際の パラメータは MaZda のデフォルト値をそのま ま用いた.例えば、テクスチャ特徴量を計算す るための濃度共起行列を取得する際のパラメ ータは、濃度階調が 16、画素間の距離が 1~5、 方向が 0 度、45 度、90 度、135 度である.

実験に用いた患者が 80 例であるのに対し, レディオミクス特徴量が 367 項目であるため, 再発の予測に有用なレディオミクス特徴量を 選択して次元削減を行う必要があった.そこで, Lasso[13]を用いてレディオミクス特徴量を5項 目選択した.

3) 再発リスクの予測

再発リスクの予測法は、2 つのモデルに大別 される.1つ目は、1 年後などの期間を固定した 場合に、再発した症例と再発しない症例の2群 を区別するパターン認識の問題として取り扱 う考え方.2 つ目は、再発までの時間を入力変 数として用いて生存時間分析の問題として取 り扱う考え方である.後者の利点は、単に再発 の有無を予測できるだけでなく、再発までの時 間の予測が可能であるため、経過観察をどのく らいの間隔で行えば良いかの目安を得ること ができる点である.そこで本研究では、後者の モデルを検討した.

(1) コックス回帰モデル

コックス回帰モデル[14]は、生存時間分析の 基本的なモデルである.本研究では、再発リス クの予測に応用するために、死亡のイベントを 再発に置き換えることでモデルを構築した.あ る特定の時間における当該患者の死亡のハザ ードがp個のレディオミクス特徴量X₁,X₂,…,X_p の値x₁,x₂,…,x_pに依存すると仮定した場合,i番 目の患者のハザード関数h_i(t)は、次式で表すこ とができる.

 $h_i(t) = \exp(\beta_1 x_1 + \dots + \beta_p x_p) h_0(t)$ (1) ここで, β_vはレディオミクス特徴量の係数を表 す. また, h₀(t)はベースラインハザード関数と 呼ばれ, すべてのレディオミクス特徴量の値が ゼロである患者のハザード関数を表す. パラメ ータ係数βnの値は、実験データから最尤法を用 いて決定することができる[14]. ハザード関数 は,当該患者が時点tで生存していたという条件 のもとでその時間に死亡する確率である.しか し、このハザード関数は結果の表示には用いら れず,一般的には生存関数(本研究では再発関 数と表現するのが適切かもしれない)が用いら れる. 生存関数とは, 生存時間がt以上となる確 率S(t)であって、ハザード関数から累積ハザー ドH(t)を求め, $S(t) = \exp\{-H(t)\}$ に代入するこ とによって求められる.

(2) 比例ハザード性

コックス回帰モデルを用いるときの不可欠 な仮定は、「比例ハザード性」である[14,15]. こ こで、1 つの変量を含むコックス回帰モデルを 考える.(1)式のハザード関数を

 $h(t, x, \beta) = \exp(\beta x)h_0(t)$ (2) と表現する. このハザード関数の対数を $g(t, x, \beta) = \ln[h(t, x, \beta)]$ と定義すると,

 $g(t, x, \beta) = \ln[h_0(t)] + x\beta$ (3) となる. このとき, x = aからx = bまでの変化の 対数ハザード関数の差は,

[$g(t,x = a,\beta) - g(t,x = b,\beta)$] = $(a - b)\beta$ (4) であるから,対数ハザードの差は時間に依存し ない.この仮定を「比例ハザード性」と呼ぶ. もし,比例ハザード性が成り立たないならば, モデルの線形成分 ($x\beta$:変数の値)が時間とと もに変化することを意味する.一般に,病変か ら得たレディオミクス特徴量の値が時間とと もに変化しないという仮定は成り立つのであ ろうか.病変は,悪性度が高くなるに連れて, 形状や濃淡が歪になるのではないか.もし,そ うであるならば,コックス回帰モデルを用いた 解析は,レディオミクス研究には,不適切であ ると判断できる.

Schoenfeld 残差は、コックス回帰モデルを当て はめた後の比例ハザード性の評価に用いられ る.詳細は文献[14,15]に譲るが、Schoenfeld 残 差が、ランダムにゼロ付近に散在しているなら ば、比例ハザード性を満たす.そこで本研究で は、各レディオミクス特徴量の Schoenfeld 残差 を求めてプロットすることによって、比例ハザ ード性の検証実験を行った.

4. 実験結果及び考察

Lasso により選択された 5 項目のレディオミ クス特徴量を表 1 に示す. Perc.90 は, 腫瘍領域 を二値化処理する際に, 全領域の 90% が画素値 0(黒)となる画素値の値を表す. GrKurtosis は, 注目画素(x,y)に対して, (x - 1,y)と(x + 1,y)の 差の 2 乗, ならびに(x,y - 1)と(x,y + 1)の差の 2 乗の和の平方根を注目画素における濃度勾配 と定義した時, 領域内の各画素の濃度勾配の尖 度を表す. GeoY は, 腫瘍領域の重心の垂直(y 軸)座標を表している. GeoAox は, オリエンタ ル角度を表している. GeoW9 は, 腫瘍領域に外 接する長方形の面積を腫瘍領域に存在する画 素数で除した値である.

表1 選択されたレディオミクス特徴量

	レディオミクス特徴量
#1	Perc.90
#2	GrKurtosis
#3	GeoY
#4	GeoAox
#5	GeoW9

図1に、5項目のレディオミクス特徴量に関す るSchoenfeld 残差の散布図および平滑化曲線を 示す.図に見られるように、残差の値がゼロ近 辺に散在しているとは言えず、平滑化曲線も大 きく湾曲している.したがって、レディオミク ス特徴量は、比例ハザード性を満たしていると は考えられず、コックス回帰モデルを用いた解 析は、不適切である判断できる.

図1選択された5項目のレディオミクス特徴量に関する Schoenfeld 残差の散布図および平滑化曲線

5. まとめ

治療前の CT 画像から得たレディオミクス特 徴量を用いて肺がん患者の再発リスクを予測 する手法を考案した.レディオミクス特徴量は 比例ハザード性を満たしていない可能性が高 いため,一般的に生存時間分析で用いられるコ ックス回帰モデルを用いた分析手法は、レディ オミクス研究には不適切であると判断できる. 今後は、比例ハザード性を仮定しない生存分析 の手法を採用して再発リスクを予測する方法 の研究開発を行う予定である.

利益相反の有無

なし

文 献

- [1] Li Q, Nishikawa RM, Computer-aided detection and diagnosis in medical imaging, CRC Press, 2015.
- Gillies RJ, Kinahan PE, Hricak H, Radiomics: images are more than pictures, they are data, Radiology, 278(2), 563-577, 2016.
- [3] Mazurowski MA, Radiogenomics: what it is and why it is important, Journal of American College of Radiology. 12(8):862-866, 2015.
- [4] Phillips I, Ajaz M, Ezhil V, et al., clinical applications of textural analysis in nonsmall cell lung cancer, Br J Radiol, 91(1081): 20170267, 2018.
- [5] Thawani R, McLane M, Beig N, et al., Radiomics and radiogenomics in lung cancer: A review for the clinician, Lung Cancer, 115: 34–41, 2018.
- [6] Shi L, He Y, Yuan Z, et al., Radiomics for response and outcome assessment for nonsmall cell lung cancer, Technology in Cancer Research & Treatment, 17: 1-14, 2018.
- [7] Ferreira Junior JR, Koenigkam-Santos M, Cipriano FEG, et al., Radiomics-based

features for pattern recognition of lung cancer histopathology and metastases, Computer Methods and Programs in Biomedicine, 159: 23–30, 2018.

- [8] Aerts HJ, Velazquez ER, Leijenaar RT, et al., Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach, Nature Communications, 5:4006, 2014.
- [9] Li Q, Kim J, Balagurunathan Y, et al., CT imaging features associated with recurrence in non-small cell lung cancer patients after stereotactic body radiotherapy, Radiat Oncol., 12: 158, 2017.
- [10] Mattonen SA, Davidzon GA, Bakr S, et al.,
 [18F] FDG Positron Emission Tomography (PET) Tumor and Penumbra Imaging Features Predict Recurrence in Non-Small Cell Lung Cancer. Tomography. 5(1): 145-153, 2019.
- [11] NSCLC-Radiomics, https://wiki.cancerimagingarchive.net/disp lay/Public/NSCLC-Radiomics,最終アク セス日 2019 年 5 月 11 日.
- [12] MaZda, http://eletel.eu/mazda, 最終アク セス日 2019 年 5 月 11 日.
- [13] 杉山将,井出剛,神嶌敏弘,他,監訳.
 統計的学習の基礎 データマイニング・推論・予測.共立出版,東京,2014.
- [14] Collett D: Modelling survival data in medical research, second edition. Chapman & hall CRC, 2003.
- [15] David WH, Lemeshow S, May S: Applied survival analysis, regression modeling of time-to-event data, second edition, John Wiley & Sons, Inc., 2008.

Prediction of the recurrence risk in patients

with lung cancer using radiomics -Verification of proportional hazards property of radiomic features-

Takuya YOSHIOKA^{*1}, Yoshikazu UCHIYAMA^{*2}

*1 Gradient School of Health Science, Kumamoto University*2 Department of Medical Physics, Faculty of Life Sciences, Kumamoto University.

Cox regression model, which is a typical method for survival data analysis, is often used in radiomics researches. However, radiological features obtained from the lesions might not satisfy with proportional hazards property. In this study, Cox regression model was applied to predict the recurrence risk of lung cancer. First, we manually segmented the tumor regions and subsequently determined 367 radiomic features. Five radiomic features were selected by using least absolute shrinkage and selection (Lasso). Cox regression model with 5 selected radiomic features was employed for the estimation of recurrence risk. The proportional hazards property of the radiomics features were verified by Schoenfeld residuals. As the experimental result, we found that the possibility in which radiomics features satisfy with proportional hazards property was low. Therefore, we got a knowledge that another model which does not assume proportional hazards property should be used for the survival data analysis in radiomics researches.

Key words: Radiomics, Recurrence, Lung cancer, Cox regression model, Proportional hazards property

深層学習を用いた胃 X 線検査画像における 腫瘍領域自動検出の試み

市川 梨沙*1 野村 敬清*2 彌冨 仁*1 橋本 順*2

要旨

X線検査は CT や MRI,内視鏡検査などの専門的検査方法と比べて容易なため、がんのスクリーニング として集団検診で広く利用され検診者母数が極めて大きい.一方でがん等疾病の検出感度は専門的検査と 比較して低いという問題がある.機械学習を用いた自動診断支援に関する研究も主に後者の専門的検査結 果を対象としたものがほとんどであり、胃部 X線検査に対する近年の成果は極めて数少ない.こうした背 景から本研究では物体検出と識別を同時に行う深層学習手法である single shot multibox detector (SSD)を用 いた胃部 X線検査画像を対象とした腫瘍領域の自動検出システムを試作した.本システムは胃がん患者 39 名,計 375 枚の胃部 X線検査画像を元に構成され、患者ベースの 5-fold cross validation を用いた腫瘍検出 能として平均 F 値=14.81(再現率=92.82%、特異度=8.05%)を実現した.

キーワード: 胃部 X 線, 深層学習, 自動診断支援, 集団検診

1. はじめに

日本では年間約100万例のがんが新たに診断 され,約37万人の死亡が確認されている.死亡 数を部位別にみると胃がんは第三位で約12% を占める.胃がんは進行が早期の段階であるほ ど発症後の生存率が高く,ステージ1で診断さ れた場合の5年相対生存率は94.9%である.こ のため早期発見が重要とされている[1].

発生率法を用いた胃がん検査感度の報告で は、内視鏡検査は 95.4%であり胃 X 線検査の 85.5%と比較して疾患の検出精度は高い[2]. し かし、一日に診断できる人数に限りがあるため 全ての受診者を検査することは困難である. こ のようながん検診の現状から、検査が容易であ り集団検診で広く利用されている胃 X 線検査 でのスクリーニングによる高精度な診断が望

*1 法政大学理工学部応用情報工学科

〔〒184-0002 東京都小金井市梶野町 3-7-2〕 e-mail: iyatomi@hosei.ac.jp

*2 東海大学医学部専門診療学系画像診断学

まれている.

近年画像認識手法である Convolutional Neural Networks(CNN)の医療分野への応用に関する研究が広がっている.内視鏡画像からの胃がん検出においては再現率 92.2%,適合率 30.6%を実現している[3].一方で消化管 X 線検査画像に対する診断システムの研究成果は極めて少ない.

そこで本研究では医師の胃 X 線検査での腫 瘍の見逃しを無くすこと目的として,胃 X 線 検査画像において CNN による自動病変領域検 出・識別システムを試作した。

2. 方法

2.1 データセット

東海大学医学部より提供された胃 X 線画像 を元にデータセットを構築した. 胃に腫瘍のあ る患者の胃 X 線画像に対し,専門医による腫瘍 位置のマークを元に腫瘍を囲む最小の長方形 (計 39 患者 375 画像中, 731 箇所)を Ground True boxes (GT)として生成することでデータセ ットを作成した.

2.2 single shot multibox detector(SSD)[4]

SSD は一般的な CNN である VGG-16 モデル をベースとしたネットワークを使用しており, 本実験では入力画像を 300×300 pixel とする SSD300 を用いた. SSD300 は 1 枚の画像につき 8732 個の Box を提案する.SSD の学習時には, GT との Intersection over Union(IoU)が 0.45 以上 の. また,本実験では予測領域に対する予測値 が θ = {0.15,0.2}以上の Box のみを表示させた.

2.3 評価手法

患者ベースの 5-fold cross validation を用い, 適合率および再現率を算出することで性能評 価を行った.評価段階では正解領域と予測領域 の IoU が 0.1 以上で検出成功とした.

3. 結果

表1に胃X線画像における腫瘍検出結果精 度,図1に病変領域検出結果画像例を示す.

表1 腫瘍領域検出結果.			
予測值 θ	0.15	0.20	
適合率[%]	8.46	17.83	
再現率[%]	92.82	86.33	

図 1 腫瘍検出結果例(上段:腫瘍正解位置 下段 左(検出成功): θ =0.15 下段右(検出失敗): θ =0.2)

4. 考察とまとめ

表 1 より α = 0.15 の場合,再現率において医師の診断を超える精度を実現したが,適合率が低いため誤検知が多いことがわかる.一方でα = 0.2 の場合,誤検出は少ないが検出すべき領域の見逃しも多い.再現率と適合率はトレードオフの関係であり,予測値 θ の低い Box を非表示とすることで誤検出の削減が可能である.しかし,本研究の目的は医師の診断見逃しを無くすことであるため,複数個の予測領域のうち正解領域が含まれ,医師の注意を引くことができれば有意義であると考える.

患者 39 名分の極めて小さいデータセットを 用いて医師に匹敵する精度を実現したことか ら, CNN により胃 X 線検査画像からの腫瘍領 域の検出は可能であると考えられる.新たな患 者や健全な人のデータセットを加えることに より病変領域検出精度の向上が期待できる.

利益相反の有無

なし

文 献

- [1] 国立がん研究センターがん情報サービス、<
 https://ganjoho.jp/reg_stat/statistics/index.html>、(参照 2019-5-10)
- [2] Hamashima C, Okamoto M, Shabana M, et al.: Sensitivity of endoscopic screening for gastric cancer by the incidence method. Int J Cancer, 2013
- [3] Hirasawa T, Aoyama K, Tanimoto T, et al.: Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer :653-660, 2018
- [4] Liu W, Anguelov D, Erhan C, et al.: S sd:Single shot multibox detector. Europe an Conference on Computer Vision :21 -37, 2016

Preliminary study on automated detection of involved regions from abdominal X-ray images

Risa ICHIKAWA^{*1}, Takakiyo NOMURA^{*2}, Hitoshi IYATOMI^{*1}, Jun HASHIMOTO^{*2}

*1 Hosei University Faculty of Science and Engineering *2 Tokai University School of Medicine

X-ray exams are widely used in mass screening because they are more convenient than specialized examinations such as CT, MRI, and endoscopy. On the other hand, however, there remains a problem that the sensitivity of X-ray exams them is low compared to the specialized ones. Most of studies on automated diagnosis support using machine learning is mainly for the latter, while there are very few investigations on abdominal X-ray examination despite the large number of potential patients. In such a situation, we developed an automatic tumor area detection system for abdominal X-ray images using single shot multibox detector (SSD). We used a total of 375 abdominal X-ray images from 39 patients and trained SSD. Our system attained an average F-value of 14.81 (recall=92.82%, precision=8.05%) under patient-based five-fold cross validation.

Key words: abdominal X-ray, deep learning, automated diagnosis support, mass screening

疾患股関節の CEA の自動計測と大規模データベースでの

有用性の検討

田中 雄基*1 日朝 祐太*1 大竹 義人*1 高尾 正樹*2

上村 圭亮*2 菅野 伸彦*2 佐藤 嘉伸*1

要旨

大規模医用画像データベースに対する病態解析の必要性が高まっている.そこで我々は変形性股関節症に 着目し、大規模医用画像データベースに対する変形性股関節症の分類である一次性と二次性の自動分類を 目標とする.本研究ではそのための第一歩として三次元 CT 画像から Convolutional Neural Network (CNN)を 用いて解剖学的特徴点を特定し、臨床で用いられている Center Edge Angle(CEA)を自動で計測する.また診 療科を問わず網羅的に収集された約一万症例の CT データベースから変形性股関節症の有病率の測定に利 用できるかを検討する.

キーワード:大規模医用画像データベース, CNN, CEA, 変形性股関節症, 解剖学的特徴点

1. はじめに

変形性股関節症とは関節軟骨の変性あるい は摩耗により関節に退行性の変化をきたす一 連の疾患である.一次性と二次性に分類されて おり、日本では臼蓋による大腿骨頭の被覆が浅 くなることによって不安定になる臼蓋形成不 全に続発する二次性が多い[1].また,股関節の 骨形態異常により大腿骨頭から頸部または臼 蓋に衝突が生じることで障害をきたす大腿骨 寛骨臼インピンジメントが一次性の変形性股 関節症の原因であると報告されている[2]. これ らの疾患を診断するために単純 X 線画像を用 いて臼蓋と骨頭の位置関係の評価を行い, CT 画 像からより詳細な位置関係を評価し, 立体的把 握や術前計画に利用している. Wiberg らは骨頭 中心と臼蓋外側縁を結ぶ線と骨盤水平線に対 する垂線のなす角度である CEA を提案し、臨 床において重要な判断材料の1つとして用いら れている[3]. そこで本研究では、この手法を大 規模医用画像データベースに自動で適用する ことで、変形性股関節症の有病率の測定を行う ことを目的とする.本稿では、CNNを用いて三 次元 CT 画像から解剖学的特徴点を自動で抽出 し、CEA の計測の自動化を行い、大規模データ ベースへの有用性を検討する.

2. 手法

提案方法のフローチャートを図1に示す.CNN は三次元 CT 画像の各 Axial 断面スライスを入

^{*1} 奈良先端科学技術大学院大学 先端科学 技術研究科 情報科学領域 〔〒630-0192 奈良県生駒市高山町 8916-5〕 e-mail: tanaka.yuki.tw4@is.naist.jp *2 大阪大学大学院 医学研究科 投稿受付: 2019 年 5 月 22 日

カとし、ランドマークを推定するためのヒート マップを出力する.ただし、CT 画像に対して[-150、350]区間での階調処理を行った画像を入力 する.テスト時にはヒートマップを出力した後 に、後処理として、カーネルサイズ 15x15x15、 シグマ 5 pix のガウシアンスムージングを行い、 三次元画像内で最大値を持つ座標を最終的な ランドマークとする.

3. データセット

本研究で用いた臨床用 CT 画像は大阪大学病 院で撮影された股関節変形症患者の in vivo な 画像である.患者数は 88 人であり,画像の Field of view は 360×360 mm²,マトリックスサイズ は 512×512,画像の解像度は 0.703125×0.703125 mm,スライス間隔は 1.0-6.0 mm で撮影した後, ボリューム全体のスライス厚が 1.0 mm になる ように補間した.ランドマークの正解として 3D Slicer(NAMIC, 2008)を用いて,左右の大腿骨頭 中心と臼蓋外側縁に計4 点の解剖学的特徴点を 手動で抽出した.

4. 実験

CNN の学習時に用いる正解データとして,解 割学的特徴点を中心とする三次元のガウス球 (sigma=15 pix)を作成した.自動で推定した CEA と正解の CEA との誤差で評価した.2-fold 交差 検証により提案手法の有効性を検証した.CNN の構造には U-Net[4]を用いた. CEA の誤差の Boxplot を図2に示す.CEA の最大誤差は 52.360 deg,最小誤差は 0.010 deg,中央値は 5.933 deg となった.

5. 考察

CEA の推定誤差が大きい要因として, Axial 平面に垂直な方向でのずれが大きいと考えられる. これは CNN の入力画像が 2D のため, 三次元的な骨形状を考慮出来ていないことが原因であると考えられる.

また、CEA は骨盤が後傾することによって減

少することが報告されている[5]. そのため,正 確な正面像が必要になる.しかしながら,正確 に正面像を撮影することは容易ではなく,本手 法で推定可能な三次元方向での角度を考慮に 入れた判断も臨床では重要となるのではない かと考えている.

図 2 CEA の BoxPlot と最大誤差と最小誤差と中央値 のときの予測結果を示す.青い角度線が CNN の 予測結果であり,赤い角度線が正解である.

6. まとめ

本研究では, CNN を用いて股関節 CT 画像か ら CEA を測定するための解剖学的特徴点の自 動抽出する手法を提案した. 今後は大規模医用 画像データベースに適用し, 有病率の測定およ び, 別の臨床で用いている定量的指標も含める ことで変形性股関節症を評価する判断材料を 増やす予定である.

謝辞

本研究の一部は, KAKENHI 19H01176 および KAKENHI 26108004 の支援による.

利益相反の有無

なし

文 献

 [1] Noguchi Y, Miura H, Takasugi S, et al.: Cartilage and Labrum Degeneration in the Dysplastic Hip Generally Originates in the Anterosuperior Weight-Bearing Area. An Arthroscopic Observation. Arthroscopy 15: 196-506, 1999

- [2] Pollard TCB, Villar RN, Norton MR, et al.: Genetic influences in the aetiology of femoroacetabular impingement. J Bone Joint Surg Br 41:209-216, 2010
- [3] Hanson JA, Kapron AL, et al.: Discrepancies in measuring acetabular coverage: revisiting the anterior and lateral center edge angles. J Hip Preserv Surg. 2:280–286, 2015
- [4] Ronneberger, et al.: U-Net: Convolutional networks for biomedical image segmentation. MICCAI, 9351: 234-241, 2015.
- [5] 幸博和,原俊彦他:骨盤後傾に伴う股 関節の荷重部傾斜角とCE角の変化に ついて-MPR 像を用いた検討.整外と再 外 57: 332-336, 2008

Automated Measurements of CEA of Diseased Hip Joint

And The Usefulness in Big Database Analysis

Yuki TANAKA^{*1}, Yuta HIASA^{*1}, Yoshito OTAKE^{*1}, Masaki TAKAO^{*2}, Keisuke UEMURA^{*2}, Nobuhiko SUGANO^{*2}, Yoshinobu SATO^{*1}

*1 Graduate School of Information Science, Nara Institute of Science And Technology
 *2 Graduate School of Medicine, Osaka University

The need for automatic approaches for pathophysiological analysis in big databases of medical images is increasing. In this study, we aim at the automatic classification of primary and secondary osteoarthritis in a big database. Anatomical landmarks were localized from 3D CT images by using a convolutional neural network (CNN). The center of edge angle (CEA), which is used in the diagnosis of osteoarthritis, was estimated. Preliminary results show the efficiency of the proposed method. We will further examine its feasibility on a large database consisting of approximately 10,000 CT images.

Key words: Big Medical Image Data, CNN, CEA, Osteoarthritis, Anatomical Landmarks

A Study on Quantitative Evaluation of Kidney Tumors using 3D Fully Convolutional Network

Chenglong Wang¹, Masahiro Oda², Yuichiro Hayashi², Naoto Sassa³, Tokunori Yamamoto³, Kensaku Mori^{2,4,5}

Abstract

Partial nephrectomy is a common treatment for kidney tumors. Due to the wide variety of tumor's anatomical structures, relations between tumor's morphology and surgical outcomes have gained a lot of research interests. Quantitative evaluation of kidney tumor can help physicians to have a better understand of tumor status. Manual segmentation of kidney and tumor is a time-consuming and expensive task. In this work, we used a 3D fully convolutional network to automatically segment kidneys and tumors, and then use traditional statistical analysis methods to quantitatively evaluate the kidney tumor. By using deep-learning based method, kidneys and tumors can be precisely extracted from 3D CT scans. The quantitative analysis can be used for further surgical planning, such as renal clamping strategy. Our segmentation accuracies of kidney and tumor were 93.4% and 42.3%. Keywords : Kidney tumor, FCN, Quantitative analysis of tumor

1. Introduction

Nowadays, partial nephrectomy is a common treatment for kidney tumors. Due to the wide variety of tumor's anatomical structures, relations between tumor's morphology and surgical outcomes have gained a lot of research interests. Tumor's morphology is a major factor affecting the nephrectomy surgical planning. However, traditional manual segmentation of kidney and tumor is a time-consuming. An automatic computer-aided diagnosis (CAD) system for quantitative analysis of kidney tumors can contribute to a more efficient diagnosis. To quantitatively analyze kidney and tumor, a precise segmentation of both two regions is needed. In this work, we use a fully convolutional network (FCN) to automatically segment kidney and tumor. Then, quantitative measures, such as sphericity, distance and intensity deviation, are used to analyze kidney tumor. This quantitative analysis can be used for further surgical planning, such as renal clamping strategy.

2. Methods

In this work, we use a 3D U-Net like architecture incorporated with a spatially-aware unit to segment kidney and

- 1. Graduate School of Information Science, Nagoya University.
- 2. Graduate School of Informatics, Nagoya University.
- 3. Nagoya University Graduate School of Medicine.
- 4. Information and Communications Headquarters, Nagoya University.
- 5. Research Center for Medical Bigdata, National Institute of Informatics.

Fig. 1 Overall architecture of our FCN.

tumor. The major difference between our network and original U-Net architecture [1] is that we incorporate spatial information into our FCN. Since anatomical position of human tissue is almost invariant, the introduction of spatial information can effectively reduce outliers (false positives). The architecture of our FCN is illustrated in Fig. 1. The input volumes of the network are sub-volumes cropped using sliding-window method. As shown at the bottom of architecture, we introduced a 3-channel spatial information containing relative coordinate information which can be calculated by $\left[\frac{x}{W}, \frac{y}{H}, \frac{z}{D}\right]$, where x, y, z denote voxels' coordinates of input volume, W, H, and D represent width, height, and depth of input CT volume. At a training phase, randomly cropped sub-volumes were fed to network for training FCN. We used sliding-window strategy to crop CT volume into 96 × 96 × 96 sub-volumes feeding to the FCN. Output results were voxelwise segmentation results. At a prediction phase, test CT volume was first cropped into sub-volumes using sliding-window method, then, voxelwise segmentation results were obtained by the trained FCN. Finally, segmented sub-volumes were merged to a single segmentation volume.

After segmentation of kidney and tumor regions, quantitative analysis is performed for kidney tumor regions. In this work, we consider three measurements, including intensity deviation, sphericity, and distance between a kidney and a tumor. Let V, S and D denote these three measurements respectively. Measurements for single tumor can be described as:

$$V_{i} = |T_{i} - E(T)|,$$

$$S = \pi^{\frac{1}{3}} (6N)^{\frac{2}{3}} / F,$$

$$D = d(g_{T}, g_{K}),$$
(1)

where, T denotes tumor region, $E(\cdot)$ is mean value, $i \in N$ denote index of voxel inside of tumor region. N and F represent the number of voxels of whole tumor region and its surface. g_T and g_K denote the gravity position of the tumor and kidney regions. $d(\cdot)$ is Euclidean distance. Based on these measurements, we can obtain a rough quantitative description of tumors segmented.

3. Experiments

In this work, we have 20 contrast-enhanced CT scans. Each case contains one kidney tumor confirmed by clinicians. Considered the limited dataset, we first used a public dataset, kits19 [2], for pre-training of our FCN and then finetune the FCN on our own dataset. We randomly separated our data into training/test with rate of 0.9/0.1, and performed Monte-Carlo cross-validation (MCCV) three times. Thus six cases were tested in our experiments.

	-	-					
	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Mean
Kidney DSC (%)	77.6	97.3	95.1	96.6	98.0	95.9	93.4
Tumor DSC (%)	0.0	70.3	32.4	67.2	82.2	2.1	42.3

Table 1 Quantitative segmentation results of six test cases. DSC denotes Dice score.

Fig. 2 Two examples of segmentation results. Kidney and tumor regions are marked in red and green.

No data augmentation was performed during training. The learning rate for pre-training and finetuning is set to 0.001 and 0.0001. Adam optimizer was used in this work. Batch size was set to 6 during training. Training epoch was set to 5000 times.

Detailed quantitative segmentation results are shown in Table 1. From Table 1, we can find that Dice scores (*DSC*) of kidney were reasonable high but *DSCs* of tumors were low and not robust. Several segmentation results are shown in

Sphericity *S*: 0.696 Distance *D*: 31.5mm

Sphericity *S*: 0.691 Distance *D*: 28.5mm

Fig. 2. Tumor segmentation accuracy of Case 5 is reasonable acceptable. However, segmentation accuracy of Case 1 is deteriorated, tumor was totally under-segmented. One considerable reason is that the contrasting conditions of Case 1 is slightly different from other cases. In this paper, we used manually annotated data to quantitatively analyze tumors regarding the low segmentation accuracy. We demonstrated two quantitative analysis examples in Fig. 3. For a clear visualization, we visualized the square of intensity deviation V^2 . We first normalized V^2 to [0, 1], and rendered the tumor in pseudo-color mapping 0 to blue and 1 to red color. Sphericity is an important measurement of tumor. Lower sphericity suggests the higher possibility of cancer. Distance between a tumor and a kidney effect the blood feeding. Shorter distance indicates the high risk of faster-growing tumor.

4. Conclusions

In this work, we presented a preliminary study on quantitative evaluation of kidney tumors using 3D fully convolutional network. We used a 3D FCN to segment kidney and tumors automatically. Three measurements, intensity deviation, sphericity, and distance between a kidney and a tumor, are used to quantitatively analyze tumors. As aforementioned, although the segmentation accuracy of tumors was low and not robust, the experimental results showed the potential of using FCN in kidney tumor segmentation task. The quantitative analysis results of tumors can be used for further precise surgical planning. To validate our approach on larger dataset is one of our future works.

Competing interests

This work has no conflict.

Acknowledgement

Parts of this research was supported by MEXT/JSPS KAKENHI (26108006, 26560255, 17H00867, 17K20099) and Hori Foundation, and the JSPS Bilateral Collaboration Grant and AMED (191k1010036h0001)

References

- [1] Çiçek Ö., Abdulkadir A., Lienkamp S.S., et al: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: International conference on medical image computing and computer-assisted intervention 9901: 424-432, 2016
- [2] KiTS19 Challenge, https://kits19.grand-challenge.org

網膜動脈硬化症分類のための静脈口径計測

畑中 裕司*1 立木 宏和*2 川崎 良*3 齋藤 公子*4

村松千左子*5 藤田 広志*6

要旨

網膜動脈硬化症の主な所見である網膜動静脈交叉現象の診断を支援するために,網膜動静脈交叉部の近く の静脈口径を計測する処理の開発を目的とする.従来に提案した手法は,血管の抽出時に血管壁が滑らか に検出できず,計測位置によって静脈口径の値がばらつく問題点があった.本研究では,P型フーリエ記述 子を用いて血管壁と血管の骨格を平滑化して,問題を改善させた.さらに,二値画像および濃淡画像の二 次微分値を用いた血管壁の決定処理を開発し,静脈口径の計測精度を高めた.提案した方法を95枚の眼底 画像に適用したとき,手動計測した静脈径との平均誤差と標準偏差は1.39±1.11 画素と良好な結果を得た.

キーワード:口径計測,エッジ検出,プロファイル解析,交叉現象,動脈硬化

1. はじめに

網膜動脈硬化症は自覚症状を伴わずに進行 することがあり,網膜の血管閉塞性病変の前段 階または脳梗塞などの全身疾患の前段階であ るといえるため,その早期発見が必要である. 一方で,眼底は人体で血管を直視できる唯一の 領域であるので,高血圧や動脈硬化などの循環 器系の検査に眼底検査が利用されている.眼底 検査は非侵襲かつ簡便な検査方法であるので, 人間ドックでは必須項目となっている.眼底画 像の循環器疾患の分類には,長年に渡って

*1 滋賀県立大学電子システム工学科

〔〒522-8533 滋賀県彦根市八坂町 2500〕 e-mail: hatanaka.y@e.usp.ac.jp

*2 滋賀県立大学大学院工学研究科電子 システム工学専攻

*3 大阪大学大学院医学系研究科視覚情報制御学

*4 篠田総合病院眼科

*5 滋賀大学データサイエンス学部

*6 岐阜大学工学部電気電子・情報工学科 投稿受付:2019年5月15日 Scheie 分類 [1] や Keith-Wagner 分類慶大変法 が用いられてきた. Scheie 分類では高血圧性変 化と動脈硬化性変化に分けて判定が行われ、0 ~4の5段階判定の動脈硬化性変化の1~3度 が動静脈交叉現象(以下,交叉現象)の程度で 判定されている. 交叉現象は, 硬化する動脈が 交叉する静脈を圧迫し,静脈の形状や走行方向 が変化する現象である.また、交叉現象は現在 の血圧だけでなく過去の血圧にも関連してい るとの報告[2]、交叉現象を有する人は、有さ ない人の2倍の確率で脳卒中を発症する可能性 があるとの報告[3]がある.したがって、交叉 現象を早期に発見することが不可欠である. 早期発見の機会である人間ドックや健診では, 眼底検査は眼底カメラにて撮影した画像診断 が定着している.しかし、画像を目視判定する 主観的かつ定性的な方法が一般的であり、静脈 口径の計測などの定量的な判定は殆ど行われ ていないことが実情である.

コンピュータによる動静脈交叉部における 定量的な血管解析に関する報告がある[4-7]. 横内らは,方向付き微分法で血管壁を強調して 抽出することによって, 交叉現象を解析する手 法を提案した [4]. Nguyen らは, 交叉の影響を 受けない位置の静脈口径を用いた矩形を交叉 部付近の静脈にマスクし、マスク内で実際にセ グメンテーションした静脈の面積を求めるこ とで, 交叉部の静脈口径を推測する手法を提案 している [5]. われわれは、交叉部付近に同心 円を設定し,円周上の静脈領域の画素値プロフ ァイルをゼロクロス法によって静脈壁を決定 し,静脈口径を計測する手法を提案している 「6].また、抽出した血管の良壁と骨格を通る 直線の長さが最短のときを静脈口径とする手 法も提案している[7].しかし,従来手法[6,7] は静脈の抽出精度に依存する問題があった.本 論文では、P型フーリエ記述子を用いて血管抽 出後の血管壁と血管の骨格を平滑化すること により,抽出精度のばらつきを抑制する処理を 提案する. さらに, 二値画像および濃淡画像の 二次微分値を用いた血管壁の決定方法につい ても述べる.

2. 方法

交叉現象は、図1に示すように交叉する動脈 の影響を受けない位置の静脈口径 V₁ と交叉付 近の静脈口径 V₂の比 (V₂/V₁,静脈口径比)を用 いて判定される [8]. 交叉現象は、硬化した動 脈が静脈を圧迫し、交叉部の静脈が細く見える 現象であるので、静脈口径比が小さくなるほど 異常である.本論文では、V₂と V₁を計測する処 理について述べる.

提案する手法は図2のように5つの処理から 構成する.医師は眼底画像から診断に最も有用 な交叉部を選んで,その静脈口径比を考えるた め,本研究では眼底画像からユーザがマウス等 で交叉点 CP を与えることにした.

2.1 前処理と血管抽出

RGB カラー眼底画像の G 成分の波長の光を ヘモグロビンが吸収するため,動脈と静脈のコ ントラストが共に高くなる.そこで,ユーザが 指定した CP を中心とした関心領域(ROI: Region of Interest)を設定し,G成分画像の ROI

図1 静脈口径比の計測

図2 静脈口径計測処理の流れ

(c)血管強調, (d)決定した血管領域(白)とそ の骨格(赤)

から血管を抽出する.

まず,G成分画像にガンマ補正および線形関 数による階調処理を行い,図3(b)のように血管 を強調する.撮影光で血柱反射が生ずると,血 管抽出に失敗することがあるため,Closing処理 によって血柱反射の影響を軽減した.次に,筆 者らが開発した二重リングフィルタとブラッ クトップハット変換を組み合わせた手法[9]を 用いて血管を強調する(図3(c)).そして,二値 化処理を適用して血管領域を決定し,Hilditchの 方法[10]で細線化することによって,図3(d) のように血管の骨格を抽出した.

2.2 静脈認識

最初に ROI 内の血管構造を理解するために 分岐点と交叉点を検出する. 骨格の任意の画素 の8近傍に骨格をなす画素が4画素存在すれば 交叉点,3 画素存在すれば分岐点として検出し た[11]. ここで,ユーザ指定の CP に最も近い 交叉点を静脈口径比計測の対象とする.

図4に示すように血管抽出処理によって血管 の一部領域が欠損したり,動脈硬化の進行によ って交叉する静脈が奥に押し込まれて写った りしていない場合,図4(a)のようなパターンに ならず,上述の方法では交叉として認識できな い.そこで,図4(a)~(c)に示すパターン1,2, 3を想定して交叉部を認識する.まず,パター ン1は上述の処理で認識できる.次に,パター ン2,3は,上述の方法がCP付近で分岐点と認 識された場合に該当する.図4(d)に示すように, 分岐点から半径r以内に他の血管領域(ラベル) が存在する場合はパターン2,存在しない場合 はパターン3とする.

最後に、CP付近の交叉部を消去し、血管を枝 に分割する.この段階で、パターン1、2の場合 は4本、パターン3は3本の枝が認識される. そして、交叉点で向かい合う2つの枝領域を同 一の血管と定義する.各枝領域の骨格を2pixel 膨張した領域のG成分の画素値の平均値を計 算し、枝のペアの認識に利用する.同種の血管 同士の場合、異種の血管同士の場合と比較して、 G成分の画素値の差は小さいため、平均値が近 い2本の枝をペアとする.また、G成分画像に おいて、静脈は動脈よりも画素値が低くなる傾 向にあるので、平均値が高いペアを動脈、低い ペアを静脈と定義した.

2.3 静脈の輪郭と骨格の補正

2.1 の処理を用いると,図 5(a)のように血管壁 が凸凹に抽出されることがある.このような領 域を細線化すると,細線も蛇行してしまう.特 に,図 5(b)に示すように交叉部の骨格が正確に 得られないことが多い.そこで,交叉部におけ る静脈の骨格をスプライン補間して,図 5(c)に 示すように平滑化した.

図4 交叉パターンと血管の一部が欠損した交叉の
 例. (a)パターン1:通常の交叉,(b)パターン
 2:交叉部をなす血管の一部欠損,(c)パターン
 3:交叉をなす血管の一本の半分が欠損,(d)(b)
 と(c)の判別法,(c)血管の一部欠損のある例.

図5 血管の輪郭と骨格の補正. (a)補正前, (b)骨格 と血管壁の平滑化後, (c)(a)の拡大, (d)交叉部 の骨格補正

この段階では、血管の骨格線と血管壁が波打 っている状態である.P型フーリエ記述子[12] を用いて、血管壁や骨格の凸凹を表現する高周 波成分を除去することにより、図 5(c)のように 交叉部以外で蛇行する血管の輪郭と骨格を補 正した.P型フーリエ記述子を適用した理由と して、図形の輪郭線や平面上の曲線を周波数領 域で記述するものとしてフーリエ記述子が知られているが、骨格や血管壁は開曲線であるので、開曲線に適用可能な P型フーリエ記述子を 選定した.

2.4 静脈口径の計測

静脈の口径は, 骨格の各画素において骨格の 走行方向と垂直な直線(P-line)を考え, P-line 上で血管壁を2点検出し, それらのユークリッ ド距離とした.ここで, P-line は一定長さとし, 交叉領域に重なる場合は除外した. P-line の一 例を図6に示す.本論文では,3種類の血管壁 の検出法(手法1,手法2および手法3)を提案 し,それぞれを比較した.

手法 1 ではまず, 2.3 で平滑化した静脈の輪 郭と P-line が交わる画素 ep を図 7(a)のように探 索した.図 7(b)に ep の例を示す.次に,画素 ep を含む血管壁の画素を n 個抽出し,それらに対 して最小二乗法を適用して,図 7(c)に示すよう な n-1 次方程式を得た.最後に,近似式と P-line の交点を求め,交点間の距離を静脈口径とする.

手法2では、G成分画像にヒストグラム平坦 化処理を適用し、P-line 上のプロファイルから ゼロクロス法 [13] によって血管壁を決定する ことを試みた.しかし、静脈の血柱反射の影響 で血管壁以外がゼロクロスで検出されてしま う問題があった.そこで、血管の骨格(プロフ ァイルの中心)から見て二次微分の値が最大と なる点(図8青点)を求め、最大値の外側の最 初のゼロクロス点(図8赤点)を血管壁とした.

手法3は、手法1と手法2の組合せである. 予備実験において、手法1では実際の血管壁よ りも外側の画素を血管壁として検出する傾向 があった.また、手法2で用いた最大二次微分 値をもつ画素は、実際の血管壁よりも内側に存 在する傾向があった.そこで、手法1と2を組 み合わせる.まず、図9のように2.3で得た静 脈の輪郭(輪郭画素を255、非輪郭画素を0と した256階調の画像)をガウシアンフィルタを 用いて平滑化した.この画像を重み分布と定義 する.続いて、P-line上で血管壁らしさ IVW を 式(1)のように定義し、計算した.

図6 骨格に垂直な直線 P-lineの例

 図7 口径計測の手法1の流れ. (a) P-line と血管の 輪郭の交点画素の探索, (b)探索された ep の 例, (c)血管壁の近似式の例, (d) P-line と近似 式の交点の計算

プロファイル座標

図8ゼロクロス法ベースの血管壁の決定例.青 点:左右での最大二次微分値.赤点:決定し た血管壁.

図9血管壁の重み分布. 左:手法1の血管壁. 右:ガウシアンフィルタ適用後の重み分布.

ここで, SDV は P-line における二次微分値, WV は P-line における重み分布の画素値である. Pline 上で IVW が最大となる点を血管壁とした.

実験結果と考察

検診で撮影された眼底画像を用いて,提案手法を評価する.対象はトプコン社の眼底カメラ TRC-NW200 で撮影された 95 枚であり, 2048×1536 pixels の 24bit カラー画像である.本 実験は,滋賀県立大学「研究に関する倫理審査 委員会」の承認下で行った.

3.1 静脈口径の手動計測

最初に, 眼底画像の研究を担う3名が全画像 の交叉部付近の静脈の口径を手動で計測した. 眼底画像1枚毎に観察者1名が交叉点 CP を指 定した. その CP を中心として 10 画素刻みで半 径 10~110 画素の同心円を描画し, 各円周に交 わる静脈の口径を手動計測した. ただし, 交叉 と分岐によって明らかに口径が変化した箇所 は計測の対象外とした.3名の観察者が計測し た静脈口径の違いを調べるため, 観察者間の計 測誤差を絶対誤差の平均および標準偏差を求 めた.表1にその結果を示すが、観察者間には 平均約 1.4pixel の計測誤差がみられた. 眼底画 像全体の血管口径計測のためのデータベース **REVIEW** [14] において, 3 名の専門家が正解を 作成しているが、専門家間で最大約 1.3pixel の 誤差が生じた報告があることから,本手動計測 の誤差は許容できると考えた.

3.2 交叉点 CP の指定ズレによる交叉部の認 識精度

実際にユーザが交叉点 CP を指定する際,マ ウス操作の場合は位置ずれが生じて再現性が ない. CP の位置ずれが生じた際に,交叉部の認 識精度が保証できるかを検討した. CP がずれる と ROI が変化するため,前処理などの画像の強 調処理に影響し,血管の抽出結果が変化すると 予想できる.ここでは, 3.1 で指定した CP を基

表1 観察者 A~C 間の計測誤差

観察者	絶対誤差の平均±標準偏差
A-B	1.10±0.897 pixels
B-C	1.70±1.15 pixels
C-A	1.43±1.12 pixels

表2 交叉点の位置ずれによる交叉部の認識

交差の	認識	交叉パターン1,2,3			2, 3
位置	率	1	2	3	NG
СР	1.00 (95/95)	84	8	3	0
CP + (+5, +5)	0.979 (93/95)	84	7	2	2
CP + (+5, -5)	0.968 (92/95)	83	7	2	3
CP + (-5, +5)	0.968 (92/95)	84	6	2	3
CP + (-5, -5)	0.968 (92/95)	82	7	3	3

表3静脈口径の計測誤差

計測手法	絶対誤差の平均±標準偏差
1	2.07±1.34 pixels
2	3.32±3.19 pixels
3	1.39±1.11 pixels
従来手法	2.41±1.34 pixels

準として,上下左右に各 5pixels 位置ずれした場 合の交叉部の認識精度を調べた.表2にその結 果を示す.数値は分類した交叉部の数である. 観察者が指定した CP の位置を基準にすれば, 95 箇所全ての交叉を認識でき,84 箇所を正し くパターン1に分類できた.しかし,CP から 5pixel 位置ずれすると,コントラストの低い血 管の抽出精度が下がり,パターン1以外に分類 される場合があった.認識できなかった交叉部 も,コントラストの低い動脈を十分に抽出でき なかったことが原因である.

3.3 静脈の口径計測法の比較

2.4 で述べた 3 つの血管壁の決定手法による 静脈口径の計測誤差について調べた.また,誤 差の大きさの目安を知るために,従来手法[7] の絶対誤差も調べた.95箇所の交叉部に対して 絶対誤差を求めた結果を表3に示す.

手法1は,血管抽出後に二値化された画像か らP型フーリエ記述子による血管壁や骨格の線 分の平滑化を行うことから,網膜領域の模様の 影響を受けにくい.誤差の要因としては,計測 手法が血管抽出の精度に依存していることが あげられる.近年は深層学習を用いたセグメン テーション手法の開発が盛んであるが,多くの 学習データを用意することが困難であること, 少ないデータでも静脈口径を計測できる手法 を目指したことから,本研究では機械学習を用 いないフィルタベースの手法を適用した.

手法2は、ゼロクロス法を基本としているため、血柱反射や網膜の色むらからゼロクロス が多く生じてしまう.特に、血管領域内の小さ なエッジを誤検出してしまうことが目立った. つまり、手法2では実際の血管壁の内側を検出 してしまうことが多いため、本研究では手法1, 2を組み合わせた手法3を考えた.

さらに、血管壁の決定方法について、手法3 の最大二次微分値 SVD を用いて血管壁を決定 する手法を新たに定義して検討する(手法4と する). また, 手法1と手法4がそれぞれ決定 した血管壁の中点を血管壁とする手法5も新た に定義する.95箇所の交叉部に適用したところ, 絶対誤差の平均は手法4が2.08pixels,手法5が 1.48pixels であった. 手法4の絶対誤差は手法1 と同等,手法5の絶対誤差も手法3に近い値と なった.しかし、血管と網膜のコントラストが 低い場合, すなわち SDV の変動が小さい場合, 手法4では血管壁近くの網膜の色むらを血管壁 として誤検出する可能性があり、手法5を用い た計測の結果にも悪影響を与えると考えられ る.以上のことより,静脈口径の計測のための 血管壁の決定には手法3 が良いと結論づける.

3. まとめ

本論文では,網膜動脈硬化症の診断支援のた めに,網膜動脈交叉部における静脈口径の計測 法について言及した.従来手法では血管抽出の 精度が口径計測に強く影響していた.本論文で は,静脈の骨格および輪郭をスプライン補間お よび P型フーリエ記述子を用いて平滑化するこ とによって,従来の問題点を軽減させた.また, 複数の血管壁の検出手法を考え,比較実験を行 った.その結果,二値画像および濃淡画像の二 次微分値を用いた手法が良好であった.観察者 による手動計測との絶対誤差の平均±標準偏 差は1.39±1.11 pixel となり,観察者間で生ずる 絶対誤差と同等であり,提案手法は人間が血管 壁を凝視して計測する水準に達したといえる. コントラストが低い血管の抽出精度の向上が 課題として残っており,さらなる開発が必要で ある.本研究では検診施設の眼底画像を使用し たため,明確に交叉現象の進行した症例が含ま れず,交叉現象の判定実験を行わなかった.異 常例を多く収集し,評価実験を行う必要がある.

謝辞

研究遂行にあたり貴重なご助言を賜りました滋賀県立大学工学部の奥村進氏および小郷 原一智氏に深謝いたします.本研究の一部は公 益財団法人テルモ科学技術振興財団, JSPS 科研 費 16K01415 および 26108005 の助成を受けたも のです.

利益相反の有無

なし.

文 献

- Scheie HG: Evaluation of ophthalmoscopic changes of hypertension and arteriolar sclerosis. Arch Ophthalmol 49: 117-138, 1953
- [2] Wong T, Mitchell P: The eye in hypertension. Lancet **369**: 425-435, 2007
- [3] Wong T, Klein R, Couper D, et al.: Retinal microvascular abnormalities and incident stroke: The atherosclerosis risk in communities study. Lancet 358: 1134-1140, 2001
- [4] 横内久猛,山本真司,鈴木孝治,他:眼 底写真の自動認識(その1) 血管境界 線抽出による眼底写真中の交叉現象の 自動認識.医用電子と生体工学 12:123-130,1974
- [5] Nguyen U, Bhuiyan A, Park L, et al.: An

automated method for retinal arteriovenous nicking quantification from color fundus images. IEEE Trans Biomed Eng **60**: 3194-3203, 2013

- [6] 高橋 亮,畑中裕司,中川俊明,他:眼 底画像における高血圧症診断支援のた めの血管交叉部の自動解析. Med Imag Tech 24: 270-276, 2006
- [7] Hatanaka Y, Muramatsu C, Hara T, et al.: Automatic arteriovenous crossing phenomenon detection on retinal fundus images. Proc SPIE Medical imaging 2011 7963: 79633V, 2011
- [8] 中島章,新井宏明:成人病の眼底検査.キャノン販売株式会社,東京,1984
- [9] 岩瀬達彦,村松千左子,畑中裕司,他:
 眼底画像における細動脈狭窄評価のための主幹動静脈の自動検出および分類法.電子情報通信学会技術報告 109: 189-193,2010
- [10] Hilditch CJ: Comparison of thinning algorithms on a parallel processor. Imag Cision Comput 1: 115-132, 1983

- [11] 畑中裕司,原 武史,周 向栄,他:眼 底写真における血管の追跡処理による 動脈の口径不同の自動検出.生体医工
 学 42: 236-240, 2004
- [12] 上坂吉則:開曲線にも適用できる新し
 いフーリエ記述子.電子情報通信学会
 論文誌 A J64-A: 166-173, 1984
- [13] Marr D, Hildreth E: Theory of edge detection. Proc Royal Soc London B: Biol Sciences 207: 187-217, 1980
- [14] Al-Diri B, Hunter A, Steel D, et al.: REVIEW - A reference data set for retinal vessel profiles. Proc 30th Int Conf IEEE Eng Med Biol Soc: 2262-2265, 2008
- [15] 中川俊明,林佳典,畑中裕司,他:眼底 画像診断支援システムのための血管消 去画像を用いた視神経乳頭の自動認識 及び擬似立体視画像生成への応用.電 子情報通信学会論文誌 J89-D: 2491-2501,2006

Retinal Vein Diameter Measurement

for Arteriosclerosis Retinae Classification

Yuji HATANAKA^{*1}, Hirokazu TACHIKI^{*2}, Ryo KAWASAKI^{*3}, Koko SAITO^{*4} Chisako MURAMATSU^{*5}, Hiroshi FUJITA^{*6}

*1 Department of Electronic Systems Engineering, School of Engineering, the University of Shiga Prefecture

*2 Division of Electronic Systems Engineering, Graduate School of Engineering, the University of Shiga Prefecture

*3 Department of Vision Informatics, Graduate School of Medicine, Osaka University

*4 Department of Ophthalmology, Shinoda General Hospital

*5 Faculty of Data Science, Shiga University

*6 Department Electrical, Electronic & Computer Engineering, Faculty of Engineering, Gifu University

The purpose of this study is to develop a vein diameter measurement in order to aid diagnosis of arteriovenous nicking, which is main retinal arteriosclerosis. The previous method could not detect a blood vessel wall smoothly, thus variation pf vein diameters measured was large. In this study, the vein diameter measurement was improved by smoothing the blood vessel walls and vessel skeletons using P-type Fourier descriptors. Moreover, this method was also improved by developing a vessel wall detection method using binarized vessel image and second derivative in gray-level one. The mean absolute error and standard deviation of vein diameter measurement was reached to 1.39 ± 1.11 in 95 region of interest with arteriovenous crossing points.

Key words: Measurement of vessel diameter, Edge detection, Profile analysis Retinal image, Arteriovenous nicking, Arteriosclerosis
第 38 回日本医用画像工学会大会(JAMIT2019) 大会役員委員会名簿

五十音順・敬称略

大会長		
佐藤 嘉伸	奈良先端科学技術大学院大学	
大会長補佐		
	秦良先端科学技術大学院大学	
	業務委員長	
	日立製作所	
	コートリアル委員長	
山田 曲仕	正末庄历安兵及	
安 貝 及	亡自主立十岁	
	広局用业入子	
	ナミナジ	
	—————————————————————————————————————	
口田 隆1J 	人	
	于 仰 呂 人 子	
	国 立 順 泉 益 州 研 充 て ノ タ ー ・ ・ ・ ・ ・ ・ ・	
	キャノノメディカルシステムス	
	人败人子	
	- 石白崖人子 	
小毛 尚史	泉 泉 山 美 人 子	
	一	
	发知上耒人子 自決制 <u>佐</u> 正	
 上古 半込		
	人 版 入 子	
	- 九州上未入子 	
	<u> </u>	
上膝		
他石 刻 速水 四曲	家邸八子 市古典丁十岁	
	本示辰二八十	
	或半八子 雷气涌信十岁	
	电风遮旧八子 ————————————————————————————————————	
//// 邑二 	新御八子 	
	今祖大学 全祖大学	
山下 竹芯	<u> </u>	
	千華大学	
	- 「飛八子	
	滋賀県立大学	
	千葉大学	
	山口大学	
	山口生土木八丁 山古土木八丁	
	名古屋大学	
	京都大学	
	量子科学技術研究開発機構 放射線医学総合研究所	
温市 水貝 湯清 折拍	山形大学	

日本医用画像工学会(JAMIT) 役員名簿 (平成31年4月22日現在)

五十音順・敬称略

	氏名	所属
会長	尾川 浩一	法政大学
	工藤 博幸	筑波大学
副会長	佐藤 嘉伸	奈良先端科学技術大学院大学
常任幹事	大沢博之	キヤノンメディカルシステムズ
	小尾高史	東京工業大学
	北坂 孝幸	愛知工業大学
	清水 昭伸	東京農工大学
	中田典生	東京慈恵会医科大学
	原武史	岐阜大学
	花岡 昇平	東京大学
		日立製作所
	目加田慶人	中京大学
	湯浅 哲也	山形大学
	石垣 武男	名古屋城北放射線科クリニック
	石田 隆行	大阪大学
	伊藤 聡志	宇都宮大学
	上村 幸司	国立循環器病研究センター
	大松 広伸	網走刑務所
	岡田 知久	京都大学
	掛川 誠	中央システム技研
	笠井 聡	コニカミノルタ
	勝俣健一郎	国際医療福祉大学
	川岸 将実	キヤノン
	木戸 尚治	大阪大学
	黒木 嘉典	新村病院、博愛会 HPN 東京
	真田 茂	公立小松大学
	陣崎 雅弘	慶応義塾大学
	杉本 直三	京都大学
	滝沢 穂高	筑波大学
幹 事	武田 徹	北里大学
	陳 延偉	立命館大学
	土居 篤博	富士フイルム
	縄野 繁	国際医療福祉大学
	仁木 登	徳島大学
	野崎 太希	聖路加国際病院
	長谷川純一	中京大学
	畑中 裕司	滋賀県立大学
	羽石 秀昭	千葉大学
	平野 靖	山口大学
	藤田 広志	岐阜大学
	細羽 実	京都医療科学大学
	道谷 佳孝	広島市立大学
	森 健策	名古屋大学
	森 雅樹	札幌厚生病院
	山谷泰賀	量子科学技術研究開発機構 放射線医学総合研究所
	吉川 悦次	浜松ホトニクス
監事	安藤裕	JCHO 埼玉メディカルセンター
	[篠川 毅	島津製作所